首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycosyltransferases are involved in biosynthesis of both protein-bound and non-bound glycans that have multiple and important biological functions in all species. A variety of methods for assaying glycosyltransferase activity have been developed driven by the specific interests and type of information required by researchers. In this work, a novel colorimetric assay for the glycosyltransferase-catalyzed reaction was established. Compared with measuring the newly formed product, which might not exhibit visible absorption, the unreacted acceptor could be readily detected by measuring the visible absorption of the hydrolysis product. In the assay, 4-nitrophenyl-β-D-glycoside (glycosyl-β-pNP) is used as the glycosyl acceptor, which can be hydrolyzed by a special exoglycosidase to release the p-nitrophenol before glycosylation reactions. Absorbance change of the p-nitrophenolate corresponds to unreacted glycosyl acceptor that accompanied the glycosyl transfer. The assay is demonstrated to be useful in the initial characterization of recombinant glycosyltransferases for their kinetic parameters, optimal metal cofactor, and pH value. It provides a simple, sensitive, and quantitative method for assessing glycosyltransferase activity and is thus expected to have broad applications including automated high-throughput screening.  相似文献   

2.
The oleD gene has been identified in the oleandomycin producer Streptomyces antibioticus and it codes a macrolide glycosyltransferase that is able to transfer a glucose moiety from UDP-glucose (UDP-Glc) to many macrolides. The glycosyltransferase coded by the oleD gene has been purified 371-fold from a Streptomyces lividans clone expressing this protein. The reaction product was isolated, and its structure determined by NMR spectroscopy. The kinetic mechanism of the reaction was analyzed using the macrolide antibiotic lankamycin (LK) as substrate. The reaction operates via a compulsory order mechanism. This has been shown by steady-state kinetic studies and by isotopic exchange reactions at equilibrium. LK binds first to the enzyme, followed by UDP-glucose. A ternary complex is thus formed prior to transfer of glucose. UDP is then released, followed by the glycosylated lankamycin (GS-LK). A pH study of the reaction was performed to determine values for the molecular pK values, suggesting possible amino acid residues involved in the catalytic process.  相似文献   

3.
The metabolic pathways leading to the synthesis of bacterial glycogen involve the action of several enzymes, among which glycogen synthase (GS) catalyzes the elongation of the α-1,4-glucan. GS from Agrobacterium tumefaciens uses preferentially ADPGlc, although UDPGlc can also be used as glycosyl donor with less efficiency. We present here a continuous spectrophotometric assay for the determination of GS activity using ADP- or UDPGlc. When ADPGlc was used as the substrate, the production of ADP is coupled to NADH oxidation via pyruvate kinase (PK) and lactate dehydrogenase (LDH). With UDPGlc as substrate, UDP was converted to ADP via adenylate kinase and subsequent coupling to PK and LDH reactions. Using this assay, we determined the kinetic parameters of GS and compared them with those obtained with the classical radiochemical method. For this purpose, we improved the expression procedure of A. tumefaciens GS using Escherichia coli BL21(DE3)-RIL cells. This assay allows the continuous monitoring of glycosyltransferase activity using ADPGlc or UDPGlc as sugar-nucleotide donors.  相似文献   

4.
We have developed a sensitive and simple method for assaying glycosyltransferase activities. This method makes use of solution-phase transferase reactions followed by capture to a microplate well coated with a substrate-specific monoclonal antibody. Sugar incorporation is quantitated by binding a saccharide-specific lectin and using bioluminescent aequorin for a reporter molecule. We demonstrate this method using the glycoprotein hormone-specific GalNAc-transferase and its acceptor substrate, agalacto-hCG. As little as 20 ng of agalacto-hCG with 32 nU of GalNAc-transferase gives a detectable signal with less than 10% of the acceptor sites substituted. In addition to this high sensitivity, by doing the transferase reactions in solution, we can assay up to 10 micrograms of agalacto-hCG. We show that this allows the determination of Km and Vmax kinetic constants that compare well to those obtained with radiolabeled nucleotide sugars.  相似文献   

