首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bryophytes comprise three phyla of embryophytes that are well established to occupy the first nodes among extant lineages in the land-plant tree of life. The three bryophyte groups (hornworts, liverworts, mosses) may not form a monophyletic clade, but they share life history features including dominant free-living gametophytes and matrotrophic monosporangiate sporophytes. Because of their unique vegetative and reproductive innovations and their critical position in embryophyte phylogeny, studies of bryophytes are crucial to understanding the evolution of land plant morphology and genomes. This review focuses on phylogenetic relationships within each of the three divisions of bryophytes and relates morphological diversity to new insights about those relationships. Most previous work has been on the mosses, but progress on understanding the phylogeny of hornworts and liverworts is advancing at a rapid pace. Multilocus multigenome studies have been successful at resolving deep relationships within the mosses and liverworts, whereas single-gene analyses have advanced understanding of hornwort evolution.  相似文献   

2.
Background Molecular phylogeny has resolved the liverworts as the earliest-divergent clade of land plants and mosses as the sister group to hornworts plus tracheophytes, with alternative topologies resolving the hornworts as sister to mosses plus tracheophytes less well supported. The tracheophytes plus fossil plants putatively lacking lignified vascular tissue form the polysporangiophyte clade. Scope This paper reviews phylogenetic, developmental, anatomical, genetic and paleontological data with the aim of reconstructing the succession of events that shaped major land plant lineages. Conclusions Fundamental land plant characters primarily evolved in the bryophyte grade, and hence the key to a better understanding of the early evolution of land plants is in bryophytes. The last common ancestor of land plants was probably a leafless axial gametophyte bearing simple unisporangiate sporophytes. Water-conducting tissue, if present, was restricted to the gametophyte and presumably consisted of perforate cells similar to those in the early-divergent bryophytes Haplomitrium and Takakia. Stomata were a sporophyte innovation with the possible ancestral functions of producing a transpiration-driven flow of water and solutes from the parental gametophyte and facilitating spore separation before release. Stomata in mosses, hornworts and polysporangiophytes are viewed as homologous, and hence these three lineages are collectively referred to as the 'stomatophytes'. An indeterminate sporophyte body (the sporophyte shoot) developing from an apical meristem was the key innovation in polysporangiophytes. Poikilohydry is the ancestral condition in land plants; homoiohydry evolved in the sporophyte of polysporangiophytes. Fungal symbiotic associations ancestral to modern arbuscular mycorrhizas evolved in the gametophytic generation before the separation of major present-living lineages. Hydroids are imperforate water-conducting cells specific to advanced mosses. Xylem vascular cells in polysporangiophytes arose either from perforate cells or de novo. Food-conducting cells were a very early innovation in land plant evolution. The inferences presented here await testing by molecular genetics.  相似文献   

