首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In mature adipocytes, triglyceride is stored within lipid droplets, which are coated with the protein perilipin, which functions to regulate lipolysis by controlling lipase access to the droplet in a hormone-regulatable fashion. Adipocyte differentiation-related protein (ADRP) is a widely expressed lipid droplet binding protein that is coexpressed with perilipin in differentiating fat cells but is minimally present in fully differentiated cultured adipocytes. We find that fibroblasts ectopically expressing C/EBPalpha (NIH-C/EBPalpha cells) differentiate into mature adipocytes that simultaneously express perilipin and ADRP. In response to isoproterenol, perilipin is hyperphosphorylated, lipolysis is enhanced, and subsequently, ADRP expression increases coincident with it surrounding intracellular lipid droplets. In the absence of lipolytic stimulation, inhibition of proteasomal activity with MG-132 increased ADRP levels to those of cells treated with 10 mum isoproterenol, but ADRP does not surround the lipid droplet in the absence of lipolytic stimulation. We overexpressed a perilipin A construct in NIH-C/EBPalpha cells where the six serine residues known to be phosphorylated by protein kinase A were changed to alanine (Peri A Delta1-6). These cells show no increase in ADRP expression in response to isoproterenol. We propose that ADRP can replace perilipin on existing lipid droplets or those newly formed as a result of fatty acid reesterification, under dynamic conditions of hormonally stimulated lipolysis, thus preserving lipid droplet morphology/structure.  相似文献   

2.
We developed a microsome-based, cell-free system that assembles newly formed triglyceride (TG) into spherical lipid droplets. These droplets were recovered in the d 相似文献   

3.
Adipocyte differentiation-related protein (ADrP) is an intrinsic lipid storage droplet protein that is highly expressed in lung. ADrP localizes to lipid storage droplets within lipofibroblasts, pulmonary cells characterized by high triacylglycerol, which is a precursor for surfactant phospholipid synthesis by alveolar type II epithelial (EPII) cells. The developmental pattern of ADrP mRNA and protein expression in lung tissue parallels triacylglycerol accumulation in rat lung. ADrP mRNA levels are relatively high in isolated lipofibroblasts, accounting for the high ADrP expression in lung. Isolated EPII cells, which do not store neutral lipids but derive them from lipofibroblasts, have low levels of ADrP mRNA expression. ADrP is found around lipid droplets in cultured lipofibroblasts, but not in EPII cells isolated from developing rat lung. After coculture with lipofibroblasts, EPII cells acquired ADrP, which associates with lipid droplets. Furthermore, (3)H-labeled triolein in isolated ADrP-coated lipid droplets is a tenfold better substrate for surfactant phospholipid synthesis by cultured EPII cells than (3)H-labeled synthetic triolein alone. Antibodies to ADrP block transfer of neutral lipid. These data suggest a role for ADrP in this novel mechanism for the transfer of lipid between lipofibroblasts and EPII cells.  相似文献   

4.
Structural properties of the adipocyte lipid binding protein   总被引:6,自引:0,他引:6  
The adipocyte lipid binding protein, ALBP (also adipocyte fatty acid binding protein, A-FABP, 422 protein, aP2, and p15 protein), is one of the most studied of the intracellular lipid binding protein family. Here we sequentially compare the different sources of ALBP and describe the idea that one-third of the amino acid side chains near the N-terminal end appear to play a major role in conformational dynamics and in ligand transfer. Crystallographic data for mouse ALBP are summarized and the ligand binding cavity analyzed in terms of the overall surface and conformational dynamics. The region of the proposed ligand portal is described. Amino acid side chains critical to cavity formation and fatty acid interactions are analyzed by comparing known crystal structures containing a series of different hydrophobic ligands. Finally, we address ALBP ligand binding affinity and thermodynamic studies.  相似文献   