5.
Glycosyltransferases are key enzymes in glycoconjugate biosynthesis, which make them important targets for biomedical research. Among the different methodologies developed to analyze glycosyltransferase activities, fluorophore-assisted capillary electrophoresis (FACE) emerges as a powerful technique in carbohydrate analysis. Its application to monitor glycosyltransferase activity has been limited to reactions with derivatized sugars as acceptor substrates in which a charged fluorophore/chromophore must be introduced, thus requiring tedious preparative synthesis and purification for each single acceptor substrate. Here we describe a novel and general glycosyltransferase assay based on FACE using underivatized acceptor substrates. Enzyme activity is monitored by a discontinuous assay with postreaction derivatization by reductive amination with 8-aminonaphthalene-1,3,6-trisulfonic acid. The reaction mixture is directly analyzed by HPCE (high-performance capillary electrophoresis) under inverted electroosmotic conditions at pH 2.5 and 30 degrees C. After method validation, it was applied to the kinetic characterization of an alpha-1,3-galactosyltransferase, the enzyme responsible for the biosynthesis of alphaGal epitope involved in the hyperacute rejection in xenotransplantation. The absence of a label on the acceptor during the GT reaction avoids any interference of the label with the enzyme, and the postreaction derivatization does not require any purification step.  相似文献   

6.
Retaining glycosyltransferase enzymes retain the stereochemistry of the donor glycosidic linkage after transfer to an acceptor molecule. The mechanism these enzymes utilize to achieve retention of the anomeric stereochemistry has been a matter of much debate. Re-analysis of previously released structural data from retaining and inverting glycosyltransferases allows competing mechanistic proposals to be evaluated. The binding of metal-nucleotide-sugars between inverting and retaining enzymes is conformationally unique and requires the donor substrate to occupy two different orientations in the two types of glycosyltransferases. The available structures of retaining glycosyltransferases lack appropriately positioned enzymatic dipolar residues to initiate or stabilize the intermediates of a dissociative mechanism. Further, available structures show that the acceptor nucleophile and anomeric carbon of the donor sugar are in close proximity. Structural features support orthogonal (front-side) attack from a position lying ≤90° from the C1-O phosphate bond for retaining enzymes. These structural conclusions are consistent with the geometric conclusions of recent kinetic and computational studies.  相似文献   

7.
A steady-state kinetic analysis of human S-adenosylmethionine synthetase indicates that the reaction is Bi Ter with ordered addition of ATP and L-methionine and release of S-adenosylmethionine as the first product. Pyrophosphate and phosphate are then released randomly. I-Parabolic inhibition by phosphate with respect to ATP indicates that this product must bind to more than one site. A model in which phosphate binds to the pyrophosphate site gives a rate equation that is consistent with the kinetic data. Values have been determined for those constants in the equation that are large enough to evaluate, and the in vitro kinetic behavior of S-adenosylmethionine synthetase can be predicted at substrate and product concentrations that are expected intracellularly. Inhibition by combinations of products, especially pyrophosphate and phosphate, is synergistic. Of particular interest is the ability of pyrophosphate and phosphate to increase the sensitivity of the enzyme to inhibition by S-adenosylmethionine. This phenomenon may play a role in regulating steady-state cellular concentrations of S-adenosylmethionine.  相似文献   

8.
We have developed an assay for online detection of DNA cleavage by restriction endonucleases, suitable for the high throughput screening of the activity and flanking sequence preference of restriction endonuclease variants. For this purpose oligodeoxynucleotides were used, labeled with either 6-FAM or TAMRA whose fluorescence is quenched by a neighboring DABCYL group. After endonucleolytic cleavage the products are too short to remain double-stranded and the fluorophor labeled strand is released with concomitant increase in fluorescence which can be easily quantified. Employing this method, cleavage reactions can be monitored continuously, allowing for fast detection of specific activity as well as determination of kinetic parameters. To demonstrate the reliability of our assay we measured K(M) and k(cat) values for the restriction endonuclease EcoRV and obtained results similar to those obtained with established assays. Moreover, our method makes it possible to observe the cleavage of two different substrates differing in the sequences flanking the EcoRV site and labeled with different fluorophors in competition in a single experiment. This assay can be carried out in a microplate format, which allows for the analysis of many restriction endonuclease variants in parallel.  相似文献   

