首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbes are transported in hydrological networks through many environments, but the nature and dynamics of underlying microbial metacommunities and the impact of downslope inoculation on patterns of microbial diversity across landscapes are unknown. Pyrosequencing of small subunit ribosomal RNA gene hypervariable regions to characterize microbial communities along a hydrological continuum in arctic tundra showed a pattern of decreasing diversity downslope, with highest species richness in soil waters and headwater streams, and lowest richness in lake water. In a downstream lake, 58% and 43% of the bacterial and archaeal taxa, respectively, were also detected in diverse upslope communities, including most of the numerically dominant lake taxa. In contrast, only 18% of microbial eukaryotic taxa in the lake were detected upslope. We suggest that patterns of diversity in surface waters are structured by initial inoculation from microbial reservoirs in soils followed by a species-sorting process during downslope dispersal of both common and rare microbial taxa. Our results suggest that, unlike for metazoans, a substantial portion of bacterial and archaeal diversity in surface freshwaters may originate in complex soil environments.  相似文献   

2.
The enormous diversity available at the microbial level is just beginning to be realized. The richness of diversity amongst the bacteria that have been described so far is between 2 and 3000, whereas estimates indicates that millions of microorganisms still remains to be discovered. Microbiologists have realized that there are at least a dozen major evolutionary groups of the microbial life forms on earth (bacteria, fungi, algae and protozoa) that are even more diverse than the better known animal and plant kingdom. Indeed, we can state that microorganisms dominate the tree of life. Microorganisms have inhabited Earth for more than 3.7 billion years, whereas plants and animals have evolved rather recently in Earth's history. Possible reports of evidence for microbial life on Mars is also consistent with the concept that microorganisms precede plants and animals on Earth. The applications of molecular-phylogenetic techniques have provided the tools for studying natural microbial communities, including those that we are not able to grow in the laboratory. The utilization of these techniques has resulted in the discovery of many new evolutionary lineages, some of them only distantly related to known organisms. Here I discuss some environmental factors controlling bacterial diversity in different environments and the utility of modern methods developed for describing this diversity.  相似文献   

3.
Buildings are complex ecosystems that house trillions of microorganisms interacting with each other, with humans and with their environment. Understanding the ecological and evolutionary processes that determine the diversity and composition of the built environment microbiome—the community of microorganisms that live indoors—is important for understanding the relationship between building design, biodiversity and human health. In this study, we used high-throughput sequencing of the bacterial 16S rRNA gene to quantify relationships between building attributes and airborne bacterial communities at a health-care facility. We quantified airborne bacterial community structure and environmental conditions in patient rooms exposed to mechanical or window ventilation and in outdoor air. The phylogenetic diversity of airborne bacterial communities was lower indoors than outdoors, and mechanically ventilated rooms contained less diverse microbial communities than did window-ventilated rooms. Bacterial communities in indoor environments contained many taxa that are absent or rare outdoors, including taxa closely related to potential human pathogens. Building attributes, specifically the source of ventilation air, airflow rates, relative humidity and temperature, were correlated with the diversity and composition of indoor bacterial communities. The relative abundance of bacteria closely related to human pathogens was higher indoors than outdoors, and higher in rooms with lower airflow rates and lower relative humidity. The observed relationship between building design and airborne bacterial diversity suggests that we can manage indoor environments, altering through building design and operation the community of microbial species that potentially colonize the human microbiome during our time indoors.  相似文献   

4.
The largest biological surface on earth is formed by plant leaves. These leaf surfaces are colonized by a specialized suite of leaf‐inhabiting microorganisms, recently termed “phyllosphere microbiome”. Microbial prey, however, attract microbial predators. Protists in particular have been shown to structure bacterial communities on plant surfaces, but virtually nothing is known about the community composition of protists on leaves. Using newly designed specific primers targeting the 18S rDNA gene of Cercozoa, we investigated the species richness of this common protist group on leaves of four Brassicaceae species from two different locations in a cloning‐based approach. The generated sequences revealed a broad diversity of leaf‐associated Cercozoa, mostly bacterial feeders, but also including known plant pathogens and a taxon of potential endophytes that were recently described as algal predators in freshwater systems. This initial study shows that protists must be regarded as an integral part of the microbial diversity in the phyllosphere of plants.  相似文献   