5.
M K Buelt  D A Bernlohr 《Biochemistry》1990,29(32):7408-7413
The adipocyte lipid binding protein (ALBP) is a member of a multigene family of low molecular weight proteins which stoichiometrically and saturably bind hydrophobic ligands and presumably facilitate intracellular lipid metabolism. To probe the structure-function relationship of the binding domain of ALBP, chemical modification has been employed. Modification of the two cysteinyl residues of ALBP (Cys1 and Cys117) with a variety of sulfhydryl reagents decreased the apparent affinity for oleic acid in the following order of effectiveness: methyl methanethiosulfonate much much less than p-(chloromercuri)benzenesulfonic acid less than N-ethylmaleimide (NEM) = 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB). Thiol titration of ALBP with DTNB in the presence of bound oleate resulted in the modification of a single cysteinyl residue. The oleate-protected cysteine was identified as Cys117 by modification with a combination of reversible (DTNB) and irreversible (NEM) sulfhydryl reagents in the presence or absence of saturating oleic acid. Cys117-NEM ALBP exhibited a large decrease in binding affinity while Cys1-NEM ALBP exhibited normal binding properties. Neither the modification of ALBP with NEM nor the addition of oleic acid had a significant effect on protein structure, as judged by circular dichroic analysis. These results suggest that Cys117 of ALBP resides in the ligand binding domain and that site-specific modification can be utilized to assess the conformational flexibility of the binding cavity.  相似文献   

6.
Although neutral lipid storage droplets are ubiquitous in eukaryotic cells, very little is known about how their synthesis and turnover are controlled. Adipocyte differentiation-related protein (ADRP; also known as adipophilin) is found on the surface of lipid droplets in most mammalian cell types. To learn how ADRP affects lipid storage, we stably expressed the protein in human embryonic kidney 293 (HEK 293) cells, which express little endogenous ADRP. As expected, ADRP was targeted to the surface of lipid droplets and caused an increase in triacylglycerol (TAG) mass under both basal and oleate-supplemented conditions. At least part of the increased mass resulted from a 50% decrease in the rate of TAG hydrolysis in ADRP-expressing cells. Furthermore, ADRP expression increased the fraction of total cellular TAG that was stored in lipid droplets. ADRP expression induced a striking decrease in the association of adipose triglyceride lipase (ATGL) and mannose-6-phosphate receptor tail-interacting protein of 47 kDa with lipid droplets and also decreased the lipid droplet association of several other unknown proteins. Transient expression of ADRP in two other cell lines also reduced the lipid droplet association of catalytically inactive ATGL. We conclude that the reduced lipid droplet association of ATGL and/or other lipases may explain the decrease in TAG turnover observed in ADRP-expressing HEK 293 cells.  相似文献   

7.
The murine adipocyte lipid binding protein (ALBP/aP2) has been cloned and expressed in Escherichia coli, purified to homogeneity, biochemically characterized, and crystallized for x-ray diffraction study. In the cloning, the ALBP coding region was placed under control of the recA promoter and downstream of the phage T7 g-10 translation enhancer sequence. Nalidixic acid (50 micrograms/ml) induced the expression of ALBP 20-fold over that attained using the pT7 system previously reported (Chinander, L. L., and Bernlohr, D. A. (1989) J. Biol. Chem. 264, 19564-19572). Recombinant ALBP was purified to homogeneity using a combination of pH fractionation, gel filtration, and immobilized metal affinity chromatography. The fluorescent affinity ligand 12-(9-anthroyloxy)oleic acid bound to homogeneous ALBP with an apparent Kd of 0.5 microM. rALBP was devoid of endogenous fatty acid, and oleic acid inhibited cysteine 117 modification by 5,5' -dithiobis-(2-nitrobenzoic acid) indicating integrity of the binding domain. Recombinant ALBP was phosphorylated by the soluble kinase domain of the insulin receptor with a Vmax of 11 nmol.min.mg of kinase and an apparent Km of 270 microM. Purified protein was crystallized using the hanging drop method with seeding. Crystalline ALBP was orthorhombic with cell dimensions of a = 34.4 A, b = 54.8 A, and c = 76.3 A. The space group was P212121, and there was one molecule per asymmetric unit.  相似文献   