9.
Glycosyltransferases (GTs) are abundant in nature and diverse in their range of substrates. Application of GTs is, however, often complicated by their narrow substrate specificity. GTs with tailored specificities are highly demanded for targeted glycosylation reactions. Engineering of such GTs is, however, restricted by lack of practical and broad-scope assays currently available. Here we present an improvement of an inexpensive and simple assay that relies on the enzymatic detection of inorganic phosphate cleaved from nucleoside phosphate products released in GT reactions. This phosphatase-coupled assay (PCA) is compared with other GT assays: a pH shift assay and a commercially available immunoassay in Escherichia coli cell-free extract (CE). Furthermore, we probe PCA with three GTs with different specificities. Our results demonstrate that PCA is a versatile and apparently general GT assay with a detection limit as low as 1 mU. The detection limit of the pH shift assay is roughly 4 times higher. The immunoassay, by contrast, detected only nucleoside diphosphates (NDPs) but had the lowest detection limit. Compared with these assays, PCA showed superior robustness and, therefore, appears to be a suitable general screening assay for nucleotide sugar-dependent GTs.  相似文献   

10.
Glycosyltransferases catalyze transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Identification of selective modulators of glycosyltransferases is important both to provide new tools for investigating pathophysiological roles of glycosylation reactions in cells and tissues, and as new leads in drug discovery. Here we describe a universal enzyme-coupled fluorescence assay for glycosyltransferases, based on quantification of nucleotides produced in the glycosyl transfer reaction. GDP, UDP, and CMP are phosphorylated with nucleotide kinase in the presence of excess ATP, generating ADP. Via coupled enzyme reactions involving ADP-hexokinase, glucose-6-phosphate dehydrogenase, and diaphorase, the ADP is utilized for conversion of resazurin to resorufin, which is determined by fluorescence measurement. The method was validated by comparison with an HPLC method, and employed to screen the LOPAC1280 library for inhibitors in a 384-well plate format. The assay performed well, with a Z′-factor of 0.80. We identified 12 hits for human galactosyltransferase B4GALT1 after elimination of false positives that inhibited the enzyme-coupled assay system. The assay components are all commercially available and the reagent cost is only 2 to 10 US cents per well. This method is suitable for low-cost, high-throughput assay of various glycosyltransferases and screening of glycosyltransferase modulators.  相似文献   

11.
The biosynthetic enzymes involved in wall teichoic acid biogenesis in gram-positive bacteria have been the subject of renewed investigation in recent years with the benefit of modern tools of biochemistry and genetics. Nevertheless, there have been only limited investigations into the enzymes that glycosylate wall teichoic acid. Decades-old experiments in the model gram-positive bacterium, Bacillus subtilis 168, using phage-resistant mutants implicated tagE (also called gtaA and rodD) as the gene coding for the wall teichoic acid glycosyltransferase. This study and others have provided only indirect evidence to support a role for TagE in wall teichoic acid glycosylation. In this work, we showed that deletion of tagE resulted in the loss of α-glucose at the C-2 position of glycerol in the poly(glycerol phosphate) polymer backbone. We also reported the first kinetic characterization of pure, recombinant wall teichoic acid glycosyltransferase using clean synthetic substrates. We investigated the substrate specificity of TagE using a wide variety of acceptor substrates and found that the enzyme had a strong kinetic preference for the transfer of glucose from UDP-glucose to glycerol phosphate in polymeric form. Further, we showed that the enzyme recognized its polymeric (and repetitive) substrate with a sequential kinetic mechanism. This work provides direct evidence that TagE is the wall teichoic acid glycosyltransferase in B. subtilis 168 and provides a strong basis for further studies of the mechanism of wall teichoic acid glycosylation, a largely uncharted aspect of wall teichoic acid biogenesis.  相似文献   

12.
Wu ZL 《PloS one》2011,6(8):e23172
Kinases use adenosine-5'-triphosphate (ATP) as the donor substrate and generate adenosine-5'-diphosphate (ADP) as a product. An ADP-based phosphatase-coupled kinase assay is described here. In this assay, CD39L2, a nucleotidase, is added into a kinase reaction to hydrolyze ADP to AMP and phosphate. The phosphate is subsequently detected using malachite green phosphate-detection reagents. As ADP hydrolysis by CD39L2 displays a first-order rate constant, relatively simple equations are derived to calculate the coupling rate and the lagging time of the coupling reaction, allowing one to obtain kinase kinetic parameters without the completion of the coupling reaction. ATP inhibition of CD39L2-catalyzed ADP hydrolysis is also determined for correction of the kinetic data. As examples, human glucokinase, P. chrysogenum APS kinase and human ERK1, kinases specific for sugar, nucleotide and protein respectively, are assayed. To assess the compatibility of the method for high-throughput assays, Z' factors >0.5 are also obtained for the three kinases.  相似文献   

