首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clostridium perfringens enterotoxin (CPE) is a cause of food poisoning and is considered a pore-forming toxin, which damages target cells by disrupting the selective permeability of the plasma membrane. However, the pore-forming mechanism and the structural characteristics of the pores are not well documented. Here, we present the structure of CPE determined by x-ray crystallography at 2.0 Å. The overall structure of CPE displays an elongated shape, composed of three distinct domains, I, II, and III. Domain I corresponds to the region that was formerly referred to as C-CPE, which is responsible for binding to the specific receptor claudin. Domains II and III comprise a characteristic module, which resembles those of β-pore-forming toxins such as aerolysin, C. perfringens ϵ-toxin, and Laetiporus sulfureus hemolytic pore-forming lectin. The module is mainly made up of β-strands, two of which span its entire length. Domain II and domain III have three short β-strands each, by which they are distinguished. In addition, domain II has an α-helix lying on the β-strands. The sequence of amino acids composing the α-helix and preceding β-strand demonstrates an alternating pattern of hydrophobic residues that is characteristic of transmembrane domains forming β-barrel-made pores. These structural features imply that CPE is a β-pore-forming toxin. We also hypothesize that the transmembrane domain is inserted into the membrane upon the buckling of the two long β-strands spanning the module, a mechanism analogous to that of the cholesterol-dependent cytolysins.  相似文献   

2.
CD59 is a glycosylphosphatidylinositol-anchored protein that inhibits the assembly of the terminal complement membrane attack complex (MAC) pore, whereas Streptococcus intermedius intermedilysin (ILY), a pore forming cholesterol-dependent cytolysin (CDC), specifically binds to human CD59 (hCD59) to initiate the formation of its pore. The identification of the residues of ILY and hCD59 that form their binding interface revealed a remarkably deep correspondence between the hCD59 binding site for ILY and that for the MAC proteins C8α and C9. ILY disengages from hCD59 during the prepore to pore transition, suggesting that loss of this interaction is necessary to accommodate specific structural changes associated with this transition. Consistent with this scenario, mutants of hCD59 or ILY that increased the affinity of this interaction decreased the cytolytic activity by slowing the transition of the prepore to pore but not the assembly of the prepore oligomer. A signature motif was also identified in the hCD59 binding CDCs that revealed a new hCD59-binding member of the CDC family. Although the binding site on hCD59 for ILY, C8α, and C9 exhibits significant homology, no similarity exists in their binding sites for hCD59. Hence, ILY and the MAC proteins interact with common amino acids of hCD59 but lack detectable conservation in their binding sites for hCD59.  相似文献   

3.
Botulinum Neurotoxins (BoNTs) are organized into seven serotypes, A-G. Although several BoNT serotypes enter neurons through synaptic vesicle cycling utilizing dual receptors (a ganglioside and a synaptic vesicle-associated protein), the entry pathway of BoNT/D is less well understood. Although BoNT/D entry is ganglioside-dependent, alignment and structural studies show that BoNT/D lacks key residues within a conserved ganglioside binding pocket that are present in BoNT serotypes A, B, E, F, and G, which indicate that BoNT/D-ganglioside interactions may be unique. In this study BoNT/D is shown to have a unique association with ganglioside relative to the other BoNT serotypes, utilizing a ganglioside binding loop (GBL, residues Tyr-1235-Ala-1245) within the receptor binding domain of BoNT/D (HCR/D) via b-series gangliosides, including GT1b, GD1b, and GD2. HCR/D bound gangliosides and entered neurons dependent upon the aromatic ring of Phe-1240 within the GBL. This is the first BoNT-ganglioside interaction that is mediated by a phenylalanine. In contrast, Trp-1238, located near the N terminus of the ganglioside binding loop, was mostly solvent-inaccessible and appeared to contribute to maintaining the loop structure. BoNT/D entry and intoxication were enhanced by membrane depolarization via synaptic vesicle cycling, where HCR/D colocalized with synaptophysin, a synaptic vesicle marker, but immunoprecipitation experiments did not detect direct association with synaptic vesicle protein 2. Thus, BoNT/D utilizes unique associations with gangliosides and synaptic vesicles to enter neurons, which may facilitate new neurotoxin therapies.  相似文献   