8.
Cidea, the cell death-inducing DNA fragmentation factor-α-like effector (CIDE) domain-containing protein, is targeted to lipid droplets in mouse adipocytes, where it inhibits triglyceride hydrolysis and promotes lipid storage. In mice, Cidea may prevent lipolysis by binding and shielding lipid droplets from lipase association. Here we demonstrate that human Cidea localizes with lipid droplets in both adipocyte and nonadipocyte cell lines, and we ascribe specific functions to its protein domains. Expression of full-length Cidea in undifferentiated 3T3-L1 cells or COS-1 cells increases total cellular triglyceride and strikingly alters the morphology of lipid droplets by enhancing their size and reducing their number. Remarkably, both lipid droplet binding and increased triglyceride accumulation are also elicited by expression of only the carboxy-terminal 104 amino acids, indicating this small domain directs lipid droplet targeting and triglyceride shielding. However, unlike the full-length protein, expression of the carboxy-terminus causes clustering of small lipid droplets but not the formation of large droplets, identifying a novel function of the N terminus. Furthermore, human Cidea promotes lipid storage via lipolysis inhibition, as the expression of human Cidea in fully differentiated 3T3-L1 adipocytes causes a significant decrease in basal glycerol release. Taken together, these data indicate that the carboxy-terminal domain of Cidea directs lipid droplet targeting, lipid droplet clustering, and triglyceride accumulation, whereas the amino terminal domain is required for Cidea-mediated development of enlarged lipid droplets.  相似文献   

9.
The importance of peroxisomes for adipocyte function is poorly understood. Herein, we provide insights into the critical role of peroxin 16 (PEX16)-mediated peroxisome biogenesis in adipocyte development and lipid metabolism. Pex16 is highly expressed in adipose tissues and upregulated during adipogenesis of murine and human cells. We demonstrate that Pex16 is a target gene of the adipogenesis “master-regulator” PPARγ. Stable silencing of Pex16 in 3T3-L1 cells strongly reduced the number of peroxisomes while mitochondrial number was unaffected. Concomitantly, peroxisomal fatty acid (FA) oxidation was reduced, thereby causing accumulation of long- and very long-chain (polyunsaturated) FAs and reduction of odd-chain FAs. Further, Pex16-silencing decreased cellular oxygen consumption and increased FA release. Additionally, silencing of Pex16 impaired adipocyte differentiation, lipogenic and adipogenic marker gene expression, and cellular triglyceride stores. Addition of PPARγ agonist rosiglitazone and peroxisome-related lipid species to Pex16-silenced 3T3-L1 cells rescued adipogenesis. These data provide evidence that PEX16 is required for peroxisome biogenesis and highlights the relevance of peroxisomes for adipogenesis and adipocyte lipid metabolism.  相似文献   

10.
In early pregnancy, fetal trophoblasts selectively invade and remodel maternal spiral arteries. A healthy pregnancy is dependent on this adaptation to allow sufficient maternal blood to reach the placenta and the developing fetus. However, little is known of the role played by trophoblasts in this adaptation process. In this study, the interactions between trophoblast cells (TC) and vascular smooth muscle cells (VSMC) were examined using novel live cell image analysis methods which allow quantitative assessment of the behaviour of these two cell types in co-culture. TC and VSMC were simultaneously tracked in co-culture and, for each cell type, directionality, speed and the cell-cell interaction were assessed. The overall migratory behaviour of TC was markedly different in the presence of VSMC with co-cultured TC migrating further with directional movement while mono-cultured TC moved more randomly. Furthermore, TC were shown to specifically target VSMC, suggesting that invading TC may initiate targeted vascular remodelling. Analysis of movement behaviour and cell-cell attraction will be useful in other co-culture systems in addition to answering important questions in the reproductive field.  相似文献   