13.
The recently identified nicotinamide riboside kinases (Nrks) constitute a distinct pathway of nicotinamide adenine dinucleotide (NAD) biosynthesis. Here we present the combination of an established optical adenosine triphosphatase (ATPase) test, the pyruvate kinase/lactate dehydrogenase system, with the Nrk-catalyzed reaction to determine kinetic properties of these enzymes, in particular affinities for ATP. The assay allows variation of both nucleoside and phosphate donor substrates, thereby providing major advantages for the characterization of these enzymes. We confirm previously established kinetic parameters and identify differences in substrate selectivity between the two human Nrk isoforms. The proposed assay is inexpensive and may be applied for high-throughput screening.  相似文献   

14.
A microtiter assay was developed for the improved detection of inorganic phosphate released from adenosine 5'-triphosphate (ATP) in the glutamine synthetase biosynthetic assay. In this assay, ascorbic acid replaces the traditionally used ferrous sulfate to reduce the phosphomolybdate complex. As a result, increased color development, linearity, and sensitivity are achieved. Additionally, in the microtiter format, multiple sets of kinetic experiments can be rapidly performed in parallel. The color that forms is rendered highly stable by the addition of sodium citrate. However, the commonly used sodium arsenite in this solution has been omitted, making the assay less hazardous. The assay is linear to 100 nmol Pi in the presence of 10mM ATP.  相似文献   

15.
Sulfotransferases are a large group of enzymes that transfer a sulfonate group from the donor substrate, 3'-phosphoadenosine-5'-phosphosulfate (PAPS)(1), to various acceptor substrates, generating 3'-phosphoadenosine-5'-phosphate (PAP) as a by-product. A universal phosphatase-coupled sulfotransferase assay is described here. In this method, Golgi-resident PAP-specific 3'-phosphatase (gPAPP) is used to couple to a sulfotransferase reaction by releasing the 3'-phosphate from PAP. The released phosphate is then detected using malachite green reagents. The enzyme kinetics of gPAPP have been determined, which allows calculation of the coupling rate, the ratio of product-to-signal conversion, of the coupled reaction. This assay is convenient, as it eliminates the need for radioisotope labeling and substrate-product separation, and is more accurate through removal of product inhibition and correction of the results with the coupling rate. This assay is also highly reproducible, as a linear correlation factor above 0.98 is routinely achievable. Using this method, we measured the Michaelis-Menten constants for recombinant human CHST10 and SULT1C4 with the substrates phenolphthalein glucuronic acid and α-naphthol, respectively. The activities obtained with the method were also validated by performing simultaneous radioisotope assays. Finally, the removal of PAP product inhibition by gPAPP was clearly demonstrated in radioisotope assays.  相似文献   

16.
A novel ADP-ribosyltransferase (ADPRT) is reported from sera of both healthy human subjects (n = 25) and patients with colorectal tumors (n = 12) and breast cancer (n = 55). In sera of healthy controls (n = 25) the average ADPRT values were 250 +/- 56 picokatal/liter. ADPRT serum activities in metastatic cancer patients (n = 47) were three times higher (p less than 0.01) than in normal controls. A tumor origin of the serum ADPRT can be inferred from the statistical correlation (R = 0.74) between tumor and serum levels. The radiometric test procedure (CV 20-25%) is critically validated and kinetic properties of serum ADPRT have been studied, showing a competitive inhibition by nicotinamide, benzamide and 3-aminobenzamide. The kinetic parameters of serum ADPRT resemble those reported for nuclear ADPRT, thus indicating that serum ADPRT activity could be due to a nuclear enzyme released from the tumor cells.  相似文献   

17.
Phytase (EC 3.1.3.–) hydrolyzes phytate (IP6) present in cereals and grains to release inorganic phosphate (Pi), thereby making it bioavailable. The most commonly used method to assay phytase, developed nearly a century ago, measures the Pi liberated from IP6. This traditional endpoint assay is time-consuming and well known for its cumbersomeness in addition to requiring extra caution for handling the toxic regents used. This article reports a simple, fast, and nontoxic kinetic method adaptable for high throughput for assaying phytase using IP6–lysozyme as a substrate. The assay is based on the principle that IP6 forms stable turbid complexes with positively charged lysozyme in a wide pH range, and hydrolysis of the IP6 in the complex is accompanied by a decrease in turbidity monitored at 600 nm. The turbidity decrease correlates well to the released Pi from IP6. This kinetic method was found to be useful in assaying histidine acid phytases, including 3- and 6-phytases, a class representing all commercial phytases, and alkaline β-propeller phytase from Bacillus sp. The influences of temperature, pH, phosphate, and other salts on the kinetic assay were examined. All salts, including NaCl, CaCl2, and phosphate, showed a concentration-dependent interference.  相似文献   

