首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amyloid precursor protein (APP) can be cleaved by α-secretases in neural cells to produce the soluble APP ectodomain (sAPPα), which is neuroprotective. We have shown previously that activation of the purinergic P2X7 receptor (P2X7R) triggers sAPPα shedding from neural cells. Here, we demonstrate that the activation of ezrin, radixin, and moesin (ERM) proteins is required for the P2X7R-dependent proteolytic processing of APP leading to sAPPα release. Indeed, the down-regulation of ERM by siRNA blocked the P2X7R-dependent shedding of sAPPα. We also show that P2X7R stimulation triggered the phosphorylation of ERM. Thus, ezrin translocates to the plasma membrane to interact with P2X7R. Using specific pharmacological inhibitors, we established the order in which several enzymes trigger the P2X7R-dependent release of sAPPα. Thus, a Rho kinase and the MAPK modules ERK1/2 and JNK act upstream of ERM, whereas a PI3K activity is triggered downstream. For the first time, this work identifies ERM as major partners in the regulated non-amyloidogenic processing of APP.  相似文献   

2.
The amyloid precursor protein (APP) is proteolytically processed by β- and γ-secretases to release amyloid-β peptide (Aβ), the main component found in senile plaques of Alzheimer's disease (AD) patient brains. Alternatively, APP can be cleaved within the Aβ sequence by α-secretase, thus precluding the generation of Aβ. We have demonstrated that activation of the P2X7 receptor leads to a reduction of α-secretase activity in Neuro-2a cells. Moreover, the P2X7 ligand 2'(3')-O-(4-benzoylbenzoyl) ATP (BzATP) can also activate a different P2 receptor in these cells. This receptor, whose pharmacology resembles that of the P2Y(2) receptor, has an opposite effect, leading to increases in α-secretase activity. Our study suggests that P2X7R and P2Y(2)R could be novel therapeutic targets in AD.  相似文献   

3.
The extracellular senile plaques observed in Alzheimer's disease (AD) patients are mainly composed of amyloid peptides produced from the β-amyloid precursor protein (βAPP) by β- and γ-secretases. A third non-amyloidogenic α-secretase activity performed by the disintegrins ADAM10 and ADAM17 occurs in the middle of the amyloid-β peptide Aβ and liberates the large sAPPα neuroprotective fragment. Since the activation of α-secretase recently emerged as a promising therapeutic approach to treat AD, the identification of natural compounds able to trigger this cleavage is highly required. Here we describe new curcumin-based modified compounds as α-secretase activators. We established that the aminoacid conjugates curcumin-isoleucine, curcumin-phenylalanine and curcumin-valine promote the constitutive α-secretase activity and increase ADAM10 immunoreactivity. Strickingly, experiments carried out under conditions mimicking the PKC/muscarinic receptor-regulated pathway display different patterns of activation by these compounds. Altogether, our data identified new lead natural compounds for the future development of powerful and stable α-secretase activators and established that some of these molecules are able to discriminate between the constitutive and regulated α-secretase pathways.  相似文献   

4.
5.
6.
Retinoic acid stimulates α-secretase processing of amyloid precursor protein (APP) and decreases β-secretase cleavage that leads to amyloid-β formation. Here, we investigated the effect of retinoic acid on the two putative α-secretases, the disintegrin metalloproteinases ADAM10 and TACE, and the β-site cleaving enzyme BACE1, in human neuroblastoma SH-SY5Y cells. Western blot analysis showed that exposure to retinoic acid resulted in significantly increased levels of ADAM10 and TACE, suggesting that regulation of α-secretases causes the effects on APP processing. The presence of the phosphatidylinositol 3-kinase inhibitor LY 294002 selectively reduced the effect on ADAM10 protein levels but not on ADAM10 mRNA levels as determined by RT-PCR. On the other hand, the effect on TACE was shown to be dependent on protein kinase C, since it was completely blocked in the presence of the inhibitor bisindolylmaleimide XI. Our data indicate that different signalling pathways are involved in retinoic acid-induced up-regulation of the secretases.  相似文献   

