首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The interaction between flap endonuclease 1 (FEN-1) and proliferation cell nuclear antigen (PCNA) is critical for faithful and efficient Okazaki fragment maturation. In a living cell, this interaction is probably important for PCNA to load FEN-1 to the replication fork, to coordinate the sequential functions of FEN-1 and other enzymes, and to stimulate its enzyme activity. The FEN-1/PCNA interaction is mediated by the motif (337)QGRLDDFFK(345) of FEN-1, such that an F343AF344A (FFAA) mutant cannot bind to PCNA but retains its nuclease activities. To determine the physiological roles of the FEN-1/PCNA interaction in a mammalian system, we knocked the FFAA Fen1 mutation into the Fen1 gene locus of mice. FFAA/FFAA mouse embryo fibroblasts underwent DNA replication and division at a slower pace, and FFAA/FFAA mutant embryos displayed significant defects in growth and development, particularly in the lung and blood systems. All newborn FFAA mutant pups died at birth, likely due to pulmonary hypoplasia and pancytopenia. Collectively, our data demonstrate the importance of the FEN-1/PCNA complex in DNA replication and in the embryonic development of mice.  相似文献   

2.
Flap endonuclease-1 (FEN-1) is a multifunctional and structure-specific nuclease that plays a critical role in maintaining human genome stability through RNA primer removal, long-patch base excision repair, resolution of DNA secondary structures and stalled DNA replication forks, and apoptotic DNA fragmentation. How FEN-1 is involved in multiple pathways, of which some are seemingly contradictory, is of considerable interest. To date, at least 20 proteins are known to interact with FEN-1; some form distinct complexes that affect one or more FEN-1 activities presumably to direct FEN-1 to a particular DNA metabolic pathway. FEN-1 consists of a nuclease core domain and a C-terminal extension. While the core domain harbors the nuclease activity, the C-terminal extension may be important for protein-protein interactions. Here, we have truncated or mutated the C-terminus of FEN-1 to identify amino acid residues that are critical for interaction with five proteins representing roles in different DNA replication and repair pathways. We found with all five proteins that the C-terminus is important for binding and that each protein uses a subset of amino acid residues. Replacement of one or more residues with an alanine in many cases leads to the complete loss of interaction, which may consequently lead to severe biological defects in mammals.  相似文献   

3.
4.
5.
Flap endonuclease-1 (FEN-1), a 43-kDa protein, is a structure-specific and multifunctional nuclease. It plays important roles in RNA primer removal of Okazaki fragments during DNA replication, DNA base excision repair, and maintenance of genome stability. Three functional motifs of the enzyme were proposed to be responsible for its nuclease activities, interaction with proliferating cell nuclear antigen, and nuclear localization. In this study, we demonstrate in HeLa cells that a signal located at the C terminus (the nuclear localization signal (NLS) motif) facilitates nuclear localization of the enzyme during S phase of the cell cycle and in response to DNA damage. Truncation of the NLS motif prevents migration of the protein from the cytoplasm to the nucleus, while having no effect on the nuclease activities and its proliferating cell nuclear antigen interaction capability. Site-directed mutagenesis further revealed that a mutation of the KRK cluster to three alanine residues completely blocked the localization of FEN-1 into the nucleus, whereas mutagenesis of the KKK cluster led to a partial defect of nuclear localization in HeLa cells without observable phenotype in yeast. Therefore, the KRKXXXXXXXXKKK motif may be a bipartite NLS driving the protein into nuclei. Yeast RAD27Delta cells transformed with human mutant M(krk) survived poorly upon methyl methanesulfonate treatment or when they were incubated at an elevated temperature.  相似文献   

6.
Brosh RM  Driscoll HC  Dianov GL  Sommers JA 《Biochemistry》2002,41(40):12204-12216
Werner Syndrome is a premature aging disorder characterized by chromosomal instability. Recently we reported a novel interaction of the WRN gene product with human 5' flap endonuclease/5'-3' exonuclease (FEN-1), a DNA structure-specific nuclease implicated in pathways of DNA metabolism that are important for genomic stability. To characterize the mechanism for WRN stimulation of FEN-1 cleavage, we have determined the effect of WRN on the kinetic parameters of the FEN-1 cleavage reaction. WRN enhanced the efficiency of FEN-1 cleavage rather than DNA substrate binding. WRN effectively stimulated FEN-1 cleavage on a flap DNA substrate with streptavidin bound to the terminal 3' nucleotide at the end of the upstream duplex, indicating that WRN does not require a free upstream end to stimulate FEN-1 cleavage of the 5' flap substrate. These results indicate that the mechanism whereby WRN stimulates FEN-1 cleavage is distinct from that proposed for the functional interaction between proliferating cell nuclear antigen and FEN-1. To understand the potential importance of the WRN-FEN-1(1) interaction in DNA replication, we have tested the effect of WRN on FEN-1 cleavage of several DNA substrate intermediates that may arise during Okazaki fragment processing. WRN stimulated FEN-1 cleavage of flap substrates with a terminal monoribonucleotide, a long 5' ssDNA tract, and a pseudo-Y structure. The ability of WRN to facilitate FEN-1 cleavage of DNA replication/repair intermediates may be important for the role of WRN in the maintenance of genomic stability.  相似文献   