3.
As the oldest extant lineages of land plants, bryophytes provide a living laboratory in which to evaluate morphological adaptations associated with early land existence. In this paper we examine reproductive and structural innovations in the gametophyte and sporophyte generations of hornworts, liverworts, mosses and basal pteridophytes. Reproductive features relating to spermatogenesis and the architecture of motile male gametes are overviewed and evaluated from an evolutionary perspective. Phylogenetic analyses of a data set derived from spermatogenesis and one derived from comprehensive morphogenetic data are compared with a molecular analysis of nuclear and mitochondrial small subunit rDNA sequences. Although relatively small because of a reliance on water for sexual reproduction, gametophytes of bryophytes are the most elaborate of those produced by any land plant. Phenotypic variability in gametophytic habit ranges from leafy to thalloid forms with the greatest diversity exhibited by hepatics. Appendages, including leaves, slime papillae and hairs, predominate in liverworts and mosses, while hornwort gametophytes are strictly thalloid with no organized external structures. Internalization of reproductive and vegetative structures within mucilage-filled spaces is an adaptive strategy exhibited by hornworts. The formative stages of gametangial development are similar in the three bryophyte groups, with the exception that in mosses apical growth is intercalated into early organogenesis, a feature echoed in moss sporophyte ontogeny. A monosporangiate, unbranched sporophyte typifies bryophytes, but developmental and structural innovations suggest the three bryophyte groups diverged prior to elaboration of this generation. Sporophyte morphogenesis in hornworts involves non-synchronized sporogenesis and the continued elongation of the single sporangium, features unique among archegoniates. In hepatics, elongation of the sporophyte seta and archegoniophore is rapid and requires instantaneous wall expandability and hydrostatic support. Unicellular, spiralled elaters and capsule dehiscence through the formation of four regular valves are autapomorphies of liverworts. Sporophytic sophistications in the moss clade include conducting tissue, stomata, an assimilative layer and an elaborate peristome for extended spore dispersal. Characters such as stomata and conducting cells that are shared among sporophvtes of mosses, hornworts and pteridophytes are interpreted as parallelisms and not homologies. Our phylogenetic analysis of three different data sets is the most comprehensive to date and points to a single phylogenetic solution for the evolution of basal embryophytes. Hornworts are supported as the earliest divergent embryophyte clade with a moss/liverwort clade sister to tracheophytes. Among pteridophytes, lycophytes are monophyletic and an assemblage containing ferns, Equisetum and psilophytes is sister to seed plants. Congruence between morphological and molecular hypotheses indicates that these data sets are tracking the same phylogenetic signal and reinforces our phylogenetic conclusions. It appears that total evidence approaches are valuable in resolving ancient radiations such as those characterizing the evolution of early embryophytes. More information on land plant phylogeny can be found at: http: //www.science.siu.edu/ landplants/index.html.  相似文献   

4.
Extant bryophytes are regarded as the closest living relatives of the first land plants, but relationships among the bryophyte classes (mosses, liverworts and hornworts) and between them and other embryophytes have remained unclear. We have recently found that plant mitochondrial genes with positionally stable introns are well suited for addressing questions of plant phylogeny at a deep level. To explore further data sets we have chosen to investigate the mitochondrial genes nad4 and nad7, which are particularly rich in intron sequences. Surprisingly, we find that in these genes mosses share three group II introns with flowering plants, but none with the liverwort Marchantia polymorpha or other liverworts investigated here. In mitochondria of Marchantia, nad7 is a pseudogene containing stop codons, but nad7 appears as a functional mitochondrial gene in mosses, including the isolated genus Takakia. We observe the necessity for strikingly frequent C-to-U RNA editing to reconstitute conserved codons in Takakia when compared to other mosses. The findings underline the great evolutionary distances among the bryophytes as the presumptive oldest division of land plants. A scenario involving differential intron gains from fungal sources in what are perhaps the two earliest diverging land plant lineages, liverworts and other embryophytes, is discussed. With their positionally stable introns, nad4 and nad7 represent novel marker genes that may permit a detailed phylogenetic resolution of early clades of land plants.  相似文献   

5.
Abstract— Separate cladistic analyses of the green algae, liverworts, and hornworts are presented. Classificatory and evolutionary implications of these analyses, in addition to our previously published cladistic analyses of mosses and the embryophytes as a whole, are discussed. The embryophytes are monophyletic, and are part of a larger monophyletic group that includes some of the green algae (the "charophytes"). Important evolutionary transformations in the early phylogeny of the land plants include: (1) retention of the zygote on the haploid plant (gametophyte), with the sporophyte generation arising de novo by delaying meiosis, (2) independent elaboration of an elongate sporophyte in some liverworts, some hornworts, and in the moss-tracheophyte clade, (3) independent origin of radial (axial) symmetry in the gametophyte in some liverworts and in the moss-tracheophyte clade, (4) independent origin of leaves on the gametophyte in some liverworts and in mosses, and (5) the unique development of a branching sporophyte with multiple sporangia in the tracheophytes.  相似文献   