4.
Bacterial genomes encode a collection of small peptides that are deleterious to their hosts when overexpressed. The physiological relevance of the majority of these peptides is unknown at present, although many of them have been implicated in regulatory processes important for cell survival and adaptability. One peptide that is of particular interest to us is a 19-amino acid proteic toxin, coined IbsC, whose production is repressed by SibC, an RNA antitoxin. Together, IbsC and SibC constitute a type I toxin-antitoxin (TA) pair. To better understand the function of IbsC and to decipher the sequence determinants for its toxic phenotype, we carried out extensive sequence analyses of the peptide. We generated a series of truncation and single amino acid deletion mutants to determine the minimal sequence required for toxicity. We further probed into functionally relevant amino acids with a comprehensive set of IbsC mutants produced using a systematic sequence randomization strategy. We found that IbsC remained toxic in the presence of multiple deletions and single amino acid substitutions, despite being well-conserved in Escherichia coli and across other Gram-negative bacteria. The toxicity of this peptide was determined to be dependent on a stretch of highly hydrophobic residues near its center. Our results defined sequence-function relationship of IbsC and offered additional insights into properties common to membrane-targeting type I toxins in E. coli and related species.  相似文献   

5.
Pathogenic bacteria acquire the essential element iron through specialized uptake pathways that are necessary in the iron-limiting environments of the host. Members of the Gram-negative Neisseriaceae and Pasteurellaceae families have adapted to acquire iron from the host iron binding glycoprotein, transferrin (Tf), through a receptor complex comprised of transferring-binding protein (Tbp) A and B. Because of the critical role they play in the host, these surface-exposed proteins are invariably present in clinical isolates and thus are considered prime vaccine targets. The specific interactions between TbpB and Tf are essential and ultimately might be exploited to create a broad-spectrum vaccine. In this study, we report the structure of TbpBs from two porcine pathogens, Actinobacillus pleuropneumoniae and suis. Paradoxically, despite a common Tf target, these swine related TbpBs show substantial sequence variation in their Tf-binding site. The TbpB structures, supported by docking simulations, surface plasmon resonance and hydrogen/deuterium exchange experiments with wild-type and mutant TbpBs, explain why there are structurally conserved elements within TbpB homologs despite major sequence variation that are required for binding Tf.  相似文献   

6.
Measles virus (MV), an enveloped RNA virus belonging to the Paramyxoviridae family, enters the cell through membrane fusion mediated by two viral envelope proteins, an attachment protein hemagglutinin (H) and a fusion (F) protein. The crystal structure of the receptor-binding head domain of MV-H bound to its cellular receptor revealed that the MV-H head domain forms a tetrameric assembly (dimer of dimers), which occurs in two forms (forms I and II). In this study, we show that mutations in the putative dimer-dimer interface of the head domain in either form inhibit the ability of MV-H to support membrane fusion, without greatly affecting its cell surface expression, receptor binding, and interaction with the F protein. Notably, some anti-MV-H neutralizing monoclonal antibodies are directed to the region around the dimer-dimer interface in form I rather than receptor-binding sites. These observations suggest that the dimer-dimer interactions of the MV-H head domain, especially that in form I, contribute to triggering membrane fusion, and that conformational shift of head domain tetramers plays a role in the process. Furthermore, our results indicate that although the stalk and transmembrane regions may be mainly responsible for the tetramer formation of MV-H, the head domain alone can form tetramers, albeit at a low efficiency.  相似文献   