18.
Here we report a systematic method for constructing a large scale kinetic metabolic model and its initial application to the modeling of central metabolism of Methylobacterium extorquens AM1, a methylotrophic and environmental important bacterium. Its central metabolic network includes formaldehyde metabolism, serine cycle, citric acid cycle, pentose phosphate pathway, gluconeogensis, PHB synthesis and acetyl-CoA conversion pathway, respiration and energy metabolism. Through a systematic and consistent procedure of finding a set of parameters in the physiological range we overcome an outstanding difficulty in large scale kinetic modeling: the requirement for a massive number of enzymatic reaction parameters. We are able to construct the kinetic model based on general biological considerations and incomplete experimental kinetic parameters. Our method consists of the following major steps: 1) using a generic enzymatic rate equation to reduce the number of enzymatic parameters to a minimum set while still preserving their characteristics; 2) using a set of steady state fluxes and metabolite concentrations in the physiological range as the expected output steady state fluxes and metabolite concentrations for the kinetic model to restrict the parametric space of enzymatic reactions; 3) choosing enzyme constants K’s and K’eqs optimized for reactions under physiological concentrations, if their experimental values are unknown; 4) for models which do not cover the entire metabolic network of the organisms, designing a dynamical exchange for the coupling between the metabolism represented in the model and the rest not included.  相似文献   

19.
Scintillation proximity assay (SPA) is a radio-isotopic technology format used to measure a wide range of biological interactions, including drug-target binding affinity studies. The assay is homogeneous in nature, as it relies on a “mix and measure” format. It does not involve a filtration step to separate bound from free ligand as is the case in a traditional receptor-binding assay. For G protein-coupled receptors (GPCRs), it has been shown that optimal binding kinetics, next to a high affinity of a ligand, can result in more desirable pharmacological profiles. However, traditional techniques to assess kinetic parameters tend to be cumbersome and laborious. We thus aimed to evaluate whether SPA can be an alternative platform for real-time receptor-binding kinetic measurements on GPCRs. To do so, we first validated the SPA technology for equilibrium binding studies on a prototypic class A GPCR, the human adenosine A1 receptor (hA1R). Differently to classic kinetic studies, the SPA technology allowed us to study binding kinetic processes almost real time, which is impossible in the filtration assay. To demonstrate the reliability of this technology for kinetic purposes, we performed the so-called competition association experiments. The association and dissociation rate constants (k on and k off) of unlabeled hA1R ligands were reliably and quickly determined and agreed very well with the same parameters from a traditional filtration assay performed simultaneously. In conclusion, SPA is a very promising technique to determine the kinetic profile of the drug-target interaction. Its robustness and potential for high-throughput may render this technology a preferred choice for further kinetic studies.  相似文献   

20.
ADP-ribose pyrophosphatase (ADPRase) hydrolyzes ADP-ribose to ribose-5-phosphate and AMP. The ADPRase activity have been assessed by coupling the reaction to alkaline phosphatase and colorimetrically measuring the amount of inorganic phosphate released from AMP that is one of the products of ADPRase. Another but less sensitive colorimetric method has been employed: the reaction mixture was treated with charcoal to adsorb the adenine-containing compounds such as AMP and ADPR and subsequently remaining ribose-5-phosphate was measured colorimetrically. However, the measurement of inorganic phosphate cannot be feasible to assay ADPRase in phosphate-containing samples and the determination of ribose-5-phosphate also is less sensitive. Here we develop a fluorescent assay for ADPRase that utilizes 1, N(6)-etheno ADP-ribose, a fluorescent analogue of ADP-ribose. This method measures fluorescent 1, N(6)-etheno adenosine that is produced by coupling the hydrolysis of 1, N(6)-etheno ADP-ribose to dephosphorylation with alkaline phosphatase. The fluorometric assay is comparable in sensitivity and useful for ADPRase assay in phosphate-containing samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号