7.
In Alzheimer’s disease (AD), enhancing α-secretase processing of amyloid precursor protein (APP) is an important pathway to decrease neurotoxic amyloid β (Aβ) secretion. The α-secretase is reported to be regulated by protein kinase C (PKC) and various endogenous proteins or cell surface receptors. In this report, we first examined whether Aβ reduces α-secretase activity, and showed that Aβ peptide 1–40 (0.001 and 0.01 μM) reduced the secretion of soluble amyloid precursor protein α (sAPPα) in carbachol-stimulated SH-SY5Y neuroblastoma cells. E-64-d (3 μM), which is a potent calpain inhibitor that prevents PKC degradation, ameliorated the Aβ-induced reduction of sAPPα secretion. In addition, we observed that Aβ significantly enhanced ceramide production by activating neutral sphingomyelinase. The cell-permeable ceramide analog, C2-ceramide (1 μg/mL), also reduced sAPPα secretion, and in addition, E-64-d eliminated the observed decrease of sAPPα secretion. C2-ceramide induced down-regulation of PKC-α, -β1, and -β2 isozymes in SH-SY5Y cells. These findings suggest that ceramide may play an important role in sAPPα processing by modulating PKC activity.  相似文献   

8.
Regulated intramembrane proteolysis of the amyloid precursor protein (APP) by the protease activities α-, β- and γ-secretase controls the generation of the neurotoxic amyloid β peptide. APLP2, the amyloid precursor-like protein 2, is a homolog of APP, which shows functional overlap with APP, but lacks an amyloid β domain. Compared to APP, less is known about the proteolytic processing of APLP2, in particular in neurons, and the cleavage sites have not yet been determined. APLP2 is cleaved by the β-secretase BACE1 and additionally by an α-secretase activity. The two metalloproteases ADAM10 and ADAM17 have been suggested as candidate APLP2 α-secretases in cell lines. Here, we used RNA interference and found that ADAM10, but not ADAM17, is required for the constitutive α-secretase cleavage of APLP2 in HEK293 and SH-SY5Y cells. Likewise, in primary murine neurons knock-down of ADAM10 suppressed APLP2 α-secretase cleavage. Using mass spectrometry we determined the proteolytic cleavage sites in the APLP2 sequence. ADAM10 was found to cleave APLP2 after arginine 670, whereas BACE1 cleaves after leucine 659. Both cleavage sites are located in close proximity to the membrane. γ-secretase cleavage was found to occur at different peptide bonds between alanine 694 and valine 700, which is close to the N-terminus of the predicted APLP2 transmembrane domain. Determination of the APLP2 cleavage sites enables functional studies of the different APLP2 ectodomain fragments and the production of cleavage-site specific antibodies for APLP2, which may be used for biomarker development.  相似文献   

9.
The cleavage of amyloid precursor protein (APP) by β- and γ-secretases results in the production of amyloid-β (Aβ) in Alzheimer's disease. We raised two monoclonal antibodies, 2B3 and 2B12, that recognize the β-secretase cleavage site on APP but not Aβ. We hypothesized that these antibodies would reduce Aβ levels via steric hindrance of β-secretase. Both antibodies decreased extracellular Aβ levels from astrocytoma cells, but 2B3 was more potent than 2B12. Levels of soluble sAPPα from the nonamyloidogenic α-secretase pathway and intracellular APP were not affected by either antibody nor were there any effects on cell viability. 2B3 exhibited a higher affinity for APP than 2B12 and its epitope appeared to span the cleavage site, whereas 2B12 bound slightly upstream. Both of these factors probably contribute to its greater effect on Aβ levels. After 60 min incubation at pH 4.0, most 2B3 and 2B12 remained bound to their antigen, suggesting that the antibodies will remain bound to APP in the acidic endosomes where β-secretase cleavage probably occurs. Only 2B3 and 2B12, but not control antibodies, inhibited the cleavage of sAPPα by β-secretase in a cell-free assay where the effects of antibody internalization and intracellular degradation were excluded. 2B3 virtually abolished this cleavage. In addition, levels of C-terminal APP fragments, generated following β-secretase cleavage (βCTF), were significantly reduced in cells after incubation with 2B3. These results strongly suggest that anti-cleavage site IgGs can generically reduce Aβ levels via inhibition of β-secretase by steric hindrance and may provide a novel alternative therapy for Alzheimer's disease.  相似文献   