7.
Eukaryotic flap-endonuclease (FEN-1) is 42-kD single-subunit structure-specific nuclease that cleaves 5"-flap strands of the branched DNA structure and possesses 5"-exonuclease activity. FEN-1 participates in DNA replication, repair, and recombination. The interaction of FEN-1 with DNA structures generated during replication and repair was studied using two types of photoreactive oligonucleotides. Oligonucleotides bearing a photoreactive arylazido group at the 3"-end of the primer were synthesized in situ by the action of DNA polymerase using base-substituted photoreactive dUTP analogs as the substrates. The photoreactive group was also bound to the 5"-end phosphate group of the oligonucleotide by chemical synthesis. Interaction of FEN-1 with both 5"- and 3"-ends of the nick or with primer–template systems containing 5"- or 3"-protruding DNA strands was shown. Formation of a structure with the 5"-flap containing the photoreactive group results in decrease of the level of protein labeling caused by cleavage of the photoreactive group due to FEN-1 endonuclease activity. Photoaffinity labeling of proteins of mouse fibroblast cell extract was performed using the radioactively labeled DNA duplex with the photoreactive group at the 3"-end and the apurine/apyrimidine site at the 5"-end of the nick. This structure is a photoreactive analog of an intermediate formed during DNA repair and was generated by the action of cell enzymes from the initial DNA duplex containing the 3-hydroxy-2-hydroxymethyltetrahydrofurane residue. FEN-1 is shown to be one of the photolabeled proteins; this indicates possible participation of this enzyme in base excision repair.  相似文献   

8.
Parrish JZ  Yang C  Shen B  Xue D 《The EMBO journal》2003,22(13):3451-3460
Oligonucleosomal fragmentation of chromosomes in dying cells is a hallmark of apoptosis. Little is known about how it is executed or what cellular components are involved. We show that crn-1, a Caenorhabditis elegans homologue of human flap endonuclease-1 (FEN-1) that is normally involved in DNA replication and repair, is also important for apoptosis. Reduction of crn-1 activity by RNA interference resulted in cell death phenotypes similar to those displayed by a mutant lacking the mitochondrial endonuclease CPS-6/endonuclease G. CRN-1 localizes to nuclei and can associate and cooperate with CPS-6 to promote stepwise DNA fragmentation, utilizing the endonuclease activity of CPS-6 and both the 5'-3' exonuclease activity and a previously uncharacterized gap-dependent endonuclease activity of CRN-1. Our results suggest that CRN-1/FEN-1 may play a critical role in switching the state of cells from DNA replication/repair to DNA degradation during apoptosis.  相似文献   

9.
Werner syndrome (WS) is a human premature aging disorder characterized by chromosomal instability. The cellular defects of WS presumably reflect compromised or aberrant function of a DNA metabolic pathway that under normal circumstances confers stability to the genome. We report a novel interaction of the WRN gene product with the human 5' flap endonuclease/5'-3' exonuclease (FEN-1), a DNA structure-specific nuclease implicated in DNA replication, recombination and repair. WS protein (WRN) dramatically stimulates the rate of FEN-1 cleavage of a 5' flap DNA substrate. The WRN-FEN-1 functional interaction is independent of WRN catalytic function and mediated by a 144 amino acid domain of WRN that shares homology with RecQ DNA helicases. A physical interaction between WRN and FEN-1 is demonstrated by their co-immunoprecipitation from HeLa cell lysate and affinity pull-down experiments using a recombinant C-terminal fragment of WRN. The underlying defect of WS is discussed in light of the evidence for the interaction between WRN and FEN-1.  相似文献   

