首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.

Background

Potential involvement of the CCR10/CCL28 axis was recently reported in murine models of allergic asthma. If confirmed, blockade of the CCR10 receptor would represent an alternative to current asthma therapies. We evaluated the effect of a novel Protein Epitope Mimetic CCR10 antagonist, POL7085, in a murine model of allergic eosinophilic airway inflammation.

Methods

Mice were sensitized and challenged to ovalbumin. POL7085, a CCR10 antagonist (7.5 and 15 mg/kg), dexamethasone (1 mg/kg) or vehicle were administered intranasally once daily 1h before each allergen challenge. On day 21, airway hyperresponsiveness, bronchoalveolar lavage inflammatory cells and Th2 cytokines, and lung tissue mucus and collagen were measured.

Results

Allergen challenge induced airway hyperresponsiveness in vehicle-treated animals as measured by whole body barometric plethysmography, and eosinophilia in bronchoalveolar lavage. POL7085 dose-dependently and significantly decreased airway hyperresponsiveness (34 ± 16 %) and eosinophil numbers in bronchoalveolar lavage (66 ± 6 %). In addition, the highest dose of POL7085 used significantly inhibited lung IL-4 (85 ± 4 %), IL-5 (87 ± 2 %) and IL-13 (190 ± 19 %) levels, and lung collagen (43 ± 11 %).

Conclusions

The Protein Epitope Mimetic CCR10 antagonist, POL7085, significantly and dose-dependently decreased allergen-induced airway hyperresponsiveness and airway inflammation after once daily local treatment. Our data give strong support for further investigations with CCR10 antagonists in asthmatic disease.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0231-5) contains supplementary material, which is available to authorized users.  相似文献   

2.
Studies have shown autophagy participation in the immunopathology of inflammatory diseases. However, autophagy role in asthma and in eosinophil extracellular traps (EETs) release is poorly understood. Here, we attempted to investigate the autophagy involvement in EETs release and in lung inflammation in an experimental asthma model. Mice were sensitized with ovalbumin (OVA), followed by OVA challenge. Before the challenge with OVA, mice were treated with an autophagy inhibitor, 3-methyladenine (3-MA). We showed that 3-MA treatment decreases the number of eosinophils, eosinophil peroxidase (EPO) activity, goblet cells hyperplasia, proinflammatory cytokines, and nuclear factor kappa B (NFκB) p65 immunocontent in the lung. Moreover, 3-MA was able to improve oxidative stress, mitochondrial energy metabolism, and Na+, K+-ATPase activity. We demonstrated that treatment with autophagy inhibitor 3-MA reduced EETs formation in the airway. On the basis of our results, 3-MA treatment can be an interesting alternative for reducing lung inflammation, oxidative stress, mitochondrial damage, and EETs formation in asthma.  相似文献   

3.
Sun JG  Deng YM  Wu X  Tang HF  Deng JF  Chen JQ  Yang SY  Xie QM 《Life sciences》2006,79(22):2077-2085
Phosphodiesterase 4 (PDE4) isozyme plays important roles in inflammatory and immunomodulatory cells. In this study, piclamilast, a selective PDE4 inhibitor, was used to investigate the role of PDE4 in respiratory function and inflammation in a murine asthma model. Sensitized mice were challenged with aerosolized ovalbumin for 7 days, piclamilast (1, 3 and 10 mg/kg) and dexamethasone (2 mg/kg) were orally administered once daily during the period of challenge. Twenty-four hours after the last challenge, airway hyperresponsiveness to methacholine was determined by whole-body plethysmography, airway inflammation and mucus secretion by histomorphometry, pulmonary cAMP-PDE activity by HPLC, cytokine levels in bronchoalveolar lavage fluid and their mRNA expression in lung by ELISA and RT-PCR, respectively. In control mice, significant induction of cAMP-PDE activity was parallel to the increases of hyperresponsiveness, inflammatory cells, cytokine levels, mRNA expression as well as goblet cell hyperplasia. However, piclamilast dose-dependently and significantly improved airway resistance and dynamic compliance, and the maximal effect was similar to that of dexamethasone. Piclamilast treatment dose-dependently and significantly prevented the increase in inflammatory cell number and goblet cell hyperplasia, as well as production of cytokines, including eotaxin, TNFalpha and IL-4. Piclamilast exerted a weaker inhibitory effect than dexamethasone on eosinophils and neutrophils, had no effect on lymphocyte accumulation. Moreover, piclamilast inhibited up-regulation of cAMP-PDE activity and cytokine mRNA expression; the maximal inhibition of cAMP-PDE was greater than that exerted by dexamethasone, and was similar to dexamethasone on cytokine mRNA expression. This study suggests that inhibition of PDE4 by piclamilast robustly improves the pulmonary function, airway inflammation and goblet cell hyperplasia in murine allergenic asthma.  相似文献   

4.