5.
This study aims to explore relationships between plant diversity and soil microbial function and the factors that mediate the relationships. Artificial plant communities (1, 2, 4 and 8 species) were established filled with natural and mine tailing soils, respectively. After 12 months, the plant species richness positively affected the soil microbial functional diversity in both soil environments but negatively affected microbial biomass and soil basal respiration in the natural soil. The root biomass positively correlated with the microbial biomass, cultural bacterial activity and soil basal respiration in both soil environments. Moreover, the Di (deviations between observed performances and expected performances from the monoculture performance of each species of mixture) of microbial biomass, cultural bacterial activity and soil basal respiration positively correlated with the Di of root biomass in both soil environments. Consistent with stress-gradient hypothesis, the Dmix (over-function index) of aboveground biomass positively correlated plant species richness in the mine tailing soil. Results suggest that the root biomass production is an important mechanism that affects the effects of plant diversity on soil microbial functions. Different responses of soil microbial function to increasing plant diversity may be due to root biomass production mediated by other factors.  相似文献   

6.
Climate change can influence soil microorganisms directly by altering their growth and activity but also indirectly via effects on the vegetation, which modifies the availability of resources. Direct impacts of climate change on soil microorganisms can occur rapidly, whereas indirect effects mediated by shifts in plant community composition are not immediately apparent and likely to increase over time. We used molecular fingerprinting of bacterial and fungal communities in the soil to investigate the effects of 17 years of temperature and rainfall manipulations in a species‐rich grassland near Buxton, UK. We compared shifts in microbial community structure to changes in plant species composition and key plant traits across 78 microsites within plots subjected to winter heating, rainfall supplementation, or summer drought. We observed marked shifts in soil fungal and bacterial community structure in response to chronic summer drought. Importantly, although dominant microbial taxa were largely unaffected by drought, there were substantial changes in the abundances of subordinate fungal and bacterial taxa. In contrast to short‐term studies that report high resistance of soil fungi to drought, we observed substantial losses of fungal taxa in the summer drought treatments. There was moderate concordance between soil microbial communities and plant species composition within microsites. Vector fitting of community‐weighted mean plant traits to ordinations of soil bacterial and fungal communities showed that shifts in soil microbial community structure were related to plant traits representing the quality of resources available to soil microorganisms: the construction cost of leaf material, foliar carbon‐to‐nitrogen ratios, and leaf dry matter content. Thus, our study provides evidence that climate change could affect soil microbial communities indirectly via changes in plant inputs and highlights the importance of considering long‐term climate change effects, especially in nutrient‐poor systems with slow‐growing vegetation.  相似文献   

7.
Soil protozoa, and ciliates in particular, represent a microbial group abundant in the rhizosphere with an influential role on nutrient cycling. Under laboratory conditions, ciliates regulate the size and the composition of bacterial communities, and appear to stimulate ammonification and nitrification. In spite of their important ecological role, our understanding about the factors that control their diversity and abundance in natural forest ecosystems is still rudimentary. Plant species-specific interactions have been demonstrated between plants and soil bacteria and mycorrhizal fungi, due in part to the release of phytohormones and C- and N-rich exudates. We tested the hypothesis that the rhizosphere environments of different plant species also influence the species richness and abundance of soil ciliates. Plant effect, soil pH, moisture content, microbial biomass C, and inorganic nitrogen were measured among five plant species to determine the best predictor variables for soil ciliate species richness and total abundance in a subtropical moist forest in Puerto Rico. Based on an analysis of variance, we rejected the hypothesis that there was a plant species-specific effect on soil ciliates, unlike other microbial groups mentioned above. Using multiple regression analysis, we demonstrated that the flush of total inorganic nitrogen was the best predictor variable for both species richness and abundance of ciliates.  相似文献   