11.
Craven SE  El-Husseini AE  Bredt DS 《Neuron》1999,22(3):497-509
During synaptic development, proteins aggregate at specialized pre- and postsynaptic structures. Mechanisms that mediate protein clustering at these sites remain unknown. To investigate this process, we analyzed synaptic targeting of a postsynaptic density protein, PSD-95, by expressing green fluorescent protein- (GFP-) tagged PSD-95 in cultured hippocampal neurons. We find that postsynaptic clustering relies on three elements of PSD-95: N-terminal palmitoylation, the first two PDZ domains, and a C-terminal targeting motif. In contrast, disruptions of PDZ3, SH3, or guanylate kinase (GK) domains do not affect synaptic targeting. Palmitoylation is sufficient to target the diffusely expressed SAP-97 to synapses, and palmitoylation cannot be replaced with alternative membrane association motifs, suggesting that a specialized synaptic lipid environment mediates postsynaptic clustering. The requirements for PDZ domains and a C-terminal domain of PSD-95 indicate that protein-protein interactions cooperate with lipid interactions in synaptic targeting.  相似文献   

12.
Misfolded proteins in the endoplasmic reticulum (ER) are dislocated to the cytosol to be degraded by the proteasomes. Various plant and bacterial toxins and certain viruses hijack this dislocation pathway to exert their toxicity or to infect cells. In this study, we report a dislocation-dependent reconstituted GFP (drGFP) assay that allows, for the first time, imaging proteins dislocated from the ER lumen to the cytosol in living cells. Our results indicate that both luminal and membrane-spanning ER proteins can be fully dislocated from the ER to the cytosol. By combining the drGFP assay with RNAi or chemical inhibitors of proteins in the Hrd1 ubiquitin ligase complex, we demonstrate that the Sel1L, Hrd1, p97/VCP, and importin β proteins are required for the dislocation of misfolded luminal α-1 antitrypsin. The strategy described in this work is broadly applicable to the study of other types of transmembrane transport of proteins and likely also of viruses and toxins in living cells.  相似文献   

13.
Cholesteryl ester transfer protein (CETP) transfers cholesteryl ester (CE) and triglyceride (TG) between lipoproteins in plasma. However, short term suppression of CETP biosynthesis in cells alters cellular cholesterol homeostasis, demonstrating an intracellular role for CETP as well. The consequences of chronic CETP deficiency in lipid-storing cells normally expressing CETP have not been reported. Here, SW872 adipocytes stably expressing antisense CETP cDNA and synthesizing 20% of normal CETP were created. CETP-deficient cells had 4-fold more CE but an approximately 3-fold decrease in cholesterol biosynthesis. This phenotype of cholesterol overload is consistent with the observed 45% reduction in low density lipoprotein receptor and 2.5-fold increase in ABCA1 levels. However, cholesterol mass in CETP-deficient adipocytes was actually reduced. Strikingly, CETP-deficient adipocytes stored <50% of normal TG, principally reflecting reduced synthesis. The hydrolysis of cellular CE and TG in CETP-deficient cells was reduced by >50%, although hydrolase/lipase activity was increased 3-fold. Notably, the incorporation of recently synthesized CE and TG into lipid storage droplets in CETP-deficient cells was just 40% of control, suggesting that these lipids are inefficiently transported to droplets where the hydrolase/lipase resides. The capacity of cellular CETP to transport CE and TG into storage droplets was directly demonstrated in vitro. Overall, chronic CETP deficiency disrupts lipid homeostasis and compromises the TG storage function of adipocytes. Inefficient CETP-mediated translocation of CE and TG from the endoplasmic reticulum to their site of storage may partially explain these defects. These studies in adipocytic cells strongly support a novel role for CETP in intracellular lipid transport and storage.  相似文献   