6.
BackgroundBryophytes represent a very diverse group of non-vascular plants such as mosses, liverworts and hornworts and the oldest extant lineage of land plants. Determination of endogenous phytohormone profiles in bryophytes can provide substantial information about early land plant evolution. In this study, we screened thirty bryophyte species including six liverworts and twenty-four mosses for their phytohormone profiles in order to relate the hormonome with phylogeny in the plant kingdom.MethodologySamples belonging to nine orders (Pelliales, Jungermanniales, Porellales, Sphagnales, Tetraphidales, Polytrichales, Dicranales, Bryales, Hypnales) were collected in Central and Northern Bohemia. The phytohormone content was analysed with a high performance liquid chromatography electrospray tandem-mass spectrometry (HPLC-ESI-MS/MS).ConclusionThe apparent differences in conjugation and/or degradation strategies of growth hormones between liverworts and mosses might potentially show a hidden link between vascular plants and liverworts. On the other hand, the complement of stress hormones in bryophytes probably correlate rather with prevailing environmental conditions and plant survival strategy than with plant evolution.  相似文献   

7.
The origin of land plants or embryophytes from the Charophyceae is generally accepted today by the botanists. In fact, numerous morphological, cytological, ultrastructural, biochemical and molecular characters are shared in these organisms. A fundamental problem is still constituted by the evolution of the sporophyte, i.e. the appearance of two different phase cycles (gametophyte/sporophyte alternance), although two theories ("antithetic" and "homologous") try to explain this evolutionary event.However, another phylogenetic dilemma is represented, in my opinion, either by the formation of bryophytes or by the transition from these first land plants to the pteridophytes, considering them at whole organism level.The bryophyte gametophyte is the most elaborate of the land plants. It presents several complex characters, principally the growth developmental form, the appearance of multicellular sex organs, antheridia and archegonia. Also the sporophyte shows a complicated structure that is not found in the other land plants or tracheophytes. The sporangium, in particular, exhibits some intricate morphological traits such as the peristome of true mosses for spore dispersion, the elaters of liverworts and the indeterminate growth in the hornworts.The pteridophytes are represented especially by their dominant sporophyte. This latter has the capacity to produce multiple sporangia and, in many cases, two kinds of spores which develop in male and female gametophyte (heterosporous pteridophytes). Another important characteristic of this sporophyte is its ability to become independent of the gametophyte. However, one of the most innovative character is the formation of true vascular elements (xylem and phloem).All these very large evolutionary jumps are discussed on the basis of the phyletic gradualistic neo-Darwinian theory and the punctuated equilibrium theory of Eldredge and Gould. In this context other genetic evolutionary mechanisms are also considered.Nevertheless, the origin of bryophytes and pteridophytes remain, at the moment, a mystery.  相似文献   

8.
Xylans are known to be major cellulose-linking polysaccharides in secondary cell walls in higher plants. We used two monoclonal antibodies (LM10 and LM11) for a comparative immunocytochemical analysis of tissue and cell distribution of xylans in a number of taxa representative of all major tracheophyte and bryophyte lineages. The results show that xylans containing the epitopes recognized by LM10 and LM11 are ubiquitous components of secondary cell walls in vascular and mechanical tissues in all present-living tracheophytes. In contrast, among the three bryophyte lineages, LM11 binding was detected in specific cell-wall layers in pseudoelaters and spores in the sporophyte of hornworts, while no binding was observed with either antibody in the gametophyte or sporophyte of liverworts and mosses. The ubiquitous occurrence of xylans containing LM10 and LM11 epitopes in tracheophytes suggests that the appearance of these polysaccharides has been a pivotal event for the evolution of highly efficient vascular and mechanical tissues. LM11 binding in the sporophyte of hornworts, indicating the presence of relatively highly substituted xylans (possibly arabinoxylans), separates these from the other bryophytes and is consistent with recent molecular data indicating a sister relationship of the hornworts with tracheophytes.  相似文献   