10.
Clonal central nervous system neuronal cells, B103, do not synthesize detectable endogenous APP or APLP. B103 cells transfected with both wild-type (B103/APP) and mutant APP construct (B103/APPΔNL) secreted comparable amounts of soluble forms of APP (sAPP). B103/APP cells produced sAPP and cleaved at amyloid β/A4 (Aβ) 16, the α-secretase site, and B103/APPΔNL cells produced sAPPβ cleaved at Aβ 1, the β-secretase site. B103/APPΔNL cells developed fewer neurites than B103/APP cells in a serum-free defined medium. Neurite numbers of parent B103 cells were increased by the 50% conditioned medium (CM) from B103/APP cells but reduced by the CM from B103/APPΔNL cells. Chemically synthesized Aβ at concentration levels higher than 1 nM reduced numbers of neurites from B103 or B103/APPΔNL cells. However, Aβ at 1–100 nM could not reduce the neurite number of B103/APP cells. The protective activity against Aβ's deleterious effect to reduce neurite numbers was attributed to sAPPα in the CM. Although sAPPα could block the effect of Aβ, sAPPβ could not do so under the identical condition, suggesting the importance of the C-terminal 15-amino acid sequence in sAPPα. Nevertheless, sAPPα's protective activity required the N-terminal sequence around RERMS, previously identified to be the active domain of sAPPβ. The overall effect of APP mutation which overproduced Aβ and sAPPβ and underproduced sAPPα was a marked decline in the neurotrophic effect of APP. We suggest that the disruption of balance between the detrimental effect of Aβ and the trophic effect of sAPP may be important in the pathogenesis of AD caused by this pathogenic APP mutation © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 469–480, 1997  相似文献   

11.
Alpha-secretase-mediated cleavage of the amyloid precursor protein (APP) releases the neuroprotective APP fragment sαAPP and prevents amyloid β peptide (Aβ) generation. Moreover, α-secretase-like cleavage of the Aβ transporter 'receptor for advanced glycation end products' counteracts the import of blood Aβ into the brain. Assuming that Aβ is responsible for the development of Alzheimer's disease (AD), activation of α-secretase should be preventive. α-Secretase-mediated APP cleavage can be activated via several G protein-coupled receptors and receptor tyrosine kinases. Protein kinase C, mitogen-activated protein kinases, phosphatidylinositol 3-kinase, cAMP and calcium are activators of receptor-induced α-secretase cleavage. Selective targeting of receptor subtypes expressed in brain regions affected by AD appears reasonable. Therefore, the PACAP receptor PAC1 and possibly the serotonin 5-HT(6) receptor subtype are promising targets. Activation of APP α-secretase cleavage also occurs upon blockade of cholesterol synthesis by statins or zaragozic acid A. Under physiological statin concentrations, the brain cholesterol content is not influenced. Statins likely inhibit Aβ production in the blood by α-secretase activation which is possibly sufficient to inhibit AD development. A disintegrin and metalloproteinase 10 (ADAM10) acts as α-secretase on APP. By targeting the nuclear retinoic acid receptor β, the expression of ADAM10 and non-amyloidogenic APP processing can be enhanced. Excessive activation of ADAM10 should be avoided because ADAM10 and also ADAM17 are not APP-specific. Both ADAM proteins cleave various substrates, and therefore have been associated with tumorigenesis and tumor progression.  相似文献   

12.
Alzheimer’s disease (AD) is a progressive neurodegenerative disease with the symptom of cognitive impairment. The deposition of amyloid β (Aβ) peptide is believed to be the primary cause to neuronal dystrophy and eventually dementia. Aβ is the proteolytic product from its precursor amyloid precursor protein (APP) by β- and γ- secretase. An optional cleavage by α-secretase happens inside the Aβ domain. ADAM17 is supposed to be the regulated α-secretase of APP. Enhanced activity of ADAM17 leads to the increasing secretion of neuroprotective soluble APP α fragment and reduction of Aβ generation, which may be benefit to the disease. ADAM17 is then considered the potential therapeutic target for AD. Microglia activation and neuroinflammation is another important event in AD pathogenesis. Interestingly, ADAM17 also participates in the cleavage of many other membrane-bound proteins, especially some inflammatory factors related to microglia activation. The facilitating role of ADAM17 in inflammation and further neuronal damage has also been illustrated. In results, the activation of ADAM17 as the solution to AD may be a tricky task. The comprehensive consideration and evaluation has to be carried out carefully before the final treatment. In the present review, the distinct role of ADAM17 in AD-related APP shedding and neuroinflammatory microglial activation will be carefully discussed.  相似文献   