Background

Chronic asthma is often associated with neutrophilic infiltration in the airways. Neutrophils contain elastase, a potent secretagogue in the airways, nonetheless the role for neutrophil elastase as well as neutrophilic inflammation in allergen-induced airway responses is not well defined. In this study, we have investigated the impact of neutrophil elastase inhibition on the development of allergic airway inflammation and airway hyperresponsiveness (AHR) in previously sensitized and challenged mice.

Methods

BALB/c mice were sensitized and challenged (primary) with ovalbumin (OVA). Six weeks later, a single OVA aerosol (secondary challenge) was delivered and airway inflammation and airway responses were monitored 6 and 48 hrs later. An inhibitor of neutrophil elastase was administered prior to secondary challenge.

Results

Mice developed a two-phase airway inflammatory response after secondary allergen challenge, one neutrophilic at 6 hr and the other eosinophilic, at 48 hr. PAR-2 expression in the lung tissues was enhanced following secondary challenge, and that PAR-2 intracellular expression on peribronchial lymph node (PBLN) T cells was also increased following allergen challenge of sensitized mice. Inhibition of neutrophil elastase significantly attenuated AHR, goblet cell metaplasia, and inflammatory cell accumulation in the airways following secondary OVA challenge. Levels of IL-4, IL-5 and IL-13, and eotaxin in BAL fluid 6 hr after secondary allergen challenge were significantly suppressed by the treatment. At 48 hr, treatment with the neutrophil elastase inhibitor significantly reduced the levels of IL-13 and TGF-β1 in the BAL fluid. In parallel, in vitro IL-13 production was significantly inhibited in spleen cells from sensitized mice.

Conclusion

These data indicate that neutrophil elastase plays an important role in the development of allergic airway inflammation and hyperresponsiveness, and would suggest that the neutrophil elastase inhibitor reduced AHR to inhaled methacholine indicating the potential for its use as a modulator of the immune/inflammatory response in both the neutrophil- and eosinophil-dominant phases of the response to secondary allergen challenge.  相似文献   

5.
We previously showed that thrombin induces interleukin (IL)-8/CXCL8 expression via the protein kinase C (PKC)α/c-Src-dependent IκB kinase α/β (IKKα/β)/NF-κB signaling pathway in human lung epithelial cells. In this study, we further investigated the roles of Rac1, phosphoinositide 3-kinase (PI3K), and Akt in thrombin-induced NF-κB activation and IL-8/CXCL8 expression. Thrombin-induced IL-8/CXCL8 release and IL-8/CXCL8-luciferase activity were attenuated by a PI3K inhibitor (LY294002), an Akt inhibitor (1-L-6-hydroxymethyl-chiro-inositol-2-((R)-2-O-methyl-3-O-octadecylcarbonate)), and the dominant negative mutants of Rac1 (RacN17) and Akt (AktDN). Treatment of cells with thrombin caused activation of Rac and Akt. The thrombin-induced increase in Akt activation was inhibited by RacN17 and LY294002. Stimulation of cells with thrombin resulted in increases in IKKα/β activation and κB-luciferase activity; these effects were inhibited by RacN17, LY294002, an Akt inhibitor, and AktDN. Treatment of cells with thrombin induced Gβγ, p85α, and Rac1 complex formation in a time-dependent manner. These results imply that thrombin activates the Rac1/PI3K/Akt pathway through formation of the Gβγ, Rac1, and p85α complex to induce IKKα/β activation, NF-κB transactivation, and IL-8/CXCL8 expression in human lung epithelial cells.  相似文献   

6.
Toll-like receptors (TLRs) through innate immune system recognize pathogen associated molecular patterns and play an important role in host defense against bacteria, fungi and viruses. TLR-7 is responsible for sensing single stranded nucleic acids of viruses but its activation has been shown to be protective in mouse models of asthma. The NADPH oxidase (NOX) enzymes family mainly produces reactive oxygen species (ROS) in the lung and is involved in regulation of airway inflammation in response to TLRs activation. However, NOX-4 mediated signaling in response to TLR-7 activation in a mouse model of allergic asthma has not been explored previously. Therefore, this study investigated the role TLR-7 activation and downstream oxidant–antioxidant signaling in a murine model of asthma. Mice were sensitized with ovalbumin (OVA) intraperitoneally and treated with TLR-7 agonist, resiquimod (RSQ) intranasally before each OVA challenge from days 14 to 16. Mice were then assessed for airway reactivity, inflammation, and NOX-4 and nuclear factor E2-related factor 2 (Nrf2) related signaling [inducible nitric oxide synthase (iNOS), nitrotyrosine, lipid peroxides and copper/zinc superoxide dismutase (Cu/Zn SOD)]. Treatment with RSQ reduced allergen induced airway reactivity and inflammation. This was paralleled by a decrease in ROS which was due to induction of Nrf2 and Cu/Zn SOD in RSQ treated group. Inhibition of MyD88 reversed RSQ-mediated protective effects on airway reactivity/inflammation due to reduction in Nrf2 signaling. SOD inhibition produced effects similar to MyD88 inhibition. The current study suggests that TLR-7 agonist is beneficial and may be developed into a therapeutic option in allergic asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号