9.
The problem of relationships among the major basal living groups of land plants is long standing, yet the uncertainty as to the phylogenetic affinity of these lines persists in the literature. Molecular and modern cladistic studies of the phylogenetic relationships of the above groups resulted in a large number of conflicting topologies. However, with the exception of the cladistic analyses of spermatogenesis, suggesting monophyly of extant bryophytes, these studies agree the paraphyletic bryophyte grade is basal within the embryophyte tree. Here we would like to present analyses on the basis of the concatenated datasets of nucleotide and amino-acid sequences of 57 protein-coding genes common to 17 chloroplast genomes of land plants and a charophyte alga Chaetosphaeridium globosum. Character-wise, these are the largest datasets currently available to address the problem of basal relationships within embryophytes. Main lineages of bryophytes, i.e liverworts, hornworts and mosses are represented in our alignments with a single taxon, whereas 14 taxa represent the tracheophytes. With our data, phylogeny with liverwort basal appears to be and artifact related to high and unequal A+T contents among the sequences analysed. Reducing this compositional bias and applying methods developed to counter it, we recovered an alternative, strongly supported topology wherein both bryophytes and tracheophytes are monophyletic. Within bryophytes, hornworts are basal and liverworts are sister to mosses.  相似文献   

10.
The relationships among the four major embryophyte lineages (mosses, liverworts, hornworts, vascular plants) and the timing of the origin of land plants are enigmatic problems in plant evolution. Here, we resolve the monophyly of bryophytes by improving taxon sampling of hornworts and eliminating the effect of synonymous substitutions. We then estimate the divergence time of crown embryophytes based on three fossil calibration strategies, and reveal that maximum calibration constraints have a major effect on estimating the time of origin of land plants. Moreover, comparison of priors and posteriors provides a guide for evaluating the optimal calibration strategy. By considering the reliability of fossil calibrations and the influences of molecular data, we estimate that land plants originated in the Precambrian (980–682 Ma), much older than widely recognized. Our study highlights the important contribution of molecular data when faced with contentious fossil evidence, and that fossil calibrations used in estimating the timescale of plant evolution require critical scrutiny.  相似文献   

11.
Sequencing the plastid genomes of land plants provides crucial improvements to our understanding of the plastome evolution of land plants. Although the number of available complete plastid genome sequences has rapidly increased in the recent years, only a few sequences have been yet released for the three bryophyte lineages, namely hornworts, liverworts, and mosses. Here, we explore the disparity of the plastome structure of liverworts by increasing the number of sequenced liverwort plastomes from five to 18. The expanded sampling included representatives of all major lineages of liverworts including the genus Haplomitrium. The disparity of the liverwort genomes was compared with other 2386 land plant plastomes with emphasis on genome size and GC‐content. We found evidence for structural conservatism of the plastid genomes in liverworts and a trend towards reduced plastome sequence length in liverworts and derived mosses compared to other land plants, including hornworts and basal lineages of mosses. Furthermore, Aneura and Haplomitrium were distinct from other liverworts by an increased GC content, with the one found in Haplomitrium only second to the lycophyte Selaginella. The results suggest the hypothesis that liverworts and other land plants inherited and conserved the plastome structure of their most recent algal ancestors.  相似文献   

12.

Background

Land plants (embryophytes) are monophyletic and encompass four major clades: liverworts, mosses, hornworts and polysporangiophytes. The liverworts are resolved as the earliest divergent lineage and the mosses as sister to a crown clade formed by the hornworts and polysporangiophytes (lycophytes, monilophytes and seed plants). Alternative topologies resolving the hornworts as sister to mosses plus polysporangiophytes are less well supported. Sporophyte development in liverworts depends only on embryonic formative cell divisions. A transient basal meristem contributes part of the sporophyte in mosses. The sporophyte body in hornworts and polysporangiophytes develops predominantly by post-embryonic meristematic activity.