13.
The senile plaque is a pathologic hallmark of Alzheimer's disease (AD). Amyloid-β peptide (Aβ), the main constituent of senile plaques, is neurotoxic especially in its oligomeric form. Aβ is derived from the sequential cleavage of amyloid precursor protein (APP) by β- and γ-secretases in the amyloidogenic pathway. Alternatively, APP can be cleaved by α-secretases within the Aβ domain to produce neurotrophic and neuroprotective α-secretase-cleaved soluble APP (sAPPα) in the nonamyloidogenic pathway. Since APP and α-, β-, and γ-secretases are membrane proteins, APP processing should be highly dependent on the membrane composition and the biophysical properties of cellular membrane. In this review, we discuss the role of the biophysical properties of cellular membrane in APP processing, especially the effects of phospholipases A2 (PLA2s), fatty acids, cholesterol, and Aβ on membrane fluidity in relation to their effects on APP processing.  相似文献   

14.
15.
Bilobalide (BB) is a sesquiterpenoid extracted from Ginkgo biloba leaves. An increasing number of studies have demonstrated its neuroprotective effects. The neuroprotective mechanisms may be associated with modulation of intracellular signaling cascades such as the phosphatidyl inositol 3-kinase (PI3K) pathway. Using differentiated SH-SY5Y cells, this study investigated whether BB modulation of intracellular signaling pathways, such as the protein kinase C (PKC) and PI3K pathways, contributes to amyloid precursor protein (APP) metabolism, a key event in the pathogenesis of Alzheimer’s disease (AD). We demonstrated in this study that BB enhanced the secretion of α-secretase-cleaved soluble amyloid precursor protein (sAPPα, a by-product of non-amyloidogenic processing of APP) and decreased the β amyloid protein (Aβ, a by-product of amyloidogenic processing of APP) via PI3K-dependent pathway. The PI3K pathway mediated the rapid effect of BB on APP processing possibly via regulation of intracellular APP trafficking. After longer time BB incubation (12 h), this effect was reinforced by PI3K pathway-mediated up-regulation of disintegrin and metalloproteinase domain-containing protein 10 (ADAM10, an α-secretase candidate). Given the strong association between APP metabolism and AD pathogenesis, the ability of BB to regulate APP processing suggests its potential use in AD prevention.  相似文献   

16.
A-disintegrin and metalloproteinase 10 (ADAM10) is involved in the generation of amyloid-β (Aβ) during amyloid precursor protein (APP) processing, and has a protective effect against Aβ neurotoxicity. We explored how metallothionein-III (MT-III) is regulated in the non-amyloidogenic pathway to generate soluble APPα (sAPPα). MT-??? increased sAPPα levels and reduced Aβ peptide levels, but did not affect ADAM10 expression. However, MT-III increased the activity of ADAM10. MT-???-induced sAPPα secretion, and Aβ peptide formation was blocked by specific inhibitors of furin, proprotein convertase7 (PC7), and PKCα. These results demonstrate that MT-??? increases the amount of active ADAM10 in association with furin, PC7 and PKCα.  相似文献   

17.
The amyloid precursor protein (APP) is proteolytically processed by beta- and gamma-secretases to release amyloid beta, the main component in senile plaques found in the brains of patients with Alzheimer disease. Alternatively, APP can be cleaved within the amyloid beta domain by alpha-secretase releasing the non-amyloidogenic product sAPP alpha, which has been shown to have neuroprotective properties. Several G protein-coupled receptors are known to activate alpha-secretase-dependent processing of APP; however, the role of G protein-coupled nucleotide receptors in APP processing has not been investigated. Here it is demonstrated that activation of the G protein-coupled P2Y2 receptor (P2Y2R) subtype expressed in human 1321N1 astrocytoma cells enhanced the release of sAPP alpha in a time- and dose-dependent manner. P2Y2 R-mediated sAPP alpha release was dependent on extracellular calcium but was not affected by 1,2-bis(2-aminophenoxy)ethane-N,N,N,-trimethylammonium salt, an intracellular calcium chelator, indicating that P2Y2R-stimulated intracellular calcium mobilization was not involved. Inhibition of protein kinase C (PKC) with GF109203 or by PKC down-regulation with phorbol ester pre-treatment had no effect on UTP-stimulated sAPP alpha release, indicating a PKC-independent mechanism. U0126, an inhibitor of the mitogen-activated protein kinase pathway, partially inhibited sAPPalpha release by UTP, whereas inhibitors of Src-dependent epidermal growth factor receptor transactivation by P2Y2Rs had no effect. The metalloprotease inhibitors phenanthroline and TAPI-2 and the furin inhibitor decanoyl-Arg-Val-Lys-Arg-chloromethylketone also diminished UTP-induced sAPP alpha release. Furthermore, small interfering RNA silencing of an endogenous adamalysin, ADAM10 or ADAM17/TACE, partially suppressed P2Y2R-activated sAPP alpha release, whereas treatment of cells with both ADAM10 and ADAM17/TACE small interfering RNAs completely abolished UTP-activated sAPP alpha release. These results may contribute to an understanding of the non-amyloidogenic processing of APP.  相似文献   