7.
Maurocalcine has been the first demonstrated animal toxin acting as a cell-penetrating peptide. Although it possesses competitive advantages, its use as a cell-penetrating peptide (CPP) requires that analogues be developed that lack its characteristic pharmacological activity on ryanodine-sensitive calcium channels without affecting its cell-penetrating and vector efficiencies. Here, we present the synthesis, three-dimensional 1H NMR structure, and activity of d-maurocalcine. We demonstrate that it possesses all of the desired features for an excellent CPP: preserved structure, lack of pharmacological action, conserved vector properties, and absence of cell toxicity. This is the first report of a folded/oxidized animal toxin in its d-diastereomer conformation for use as a CPP. The protease resistance of this new peptide analogue, combined with its efficient cell penetration at concentrations devoid of cell toxicity, suggests that d-maurocalcine should be an excellent vector for in vivo applications.  相似文献   

8.
Eukaryotic membrane proteins generally reside in membrane bilayers that have lipid asymmetry. However, in vitro studies of the impact of lipids upon membrane proteins are generally carried out in model membrane vesicles that lack lipid asymmetry. Our recently developed method to prepare lipid vesicles with asymmetry similar to that in plasma membranes and with controlled amounts of cholesterol was used to investigate the influence of lipid composition and lipid asymmetry upon the conformational behavior of the pore-forming, cholesterol-dependent cytolysin perfringolysin O (PFO). PFO conformational behavior in asymmetric vesicles was found to be distinct both from that in symmetric vesicles with the same lipid composition as the asymmetric vesicles and from that in vesicles containing either only the inner leaflet lipids from the asymmetric vesicles or only the outer leaflet lipids from the asymmetric vesicles. The presence of phosphatidylcholine in the outer leaflet increased the cholesterol concentration required to induce PFO binding, whereas phosphatidylethanolamine and phosphatidylserine in the inner leaflet of asymmetric vesicles stabilized the formation of a novel deeply inserted conformation that does not form pores, even though it contains transmembrane segments. This conformation may represent an important intermediate stage in PFO pore formation. These studies show that lipid asymmetry can strongly influence the behavior of membrane-inserted proteins.  相似文献   

9.
The glucagon receptor belongs to the B family of G-protein coupled receptors. Little structural information is available about this receptor and its association with glucagon. We used the substituted cysteine accessibility method and three-dimensional molecular modeling based on the gastrointestinal insulinotropic peptide and glucagon-like peptide 1 receptor structures to study the N-terminal domain of this receptor, a central element for ligand binding and specificity. Our results showed that Asp63, Arg116, and Lys98 are essential for the receptor structure and/or ligand binding because mutations of these three residues completely disrupted or markedly impaired the receptor function. In agreement with these data, our models revealed that Asp63 and Arg116 form a salt bridge, whereas Lys98 is engaged in cation-π interactions with the conserved tryptophans 68 and 106. The native receptor could not be labeled by hydrophilic cysteine biotinylation reagents, but treatment of intact cells with [2-(trimethylammonium)ethyl]methanethiosulfonate increased the glucagon binding site density. This result suggested that an unidentified protein with at least one free cysteine associated with the receptor prevented glucagon recognition and that [2-(trimethylammonium)ethyl]methanethiosulfonate treatment relieved this inhibition. The substituted cysteine accessibility method was also performed on 15 residues selected using the three-dimensional models. Several receptor mutants, despite a relatively high predicted cysteine accessibility, could not be labeled by specific reagents. The three-dimensional models show that these mutated residues are located on one face of the protein. This could be part of the interface between the receptor and the unidentified inhibitory protein, making these residues inaccessible to biotinylation compounds.  相似文献   