Scope

This paper explores the origin of the sporophyte shoot in terms of changes in embryo organization. Pressure towards amplification of the sporangium-associated photosynthetic apparatus was a major driver of sporophyte evolution. Starting from a putative ancestral condition in which a transient basal meristem produced a sporangium-supporting seta, we postulate that in the hornwort–polysporangiophyte lineage the basal meristem acquired indeterminate meristematic activity and ectopically expressed the sporangium morphogenetic programme. The resulting sporophyte body plan remained substantially unaltered in hornworts, whereas in polysporangiophytes the persistent meristem shifted from a mid-embryo to a superficial position and was converted into an ancestral shoot apical meristem with the evolution of sequential vegetative and reproductive growth.

Conclusions

The sporophyte shoot is interpreted as a sterilized sporangial axis interpolated between the embryo and the fertile sporangium. With reference to the putatively ancestral condition found in mosses, the sporophyte body plans in hornworts and polysporangiophytes are viewed as the product of opposite heterochronic events, i.e. an anticipation and a delay, respectively, in the development of the sporangium. In either case the result was a pedomorphic sporophyte permanently retaining juvenile characters.  相似文献   

13.
藻苔纲Takakiopsida,一个独特的苔藓植物类群   总被引:2,自引:1,他引:2  
藻苔属Takakia在建立之初被认为是原始的苔类植物。这一神秘类群的出现引起了苔藓学家的兴趣,发表了一系列相关的论文。但是随着其孢子体的发现,它的系统位置引起了争论。本文详细分析了藻苔属植物的形态性状特征,参考了大量其他学科的研究成果,认为它既不能归于类,也不能归于苔类。就其系统位置而言,应该成为一独立的纲——藻苔纲。  相似文献   

14.
The slow-evolving mitochondrial DNAs of plants have potentially conserved information on the phylogenetic branching of the earliest land plants. We present the nad2 gene structures in hornworts and liverworts and in the presumptive earliest-branching vascular land plant clade, the Lycopodiopsida. Taken together with the recently obtained nad2 data for mosses, each class of bryophytes presents another pattern of angiosperm-type introns conserved in nad2: intron nad2i1 in mosses; intron nad2i3 in liverworts; and both introns, nad2i3 and nad2i4, in hornworts. The lycopods Isoetes and Lycopodium show diverging intron conservation and feature a unique novel intron, termed nad2i3b. Hence, mitochondrial introns in general are positionally stable in the bryophytes and provide significant intraclade phylogenetic information, but the nad2 introns, in particular, cannot resolve the interclade relationships of the bryophyte classes and to the tracheophytes. The necessity for RNA editing to reconstitute conserved codon entities in nad2 is obvious for all clades except the marchantiid liverworts. Finally, we find that particularly small group II introns appear as a general feature of the Isoetes chondriome. Plant mitochondrial peculiarities such as RNA editing frequency, U-to-C type of RNA editing, and small group II introns appear to be genus-specific rather than gene-specific features.  相似文献   

15.
A cladistic approach to the phylogeny of the “Bryophytes”   总被引:1,自引:0,他引:1  
The importance of a cladistic approach in reconstructing the phylogeny of bryophytes is discussed and illustrated by an analysis of the major groups of bryophytes with respect to the tracheophytes and the green algae. The cladistic analysis, using 51 characters taken from the literature, gives the following tentative results: (1) the embryophytes as a whole are monophyletic; (2) the bryophytes (sensu lato) are paraphyletic; (3) the mosses share a more recent common ancestor with the tracheophytes than do the liverworts or hornworts; (4) the hornworts appear to share a more recent common ancestor with the moss-tracheophyte lineage than with the liverworts; however, the existence of several homoplasies makes this placement more problematical; (5) the origin of alternation of generations in the embryophytes, based on out-group comparison with their oogamous, haplontic, algal sister groups, was by progressive elaboration of the primitively epiphytic sporophyte generation; and (6) the presence of vascular tissue (xylem and phloem) can best be interpreted as a synapomorphy of the moss-tracheophyte clade, and tracheids (xylem with ornamented walls) as a synapomorphy of the tracheophytes; therefore, the prevailing designation of “vascular plants” for the tracheophytes alone is inaccurate.  相似文献   