10.
We have cloned and sequenced a 1.7 kb macronuclear chromosome encoding the pheromone 4 gene of Euplotes octocarinatus. The sequence of the secreted pheromone is preceded by a 42 amino acid leader peptide, which ends with a lysine residue. The sequence coding for the leader peptide contains information for a putative signal peptide and is interrupted by a 772 bp intron as shown by comparison with a cDNA clone. A 64 bp intron and a 145 bp intron interrupt the sequence coding for the secreted pheromone. The three introns contain typical 5' and 3' splice junctions and a putative branch point site. The small introns have a low GC content. The large intron has a GC content similar to that of the pheromone 4 gene exons. The amino acid sequence of pheromone 4, deduced from both the genomic DNA and the cDNA of pheromone 4, shows that the secreted pheromone consists of 85 amino acids. One of its amino acids is encoded by a UGA codon. Since it has been shown for pheromone 3 of E. octocarinatus that UGA is translated as cysteine, it is assumed that the UGA codon encodes cysteine in pheromone 4 as well. The 164 bp noncoding region upstream of the leader peptide is AT-rich and contains an inverted repeat capable of forming a stem-loop structure with a stem of 11 bp. The 151 bp noncoding region at the 3' end of the chromosome contains a putative polyadenylation sequence and an inverted repeat. The macronuclear molecule is flanked by telomeres and carries the pentanucleotide motif TTGAA, located at a distance of 17 nucleotides from the telomeres. This motif has been suggested to be involved in the formation of macronuclear chromosomes.  相似文献   

11.
M R Lentz  D Pak  I Mohr    M R Botchan 《Journal of virology》1993,67(3):1414-1423
Bovine papillomavirus (BPV) DNA replication occurs in the nucleus of infected cells. Most enzymatic activities are carried out by host cell proteins, with the viral E1 and E2 proteins required for the assembly of an initiation complex at the replication origin. In latently infected cells, viral DNA replication occurs in synchrony with the host cell chromosomes, maintaining a constant average copy number of BPV genomes per infected cell. By analyzing a series of mutants of the amino-terminal region of the E1 protein, we have identified the signal for transport of this protein to the cell nucleus. The E1 nuclear transport motif is highly conserved in the animal and human papillomaviruses and is encoded in a similar region in the related E1 genes. The signal is extended relative to the simple nuclear localization signals and contains two short amino acid sequences which contribute to nuclear transport, located between amino acids 85 and 108 of the BPV-1 E1 protein. Mutations in either basic region reduce nuclear transport of E1 protein and interfere with viral DNA replication. Mutations in both sequences simultaneously prevent any observable accumulation of the protein and reduce replication in transient assays to barely detectable levels. Surprisingly, these mutations had no effect on the ability of viral genomes to morphologically transform cells, although the plasmid DNA in the transformed cells was maintained at a very low copy number. Between these two basic amino acid blocks in the nuclear transport signal, at threonine 102, is a putative site for phosphorylation by the cell cycle regulated kinase p34cdc2. Utilizing an E1 protein purified from either a baculovirus vector system or Escherichia coli, we have shown that the E1 protein is a substrate for this kinase. An E1 gene mutant at threonine 102 encodes for a protein which is no longer a substrate for the p34cdc2 kinase. Mutation of this threonine to isoleucine had no observable effect on either nuclear localization of E1 or DNA replication of the intact viral genome.  相似文献   

12.
Werner and Bloom syndromes are genetic RecQ helicase disorders characterized by genomic instability. Biochemical and genetic data indicate that an important protein interaction of WRN and Bloom syndrome (BLM) helicases is with the structure-specific nuclease Flap Endonuclease 1 (FEN-1), an enzyme that is implicated in the processing of DNA intermediates that arise during cellular DNA replication, repair and recombination. To acquire a better understanding of the interaction of WRN and BLM with FEN-1, we have mapped the FEN-1 binding site on the two RecQ helicases. Both WRN and BLM bind to the extreme C-terminal 18 amino acid tail of FEN-1 that is adjacent to the PCNA binding site of FEN-1. The importance of the WRN/BLM physical interaction with the FEN-1 C-terminal tail was confirmed by functional interaction studies with catalytically active purified recombinant FEN-1 deletion mutant proteins that lack either the WRN/BLM binding site or the PCNA interaction site. The distinct binding sites of WRN and PCNA and their combined effect on FEN-1 nuclease activity suggest that they may coordinately act with FEN-1. WRN was shown to facilitate FEN-1 binding to its preferred double-flap substrate through its protein interaction with the FEN-1 C-terminal binding site. WRN retained its ability to physically bind and stimulate acetylated FEN-1 cleavage activity to the same extent as unacetylated FEN-1. These studies provide new insights to the interaction of WRN and BLM helicases with FEN-1, and how these interactions might be regulated with the PCNA–FEN-1 interaction during DNA replication and repair.  相似文献   