8.
Forest-to-pasture conversion is known to cause global losses in plant and animal diversity, yet impacts of livestock management after such conversion on vital microbial communities in adjoining natural ecosystems remain poorly understood. We examined how pastoral land management practices impact soil microorganisms in adjacent native forest fragments, by comparing bacterial communities sampled along 21 transects bisecting pasture–forest boundaries. Our results revealed greater bacterial taxon richness in grazed pasture soils and the reduced dispersal of pasture-associated taxa into adjacent forest soils when land uses were separated by a boundary fence. Relative abundance distributions of forest-associated taxa (i.e., Proteobacteria and Nitrospirae) and a pasture-associated taxon (i.e., Firmicutes) also suggest a greater impact of pastoral land uses on forest fragment soil bacterial communities when no fence is present. Bacterial community richness and composition were most related to changes in soil physicochemical variables commonly associated with agricultural fertilization, including concentrations of Olsen P, total P, total Cd, delta 15N and the ratio of C:P and N:P. Overall, our findings demonstrate clear, and potentially detrimental effects of agricultural disturbance on bacterial communities in forest soils adjacent to pastoral land. We provide evidence that simple land management decisions, such as livestock exclusion, can mitigate the effects of agriculture on adjacent soil microbial communities.  相似文献   

9.
Although nitrogen (N) deposition is increasing globally, N availability still limits many organisms, such as microorganisms and mesofauna. However, little is known to which extent soil organisms rely on mineral‐derived N and whether plant community composition modifies its incorporation into soil food webs. More diverse plant communities more effectively compete with microorganisms for mineral N likely reducing the incorporation of mineral‐derived N into soil food webs. We set up a field experiment in experimental grasslands with different levels of plant species and functional group richness. We labeled soil with 15NH4 15NO3 and analyzed the incorporation of mineral‐derived 15N into soil microorganisms and mesofauna over 3 months. Mineral‐derived N incorporation decreased over time in all investigated organisms. Plant species richness and presence of legumes reduced the uptake of mineral‐derived N into microorganisms. In parallel, the incorporation of mineral‐derived 15N into mesofauna species declined with time and decreased with increasing plant species richness in the secondary decomposer springtail Ceratophysella sp. Effects of both plant species richness and functional group richness on other mesofauna species varied with time. The presence of grasses increased the 15N incorporation into Ceratophysella sp., but decreased it in the primary decomposer oribatid mite Tectocepheus velatus sarekensis. The results highlight that mineral N is quickly channeled into soil animal food webs via microorganisms irrespective of plant diversity. The amount of mineral‐derived N incorporated into soil animals, and the plant community properties affecting this incorporation, differed markedly between soil animal taxa, reflecting species‐specific use of food resources. Our results highlight that plant diversity and community composition alter the competition for N in soil and change the transfer of N across trophic levels in soil food webs, potentially leading to changes in soil animal population dynamics and community composition. Sustaining high plant diversity may buffer detrimental effects of elevated N deposition on soil biota.  相似文献   

10.
Numerous experiments have been established to examine the effect of plant diversity on the soil microbial community. However, the relationship between plant diversity and microbial functional diversity along broad spatial gradients at a large scale is still unexplored. In this paper, we examined the relationship of plant species diversity with soil microbial biomass C, microbial catabolic activity, catabolic diversity and catabolic richness along a longitudinal gradient in temperate grasslands of Hulunbeir, Inner Mongolia, China. Preliminary detrended correspondence analysis (DCA) indicated that plant composition showed a significant separation along the axis 1, and axis 1 explained the main portion of variability in the data set. Moreover, DCA-axis 1 was significantly correlated with soil microbial biomass C (r = 0.735, P = 0.001), microbial catabolic activity (average well color development; r = 0.775, P < 0.001) and microbial functional diversity (catabolic diversity: r = 0.791, P < 0.001 and catabolic richness: r = 0.812, P < 0.001), which suggested thatsome relationship existed between plant composition and the soil microbial community along the spatial gradient at a large scale. Soil microbial biomass C, microbial catabolic activity, catabolic diversity and catabolic richness showed a significant, linear increase with greater plant species richness. However, many responses that we observed could be explained by greater aboveground plant biomass associated with higher levels of plant diversity, which suggested that plant diversity impacted the soil microbial community mainly through increases in plant production.  相似文献   