16.
A widely held view of land plant relationships places liverworts as the first branch of the land plant tree, whereas some molecular analyses and a cladistic study of morphological characters indicate that hornworts are the earliest land plants. To help resolve this conflict, we used parsimony and likelihood methods to analyze a 6, 095-character data set composed of four genes (chloroplast rbcL and small-subunit rDNA from all three plant genomes) from all major land plant lineages. In all analyses, significant support was obtained for the monophyly of vascular plants, lycophytes, ferns (including PSILOTUM: and EQUISETUM:), seed plants, and angiosperms. Relationships among the three bryophyte lineages were unresolved in parsimony analyses in which all positions were included and weighted equally. However, in parsimony and likelihood analyses in which rbcL third-codon-position transitions were either excluded or downweighted (due to apparent saturation), hornworts were placed as sister to all other land plants, with mosses and liverworts jointly forming the second deepest lineage. Decay analyses and Kishino-Hasegawa tests of the third-position-excluded data set showed significant support for the hornwort-basal topology over several alternative topologies, including the commonly cited liverwort-basal topology. Among the four genes used, mitochondrial small-subunit rDNA showed the lowest homoplasy and alone recovered essentially the same topology as the multigene tree. This molecular phylogeny presents new opportunities to assess paleontological evidence and morphological innovations that occurred during the early evolution of terrestrial plants.  相似文献   

17.
A cladistic analysis was carried out to resolve phylogenetic pattern among bryophytes and other land plants. The analysis used 22 taxa of land plants and 90 characters relating to male gametogenesis.Coleochaete orChara/Nitella were the outgroups in various analyses using HENNIG86, PAUP, and MacClade, and the land plant phylogeny was unchanged regardless of outgroup utilized. The most parsimonious cladograms from HENNIG86 (7 trees) have treelengths of 243 (C.I. = 0.58, R.I. = 0.82). Bryophytes are monophyletic as are hornworts, liverworts, and mosses, with hornworts identified as the sister group of a liverwort/moss assemblage. In vascular plants, lycophytes are polyphyletic andSelaginella is close to the bryophytes.Lycopodium is the sister group of the remaining vascular plants (minusSelaginella). Longer treelengths (over 250) are required to produce tree topologies in which either lycophytes are monophyletic or to reconstruct the paraphyletic bryophyte phylogeny of recent authors. This analysis challenges existing concepts of bryophyte phylogeny based on more classical data and interpretations, and provides new insight into land plant evolution.  相似文献   

18.
Background and Aims Following the consensus view for unitary origin and conserved function of stomata across over 400 million years of land plant evolution, stomatal abundance has been widely used to reconstruct palaeo-atmospheric environments. However, the responsiveness of stomata in mosses and hornworts, the most basal stomate lineages of extant land plants, has received relatively little attention. This study aimed to redress this imbalance and provide the first direct evidence of bryophyte stomatal responsiveness to atmospheric CO2.Methods A selection of hornwort (Anthoceros punctatus, Phaeoceros laevis) and moss (Polytrichum juniperinum, Mnium hornum, Funaria hygrometrica) sporophytes with contrasting stomatal morphologies were grown under different atmospheric CO2 concentrations ([CO2]) representing both modern (440 p.p.m. CO2) and ancient (1500 p.p.m. CO2) atmospheres. Upon sporophyte maturation, stomata from each bryophyte species were imaged, measured and quantified.Key Results Densities and dimensions were unaffected by changes in [CO2], other than a slight increase in stomatal density in Funaria and abnormalities in Polytrichum stomata under elevated [CO2].Conclusions The changes to stomata in Funaria and Polytrichum are attributed to differential growth of the sporophytes rather than stomata-specific responses. The absence of responses to changes in [CO2] in bryophytes is in line with findings previously reported in other early lineages of vascular plants. These findings strengthen the hypothesis of an incremental acquisition of stomatal regulatory processes through land plant evolution and urge considerable caution in using stomatal densities as proxies for paleo-atmospheric CO2 concentrations.  相似文献   