13.
14.
We have cloned and sequenced a 1.7 kb macronuclear chromosome encoding the pheromone 4 gene of Euplotes octocarinatus. The sequence of the secreted pheromone is preceded by a 42 amino acid leader peptide, which ends with a lysine residue. The sequence coding for the leader peptide contains information for a putative signal peptide and is interrupted by a 772 bp intron as shown by comparison with a cDNA clone. A 64 bp intron and a 145 bp intron interrupt the sequence coding for the secreted pheromone. The three introns contain typical 5′ and 3′ splice junctions and a putative branch point site. The small introns have a low GC content. The large intron has a GC content similar to that of the pheromone 4 gene exons. The amino acid sequence of pheromone 4, deduced from both the genomic DNA and the cDNA of pheromone 4, shows that the secreted pheromone consists of 85 amino acids. One of its amino acids is encoded by a UGA codon. Since it has been shown for pheromone 3 of E. octocarinatus that UGA is translated as cysteine, it is assumed that the UGA codon encodes cysteine in pheromone 4 as well. The 164 bp noncoding region upstream of the leader peptide is AT-rich and contains an inverted repeat capable of forming a stem-loop structure with a stem of 11 bp. The 151 bp noncoding region at the 3′ end of the chromosome contains a putative polyadenylation sequence and an inverted repeat. The macro-nuclear molecule is flanked by telomeres and carries the pentanucleotide motif TTGAA, located at a distance of 17 nucleotides from the telomeres. This motif has been suggested to be involved in the formation of macronuclear chromosomes. © 1992 Wiley-Liss, Inc.  相似文献   

15.
Double-strand DNA breaks are the most lethal type of DNA damage induced by ionizing radiations. Previously, we reported that double-strand DNA breaks can be enzymatically produced from two DNA damages located on opposite DNA strands 18 or 30 base pairs apart in a cell-free double-strand DNA break formation assay (Vispé, S., and Satoh, M. S. (2000) J. Biol. Chem. 275, 27386-27392). In the assay that we developed, these two DNA damages are converted into single-strand interruptions by enzymes involved in base excision repair. We showed that these single-strand interruptions are converted into double-strand DNA breaks; however, it was not due to spontaneous denaturation of DNA. Thus, we proposed a model in which DNA polymerase delta/epsilon, by producing repair patches at single-strand interruptions, collide, resulting in double-strand DNA break formation. We tested the model and investigated whether other enzymes/factors are involved in double-strand DNA break formation. Here we report that, instead of DNA polymerase delta/epsilon, flap endonuclease-1 (FEN-1), an enzyme involved in base excision repair, is responsible for the formation of double-strand DNA break in the assay. Furthermore, by transfecting a flap endonuclease-1 expression construct into cells, thus altering their flap endonuclease-1 content, we found an increased number of double-strand DNA breaks after gamma-ray irradiation of these cells. These results suggest that flap endonuclease-1 acts as a double-strand DNA break formation factor. Because FEN-1 is an essential enzyme that plays its roles in DNA repair and DNA replication, DSBs may be produced in cells as by-products of the activity of FEN-1.  相似文献   

16.
A small cryptic plasmid originating from Bifidobacterium breve NCFB 2258 was cloned and its complete nucleotide sequence determined. pCIBb1 is a circular DNA molecule, 5750 bp in size with a GC composition of 57%. Computer-assisted analysis identified 10 possible open reading frames (ORFs), seven of which could be assigned no function from homology searches. One ORF, rep (380 amino acids), was postulated to encode a replication protein similar to known replication proteins of rolling circle replicons, particularly those of the pC194 family. Demonstration of single-stranded forms of the plasmid in cell lysates that could be specifically degraded by S1 nuclease provided experimental evidence to substantiate a replication mechanism via single-stranded intermediates. Two other ORFs, par (199 amino acids) and an ftsK-like gene (286 amino acids), were assigned putative functions based on the presence of conserved motifs in their deduced proteins.  相似文献   

17.
pSCL2 (120 kb), one of the linear plasmids found in Streptomyces clavuligerus NRRL3585, was isolated and partially sequenced. Computational analysis of the central region of pSCL2 revealed the presence of two open reading frames that appear to encode proteins highly homologous to RepL1 and RepL2, replication proteins from pSLA2-L, the large linear plasmid in Streptomyces rochei. The S. clavuligerus open reading frames were designated repC1 and repC2, encoding the proteins RepC1 (150 amino acids) and RepC2 (102 amino acids), respectively. The RepC and RepL proteins have identical translation features and very similar predicted secondary and tertiary structures. Functional analysis confirmed that RepC1 is essential for replication initiation of pSCL2, whereas RepC2 is dispensable but may play a role in copy number control. The RepC and RepL proteins do not show similarity to any other bacterial plasmid replication proteins. Three regions of DNA sequence, Box 1 (1050-850 bp), Box 2 (723-606 bp), and Box 3 (224-168 bp), located upstream of repC1, were also shown to be essential or very important for replication of pSCL2.  相似文献   