18.
Fatty acids may integrate into cell membranes to change physical properties of cell membranes, and subsequently alter cell functions in an unsaturation number-dependent manner. To address the roles of fatty acid unsaturation numbers in cellular pathways of Alzheimer's disease (AD), we systematically investigated the effects of fatty acids on cell membrane fluidity and α-secretase-cleaved soluble amyloid precursor protein (sAPP(α)) secretion in relation to unsaturation numbers using stearic acid (SA, 18:0), oleic acid (OA, 18:1), linoleic acid (LA, 18:2), α-linolenic acid (ALA, 18:3), arachidonic acid (AA, 20:4), eicosapentaenoic acid (EPA, 20:5), and docosahexaenoic acid (DHA, 22:6). Treatments of differentiated human neuroblastoma (SH-SY5Y cells) with AA, EPA and DHA for 24h increased sAPP(α) secretion and membrane fluidity, whereas those treatments with SA, OA, LA and ALA did not. Treatments with AA and DHA did not alter the total expressions of amyloid precursor protein (APP) and α-secretases in SH-SY5Y cells. These results suggested that not all unsaturated fatty acids but only those with 4 or more double bonds, such as AA, EPA and DHA, are able to increase membrane fluidity and lead to increase in sAPP(α) secretion. This study provides insights into dietary strategies for the prevention of AD.  相似文献   

19.
We have earlier reported that Aβ were significantly reduced in brains of smoking Alzheimer patients and control subjects compared with non-smokers, as well as in nicotine treated APPsw transgenic mice. To examine the mechanisms by which nicotine modulates APP processing we here measured levels of secreted amyloid precursor protein (sAPPα), total sAPP, Aβ40 and Aβ42 in different cell lines expressing different nicotinic receptor (nAChR) subtypes or no nAChRs. Treatment with nicotine increased release of sAPPα and at the same time lowered Aβ levels in both SH-SY5Y and SH-SY5Y/APPsw cells expressing α3 and α7 nAChR subtypes. These effects could also be evoked by co-treatment with the competitive α7 nAChR antagonists α-bungarotoxin and methyllycaconitine (MLA), and by these antagonists alone, suggesting that binding to the agonist binding site, rather than activation of the receptor, may be sufficient to trigger changes in APP processing. The nicotine-induced increase in sAPPα could only be blocked by co-treatment with the open channel blocker mecamylamine. In addition to nicotine, the agonists epibatidine and cytisine both significantly increased the release of sAPP in M10 cells expressing the α4/β2 nAChR subtype, and this effect was blocked by co-treatment with mecamylamine but not by the α4/β2 competitive antagonist dihydro-β-erythroidine. The lack of effect of nicotine on sAPPα and Aβ levels in HEK 293/APPsw cells, which do not express any nAChRs, demonstrates that the nicotine-induced attenuation of β-amyloidosis is mediated by nAChRs and not by a direct effect of nicotine. Our data show that nicotinic compounds stimulate the non-amyloidogenic pathway and that α4 and α7 nAChRs play a major role in modulating this process. Nicotinic drugs directed towards specific nAChR subtypes might therefore be beneficial for the treatment of AD not only by lowering Aβ production but also by enhance release of neuroprotective sAPPα.  相似文献   

20.
Estrogen depletion following menopause has been correlated with an increased risk of developing Alzheimer’s disease (AD). We previously explored the beneficial effect of (−)-epigallocatechin-3-gallate (EGCG) on AD mice and found increased non-amyloidogenic processing of amyloid precursor protein (APP) through the α-secretase a disintegrin and metallopeptidase domain 10 (ADAM10). Our results in this study suggest that EGCG-mediated enhancement of non-amyloidogenic processing of APP is mediated by the maturation of ADAM10 via an estrogen receptor-α (ERα)/phosphoinositide 3-kinase/Ak-transforming dependent mechanism, independent of furin-mediated ADAM10 activation. These data support prior assertions that central selective ER modulation could be a therapeutic target for AD and support the use of EGCG as a well-tolerated alternative to estrogen therapy in the prophylaxis and treatment of this disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号