11.
Glaciers represent important biomes of Earth and are recognized as key species pools for downstream aquatic environments. Worldwide, rapidly receding glaciers are driving shifts in hydrology, species distributions and threatening microbial diversity in glacier-fed aquatic ecosystems. However, the impact of glacier surface snow-originating taxa on the microbial diversity in downstream aquatic environments has been little explored. To elucidate the contribution of glacier surface snow-originating taxa to bacterial diversity in downstream aquatic environments, we collected samples from glacier surface snows, downstream streams and lakes along three glacier-fed hydrologic continuums on the Tibetan Plateau. Our results showed that glacier stream acts as recipients and vectors of bacteria originating from the glacier environments. The contributions of glacier surface snow-originating taxa to downstream bacterial communities decrease from the streams to lakes, which was consistently observed in three geographically separated glacier-fed ecosystems. Our results also revealed that some rare snow-originating bacteria can thrive along the hydrologic continuums and become dominant in downstream habitats. Finally, our results indicated that the dispersal patterns of bacterial communities are largely determined by mass effects and increasingly subjected to local sorting of species along the glacier-fed hydrologic continuums. Collectively, this study provides insights into the fate of bacterial assemblages in glacier surface snow following snow melt and how bacterial communities in aquatic environments are affected by the influx of glacier snow-originating bacteria.  相似文献   

12.
Succession is a widely studied process in plant and animal systems, but succession in microbial communities has received relatively little attention despite the ubiquity of microorganisms in natural habitats. One important microbial habitat is the phyllosphere, or leaf surface, which harbors large, diverse populations of bacteria and offers unique opportunities for the study of succession and temporal community assembly patterns. To explore bacterial community successional patterns, we sampled phyllosphere communities on cottonwood (Populus deltoides) trees multiple times across the growing season, from leaf emergence to leaf fall. Bacterial community composition was highly variable throughout the growing season; leaves sampled as little as a week apart were found to harbor significantly different communities, and the temporal variability on a given tree exceeded the variability in community composition between individual trees sampled on a given day. The bacterial communities clearly clustered into early-, mid-, and late-season clusters, with early- and late-season communities being more similar to each other than to the mid-season communities, and these patterns appeared consistent from year to year. Although we observed clear and predictable changes in bacterial community composition during the course of the growing season, changes in phyllosphere bacterial diversity were less predictable. We examined the species–time relationship, a measure of species turnover rate, and found that the relationship was fundamentally similar to that observed in plant and invertebrate communities, just on a shorter time scale. The temporal dynamics we observed suggest that although phyllosphere bacterial communities have high levels of phylogenetic diversity and rapid turnover rates, these communities follow predictable successional patterns from season to season.  相似文献   

13.
Global patterns in the biogeography of bacterial taxa   总被引:3,自引:0,他引:3  
Bacteria control major nutrient cycles and directly influence plant, animal and human health. However, we know relatively little about the forces shaping their large-scale ecological ranges. Here, we reveal patterns in the distribution of individual bacterial taxa at multiple levels of phylogenetic resolution within and between Earth's major habitat types. Our analyses suggest that while macro-scale habitats structure bacterial distribution to some degree, abundant bacteria (i.e. detectable using 16S rRNA gene sequencing methods) are confined to single assemblages. Additionally, we show that the most cosmopolitan taxa are also the most abundant in individual assemblages. These results add to the growing body of data that support that the diversity of the overall bacterial metagenome is tremendous. The mechanisms governing microbial distribution remain poorly understood, but our analyses provide a framework with which to test the importance of macro-ecological environmental gradients, relative abundance, neutral processes and the ecological strategies of individual taxa in structuring microbial communities.  相似文献   