18.
G Cho  J Kim  H M Rho    G Jung 《Nucleic acids research》1995,23(15):2980-2987
To localize the DNA binding domain of the Saccharomyces cerevisiae Ars binding factor 1 (ABF1), a multifunctional DNA binding protein, plasmid constructs carrying point mutations and internal deletions in the ABF1 gene were generated and expressed in Escherichia coli. Normal and mutant ABF1 proteins were purified by affinity chromatography and their DNA binding activities were analyzed. The substitution of His61, Cys66 and His67 respectively, located in the zinc finger motif in the N-terminal region (amino acids 40-91), eliminated the DNA binding activity of ABF1 protein. Point mutations in the middle region of ABF1, specifically at Leu353, Leu399, Tyr403, Gly404, Phe410 and Lys434, also eliminated or reduced DNA binding activity. However, the DNA binding activity of point mutants of Ser307, Ser496 and Glu649 was the same as that of wild-type ABF1 protein and deletion mutants of amino acids 200-265, between the zinc finger region and the middle region (residues 323-496) retained DNA binding activity. As a result, we confirmed that the DNA binding domain of ABF1 appears to be bipartite and another DNA binding motif, other than the zinc finger motif, is situated between amino acid residues 323 and 496.  相似文献   

19.
A novel kanamycin phosphotransferase gene, aphA-7, was cloned from a 14-kb plasmid obtained from a strain of Campylobacter jejuni and the nucleotide sequence of the gene was determined. The presumed open reading frame of the aphA-7 structural gene was 753 bp in length and encoded a protein of 251 amino acids with a calculated weight of 29,691 Da. A 29-kDa protein was demonstrated in Escherichia coli maxicells containing the cloned aphA-7 gene. A ribosomal binding site corresponding to 5 of 8 bases of the 3' end of the E. coli 16S rRNA was 8 bp upstream of the start codon. Sequences corresponding to the -35 and -10 regions of the consensus promoter sequences of E. coli were upstream of the presumed initiation codon of the gene. The DNA sequence was most closely related to the aphA-3 gene from Streptococcus faecalis, showing 55.4% sequence similarity. There was 45.6% identity at the amino acid level between the aphA-3 and the aphA-7 proteins. Of the three conserved regions noted previously in phosphotransferase genes, the aphA-7 amino acid sequence was identical to the six conserved amino acids in motif 3, but differed in one of the five conserved amino acids in motif 1 (if gaps are permitted) and 3 of the 10 conserved residues in motif 2. The 32.8% G + C ratio in the open reading frame of the aphA-7 kanamycin resistance gene, which is similar to that of the C. jejuni chromosome, suggests that the aphA-7 may be indigenous to Campylobacters.  相似文献   

20.
Stimulation of flap endonuclease-1 by the Bloom's syndrome protein   总被引:7,自引:0,他引:7  
Bloom's syndrome (BS) is a rare autosomal recessive genetic disorder associated with genomic instability and an elevated risk of cancer. Cellular features of BS include an accumulation of abnormal replication intermediates and increased sister chromatid exchange. Although it has been suggested that the underlying defect responsible for hyper-recombination in BS cells is a temporal delay in the maturation of DNA replication intermediates, the precise role of the BS gene product, BLM, in DNA metabolism remains elusive. We report here a novel interaction of the BLM protein with the human 5'-flap endonuclease/5'-3' exonuclease (FEN-1), a genome stability factor involved in Okazaki fragment processing and DNA repair. BLM protein stimulates both the endonucleolytic and exonucleolytic cleavage activity of FEN-1 and this functional interaction is independent of BLM catalytic activity. BLM and FEN-1 are associated with each other in human nuclei as shown by their reciprocal co-immunoprecipitation from HeLa nuclear extracts. The BLM-FEN-1 physical interaction is mediated through a region of the BLM C-terminal domain that shares homology with the FEN-1 interaction domain of the Werner syndrome protein, a RecQ helicase family member homologous to BLM. This study provides the first evidence for a direct interaction of BLM with a human nucleolytic enzyme. We suggest that functional interactions between RecQ helicases and Rad2 family nucleases serve to process DNA substrates that are intermediates in DNA replication and repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号