14.
Lipid droplets (LDs) are ubiquitous organelles storing neutral lipids, including triacylglycerol (TAG) and cholesterol ester. The properties of LDs vary greatly among tissues, and LD-binding proteins, the perilipin family in particular, play critical roles in determining such diversity. Overaccumulation of TAG in LDs of non-adipose tissues may cause lipotoxicity, leading to diseases such as diabetes and cardiomyopathy. However, the physiological significance of non-adipose LDs in a normal state is poorly understood. To address this issue, we generated and characterized mice deficient in perilipin 5 (Plin5), a member of the perilipin family particularly abundant in the heart. The mutant mice lacked detectable LDs, containing significantly less TAG in the heart. Particulate structures containing another LD-binding protein, Plin2, but negative for lipid staining, remained in mutant mice hearts. LDs were recovered by perfusing the heart with an inhibitor of lipase. Cultured cardiomyocytes from Plin5-null mice more actively oxidized fatty acid than those of wild-type mice. Production of reactive oxygen species was increased in the mutant mice hearts, leading to a greater decline in heart function with age. This was, however, reduced by the administration of N-acetylcysteine, a precursor of an antioxidant, glutathione. Thus, we conclude that Plin5 is essential for maintaining LDs at detectable sizes in the heart, by antagonizing lipase(s). LDs in turn prevent excess reactive oxygen species production by sequestering fatty acid from oxidation and hence suppress oxidative burden to the heart.  相似文献   

15.
The murine adipocyte lipid binding protein (ALBP) has been cloned into Escherichia coli, purified from expressing cultures, and its ligand binding and phosphorylation properties studied. In the cloning strategy, the recombinant, pT7-5 rALBP, was transformed into E. coli strain K38 harboring plasmid pGP1-2 which directs the synthesis of T7 RNA polymerase. Upon shifting the temperature from 30 to 42 degrees C to induce T7 RNA polymerase expression, the 14.6-kDa recombinant ALBP (rALBP) was expressed for approximately 2 h and accumulated to about 1% of total E. coli protein. The recombinant ALBP was soluble in E. coli extracts and resistant to bacterial proteolysis. A procedure for purifying rALBP was developed utilizing immuno-chemical detection based upon reactivity with anti-murine ALBP antiserum. A combination of acidic ammonium sulfate fractionation, gel permeation chromatography, and carboxymethyl ion-exchange high performance liquid chromatography separation was used to prepare homogeneous rALBP. Sequence analysis of rALBP indicated that the initiating methionine residue had been removed and the amino-terminal cysteine residue was not blocked. Purified rALBP exhibited stoichiometric, saturable binding of oleic acid (n = 1.0, K0.5 approximately 100 microM) and retinoic acid (n = 1.0, K0.5 approximately 170 microM). Incubation of rALBP with wheat germ agglutinin-purified insulin receptor, ATP, and 100 nM insulin resulted in a 5-fold stimulation of rALBP phosphorylation above the basal state. Kinetic analysis of rALBP phosphorylation by the 3T3-L1 insulin receptor kinase yielded a Michaelis constant (Km) of 50 microM and a maximal velocity of 1 mol of rALBP phosphorylated/min/mol insulin binding sites. Phosphoamino acid analysis indicated that phosphorylation occurred upon tyrosine. These results indicate that murine ALBP has been cloned and expressed in E. coli, purified to homogeneity, and is a substrate for the insulin receptor tyrosyl kinase in vitro.  相似文献   