19.
Current ideas on the evolution of alternation of generations in land plants are reviewed in the context of important recent advances in plant systematics and the discovery of remarkable new palaeobotanical evidence on early embryophyte life cycles. An overview of relationships in major groups of green plants is presented together with a brief review of the early fossil record as a prelude to discussing hypotheses of life cycle evolution. Recent discoveries of life cycles in the early fossil record are described and assessed. The newly discovered gametophyte and sporophyte associations are based on exceptionally well-preserved material from the Rhynie Chert, Scotland (Middle Devonian: 380–408 Myr) and compression fossils from other Devonian localities. These data document diplobiontic life cycles in plants at the ‘protracheophyte’ and early tracheophyte level of organization. Furthermore, the early fossils have a more or less isomorphic alternation of generations, a striking departure from life cycles in extant embryophytes. This unexpected similarity between gametophyte and sporophyte calls for a cautious approach in identifying ploidy level in early groups. Viewed in a systematic context, the neontological and palaeontological data contribute towards the formulation of a coherent hypothesis of life cycle evolution in major, early embryophyte groups. Evidence from extant groups strongly supports a single direct origin of the diplobiontic life cycles of land plants from haploid, haplobiontic life cycles in ancestral ‘charophycean algae’. The interest of the new palaeobotanical data lies in its relevance to life cycle evolution at the restricted level of vascular plants rather than at the more general level of embryophytes (vascular plants plus ‘bryophytes’). The occurrence of morphologically complex, axial gametophytes in early vascular plants is consistent with the moss sister-group proposed in some cladistic analyses. Similarities of moss gametophytes to fossils in the vascular plant stem-group are discussed, and it is argued that the late appearance of mosses in the macrofossil record may be due to the problem of recognizing stem-group taxa. The new palaeobotanical evidence conflicts with previous hypotheses based on extant groups that interpret morphological simplicity as the plesiomorphic condition in the gametophytes of vascular plants. These new data indicate that a significant elaboration of both gametophyte and sporophyte occurred early in the tracheophyte lineage, and that the gametophytes of extant ‘pteridophytes’ are highly reduced compared to those of some of the earliest ‘protracheophytes’. Vestiges of this early morphological complexity may remain in the gametophytes of some extant groups such as Lycopodiaceae.  相似文献   

20.
A life history involving alternation of two developmentally associated, multicellular generations (sporophyte and gametophyte) is an autapomorphy of embryophytes (bryophytesphytes + vascular plants). Microfossil data indicate that Mid Late Ordovician land plants possessed such a life cycle, and that the origin of alternation of generations preceded this date. Molecular phylogenetic data unambiguously relate charophycean green algae to the ancestry of monophyletic embryophytes, and identify bryophytes as early-divergent land plants. Comparison of reproduction in charophyceans and bryophytes suggests that the following stages occurred during evolutionary origin of embryophytic alternation of generations: (i) origin of oogamy; (ii) retention of eggs and zygotes on the parental thallus; (iii) origin of matrotrophy (regulated transfer of nutritional and morphogenetic solutes from parental cells to the next generation); (iv) origin of a multicellular sporophyte generation; and (v) origin of non-flagellate, walled spores. Oogamy, egg/zygote retention and matrotrophy characterize at least some modern charophvceans, and are postulated to represent pre-adaptative features inherited by embryophytes from ancestral charophyceans. Matrotrophy is hypothesized to have preceded origin of the multicellular sporophytes of' plants, and to represent a critical innovation. Molecular approaches to the study of the origins of matrotrophy include assessment of hexose transporter genes and protein family members and their expression patterns. The occurrence in modern charophyceans and bryophytes of chemically resistant tissues that exhibit distinctive morphology correlated with matrotrophy suggests that Early-Mid Ordovician or older microfossils relevant to the origin of land plant alternation of generations may be found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号