14.
Caves are extreme and specialised habitats for terrestrial life that sometimes contain moonmilk, a fine-grained paste-like secondary mineral deposit that is found in subterranean systems worldwide. While previous studies have investigated the possible role of microorganisms in moonmilk precipitation, the microbial community ecology of moonmilk deposits is poorly understood. Bacterial and fungal community structure associated with four spatially isolated microcrystalline, acicular calcite moonmilk deposits at Ballynamintra Cave (S. Ireland) was investigated during this study. Statistical analyses revealed significant differences in microbial activity, number of bacterial species, bacterial richness and diversity, and fungal diversity (Shannon's diversity) among the moonmilk sites over an area of approximately 2.5 m2. However, the number of fungal species and fungal community richness were unaffected by sampling location. SIMPER analysis revealed significant differences in bacterial and fungal community composition among the sampling sites. These data suggest that a rich assemblage of microorganisms exists associated with moonmilk, with some spatial diversity, which may reflect small-scale spatial differences in cave biogeochemistry.  相似文献   

15.
The biological diversity and composition of microorganisms influences both human health outcomes and ecological processes; therefore, understanding the factors that influence microbial biodiversity is key to creating healthy, functional landscapes in which to live. In general, biological diversity is predicted to be limited by habitat size, which for green areas is often reduced in cities, and by chronic disturbance (stress). These hypotheses have not previously been tested in microbial systems in direct comparison to macroorganisms. Here we analyzed bacterial, fungal and ant communities in small road medians (average area 0.0008 km2) and larger parks (average area 0.64 km2) across Manhattan (NYC). Bacterial species richness was not significantly different between medians and parks, but community composition was significantly distinct. In contrast, ant communities differed both in composition and richness with fewer ant species in medians than parks. Fungi showed no significant variation in composition or richness but had few shared taxa between habitats or sites. The diversity and composition of microbes appears less sensitive to habitat patchiness or urban stress than those of macroorganisms. Microbes and their associated ecosystem services and functions may be more resilient to the negative effects of urbanization than has been previously appreciated.  相似文献   

16.
Recent studies have highlighted the surprising richness of soil bacterial communities; however, bacteria are not the only microorganisms found in soil. To our knowledge, no study has compared the diversities of the four major microbial taxa, i.e., bacteria, archaea, fungi, and viruses, from an individual soil sample. We used metagenomic and small-subunit RNA-based sequence analysis techniques to compare the estimated richness and evenness of these groups in prairie, desert, and rainforest soils. By grouping sequences at the 97% sequence similarity level (an operational taxonomic unit [OTU]), we found that the archaeal and fungal communities were consistently less even than the bacterial communities. Although total richness levels are difficult to estimate with a high degree of certainty, the estimated number of unique archaeal or fungal OTUs appears to rival or exceed the number of unique bacterial OTUs in each of the collected soils. In this first study to comprehensively survey viral communities using a metagenomic approach, we found that soil viruses are taxonomically diverse and distinct from the communities of viruses found in other environments that have been surveyed using a similar approach. Within each of the four microbial groups, we observed minimal taxonomic overlap between sites, suggesting that soil archaea, bacteria, fungi, and viruses are globally as well as locally diverse.  相似文献   

17.
Recent studies have highlighted the surprising richness of soil bacterial communities; however, bacteria are not the only microorganisms found in soil. To our knowledge, no study has compared the diversities of the four major microbial taxa, i.e., bacteria, archaea, fungi, and viruses, from an individual soil sample. We used metagenomic and small-subunit RNA-based sequence analysis techniques to compare the estimated richness and evenness of these groups in prairie, desert, and rainforest soils. By grouping sequences at the 97% sequence similarity level (an operational taxonomic unit [OTU]), we found that the archaeal and fungal communities were consistently less even than the bacterial communities. Although total richness levels are difficult to estimate with a high degree of certainty, the estimated number of unique archaeal or fungal OTUs appears to rival or exceed the number of unique bacterial OTUs in each of the collected soils. In this first study to comprehensively survey viral communities using a metagenomic approach, we found that soil viruses are taxonomically diverse and distinct from the communities of viruses found in other environments that have been surveyed using a similar approach. Within each of the four microbial groups, we observed minimal taxonomic overlap between sites, suggesting that soil archaea, bacteria, fungi, and viruses are globally as well as locally diverse.  相似文献   