16.
Friedman R  Nachliel E  Gutman M 《Biochemistry》2005,44(11):4275-4283
The adipocyte lipid binding protein (ALBP) binds fatty acids (FA) in a cavity that is inaccessible from the bulk. Therefore, the penetration of the FA necessitates conformational changes whose nature is still unknown. It was suggested that the lipid first enters through a "portal region" which consists of the alphaII helix and the adjacent tight turns. The initial event in the ligand binding must be the interaction of the lipid with the protein surface. To analyze this interaction, we have carried out three molecular dynamics simulations of the apo-ALBP, with a palmitate ion initially located at different positions near the protein surface. The simulation indicated that the ligand could adsorb to the protein in more than one location. Yet, in one case, the ligand managed to penetrate the protein by entering a newly formed cavity some 10 A deep. The entry site is located near the N-terminus, at the junction between the loops connecting the beta-strands. Further progression of the penetration seems to be arrested by the need for desolvation of the COOH end of the headgroup. Evolutionary analysis showed that amino acids in this entry site are well conserved. On the basis of these observations, we suggest that the ligand may enter the protein from a site other than the portal region. Furthermore, the rate-limiting step is proposed to be the desolvation of the FA polar headgroup.  相似文献   

17.
18.
The midcycle LH surge stimulates a rise in follicular fluid prostaglandin E2 (PGE2), which is necessary for normal ovulation. To examine PGE2-regulated processes in primate follicles, monkey granulosa cells were cultured with hCG alone or with hCG and PGE2, and the resulting total RNA was subjected to microarray analysis. Twenty PGE2-regulated mRNAs were identified, and we selected a lipid droplet protein, adipose differentiation-related protein (ADRP), for further study. To determine whether hCG and PGE2 regulate ADRP expression in vivo, monkeys received gonadotropins to stimulate multiple follicular development. Human chorionic gonadotropin was then administered alone or with the PG synthesis inhibitor celecoxib, and follicular aspirates or whole ovaries were obtained at times that span the 40-h periovulatory interval. Administration of hCG increased granulosa cell ADRP mRNA and protein, with peak levels measured just before the expected time of ovulation. Treatment with hCG and celecoxib decreased granulosa cell ADRP mRNA levels compared with those of animals treated with hCG only. ADRP was detected by immunocytochemistry in many monkey tissues that synthesize prostaglandins but was not consistently expressed by steroidogenic tissues. Granulosa cells of periovulatory follicles immunostained for ADRP after, but not before, hCG administration; ADRP colocalized with large lipid droplets within the granulosa cell cytoplasm. These studies identify ADRP as a novel gonadotropin- and PGE2-regulated protein in the granulosa cells of primate periovulatory follicles. Because ADRP facilitates arachidonic acid uptake in non-ovarian cells, ADRP-associated lipid droplets may enhance arachidonic acid uptake by granulosa cells to provide a precursor for periovulatory prostaglandin production.  相似文献   

19.
We previously reported that glutamine was a major source of carbon for de novo fatty acid synthesis in a brown adipocyte cell line. The pathway for fatty acid synthesis from glutamine may follow either of two distinct pathways after it enters the citric acid cycle. The glutaminolysis pathway follows the citric acid cycle, whereas the reductive carboxylation pathway travels in reverse of the citric acid cycle from alpha-ketoglutarate to citrate. To quantify fluxes in these pathways we incubated brown adipocyte cells in [U-(13)C]glutamine or [5-(13)C]glutamine and analyzed the mass isotopomer distribution of key metabolites using models that fit the isotopomer distribution to fluxes. We also investigated inhibitors of NADP-dependent isocitrate dehydrogenase and mitochondrial citrate export. The results indicated that one third of glutamine entering the citric acid cycle travels to citrate via reductive carboxylation while the remainder is oxidized through succinate. The reductive carboxylation flux accounted for 90% of all flux of glutamine to lipid. The inhibitor studies were compatible with reductive carboxylation flux through mitochondrial isocitrate dehydrogenase. Total cell citrate and alpha-ketoglutarate were near isotopic equilibrium as expected if rapid cycling exists between these compounds involving the mitochondrial membrane NAD/NADP transhydrogenase. Taken together, these studies demonstrate a new role for glutamine as a lipogenic precursor and propose an alternative to the glutaminolysis pathway where flux of glutamine to lipogenic acetyl-CoA occurs via reductive carboxylation. These findings were enabled by a new modeling tool and software implementation (Metran) for global flux estimation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号