18.
Bacterial communities associated with tree canopies have been shown to be specific to their plant hosts, suggesting that plant species-specific traits may drive the selection of microbial species that comprise their microbiomes. To further examine the degree to which the plant taxa drive the assemblage of bacterial communities in specific plant microenvironments, we evaluated bacterial community structures associated with the phyllosphere, dermosphere, and rhizosphere of seven tree species representing three orders, four families and four genera of plants from a pristine Dense Ombrophilous Atlantic forest in Brazil, using a combination of PCR-DGGE of 16S rRNA genes and clone library sequencing. Results indicated that each plant species selected for distinct bacterial communities in the phyllosphere, dermosphere, and rhizosphere, and that the bacterial community structures are significantly related to the plant taxa, at the species, family, and order levels. Further characterization of the bacterial communities of the phyllosphere and dermosphere of the tree species showed that they were inhabited predominantly by species of Gammaproteobacteria, mostly related to Pseudomonas. In contrast, the rhizosphere bacterial communities showed greater species richness and evenness, and higher frequencies of Alphaproteobacteria and Acidobacteria Gp1. With individual tree species each selecting for their specific microbiomes, these findings greatly increase our estimates of the bacterial species richness in tropical forests and provoke questions concerning the ecological functions of the microbial communities that exist on different plant parts.  相似文献   

19.
One of the most intriguing environmental gradients connected with variation in diversity is ecosystem productivity. The role of diversity in ecosystems is pivotal, because species richness can be both a cause and a consequence of primary production. However, the mechanisms behind the varying productivity-diversity relationships (PDR) remain poorly understood. Moreover, large-scale studies on PDR across taxa are urgently needed. Here, we examined the relationships between resource supply and phyto-, bacterio-, and zooplankton richness in 100 small boreal lakes. We studied the PDR locally within the drainage systems and regionally across the systems. Second, we studied the relationships between resource availability, species richness, biomass and resource ratio (N:P) in phytoplankton communities using Structural Equation Modeling (SEM) for testing the multivariate hypothesis of PDR. At the local scale, the PDR showed variable patterns ranging from positive linear and unimodal to negative linear relationships for all planktonic groups. At the regional scale, PDRs were significantly linear and positive for phyto- and zooplankton. Phytoplankton richness and the amount of chlorophyll a showed a positive linear relationship indicating that communities consisting of higher number of species were able to produce higher levels of biomass. According to the SEM, phytoplankton biomass was largely related to resource availability, yet there was a pathway via community richness. Finally, we found that species richness at all trophic levels was correlated with several environmental factors, and was also related to richness at the other trophic levels. This study showed that the PDRs in freshwaters show scale-dependency. We also documented that the PDR complies with the multivariate model showing that plant biomass is not mirroring merely the resource availability, but is also influenced by richness. This highlights the need for conserving diversity in order to maintain ecosystem processes in freshwaters.  相似文献   

20.
Protozoan predators form an essential component of activated sludge communities that is tightly linked to wastewater treatment efficiency. Nonetheless, very little is known how protozoan predation is channelled via bacterial communities to affect ecosystem functioning. Therefore, we experimentally manipulated protozoan predation pressure in activated-sludge communities to determine its impacts on microbial diversity, composition and putative functionality. Different components of bacterial diversity such as taxa richness, evenness, genetic diversity and beta diversity all responded strongly and positively to high protozoan predation pressure. These responses were non-linear and levelled off at higher levels of predation pressure, supporting predictions of hump-shaped relationships between predation pressure and prey diversity. In contrast to predation intensity, the impact of predator diversity had both positive (taxa richness) and negative (evenness and phylogenetic distinctiveness) effects on bacterial diversity. Furthermore, predation shaped the structure of bacterial communities. Reduction in top-down control negatively affected the majority of taxa that are generally associated with increased treatment efficiency, compromising particularly the potential for nitrogen removal. Consequently, our findings highlight responses of bacterial diversity and community composition as two distinct mechanisms linking protozoan predation with ecosystem functioning in activated sludge communities.Subject terms: Microbial communities, Biodiversity  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号