10.
Ricin is a highly toxic protein produced by the castor plant Ricinus communis. The toxin is relatively easy to isolate and can be used as a biological weapon. There is great interest in identifying effective inhibitors for ricin. In this study, we demonstrated by three independent assays that a component of reconstituted powdered milk has a high binding affinity to ricin. We discovered that milk can competitively bind to and reduce the amount of toxin available to asialofetuin type II, which is used as a model to study the binding of ricin to galactose cell-surface receptors. Milk also removes ricin bound to the microtiter plate. In parallel experiments, we demonstrated by activity assay and by immuno-PCR that milk can bind competitively to 1 ng/ml ricin, reducing the amount of toxin uptake by the cells, and thus inhibit the biological activity of ricin. The inhibitory effect of milk on ricin activity in Vero cells was at the same level as by anti-ricin antibodies. We also found that (a) milk did not inhibit ricin at concentrations of 10 or 100 ng/ml; (b) autoclaving 10 and 100 ng/ml ricin in DMEM at 121 °C for 30 min completely abolished activity; and (c) milk did not affect the activity of another ribosome inactivating protein, Shiga toxin type 2 (Stx2), produced by pathogenic Escherichia coli O157:H7. Unlike ricin, which is internalized into the cells via a galactose-binding site, Stx2 is internalized through the cell surface receptor glycolipid globotriasylceramides Gb3 and Gb4. These observations suggest that ricin toxicity may possibly be reduced at room temperature by a widely consumed natural liquid food.  相似文献   

11.
Toxin complexes from Xenorhabdus and Photorhabdus spp. bacteria represent novel insecticidal proteins. We purified a native toxin complex (toxin complex 1) from Xenorhabdus nematophilus. The toxin complex is composed of three different proteins, XptA2, XptB1, and XptC1, representing products from class A, B, and C toxin complex genes, respectively. We showed that recombinant XptA2 and co-produced recombinant XptB1 and XptC1 bind together with a 4:1:1 stoichiometry. XptA2 forms a tetramer of ~1,120 kDa that bound to solubilized insect brush border membranes and induced pore formation in black lipid membranes. Co-expressed XptB1 and XptC1 form a tight 1:1 binary complex where XptC1 is C-terminally truncated, resulting in a 77-kDa protein. The ~30-kDa C-terminally cleaved portion of XptC1 apparently only loosely associates with this binary complex. XptA2 had only modest oral toxicity against lepidopteran insects but as a complex with co-produced XptB1 and XptC1 had high levels of insecticidal activity. Addition of co-expressed class B (TcdB2) and class C (TccC3) proteins from Photorhabdus luminescens to the Xenorhabdus XptA2 protein resulted in formation of a hybrid toxin complex protein with the same 4:1:1 stoichiometry as the native Xenorhabdus toxin complex 1. This hybrid toxin complex, like the native toxin complex, was highly active against insects.  相似文献   

12.
Endospanin-1 is a negative regulator of the cell surface expression of leptin receptor (OB-R), and endospanin-2 is a homologue of unknown function. We investigated the mechanism for endospanin-1 action in regulating OB-R cell surface expression. Here we show that endospanin-1 and -2 are small integral membrane proteins that localize in endosomes and the trans-Golgi network. Antibody uptake experiments showed that both endospanins are transported to the plasma membrane and then internalized into early endosomes but do not recycle back to the trans-Golgi network. Overexpression of endospanin-1 or endospanin-2 led to a decrease of OB-R cell surface expression, whereas shRNA-mediated depletion of each protein increased OB-R cell surface expression. This increased cell surface expression was not observed with OB-Ra mutants defective in endocytosis or with transferrin and EGF receptors. Endospanin-1 or endospanin-2 depletion did not change the internalization rate of OB-Ra but slowed down its lysosomal degradation. Thus, both endospanins are regulators of postinternalization membrane traffic of the endocytic pathway of OB-R.  相似文献   

13.
Several conserved domains critical for E1E2 assembly and hepatitis C virus entry have been identified in E1 and E2 envelope glycoproteins. However, the role of less conserved domains involved in cross-talk between either glycoprotein must be defined to fully understand how E1E2 undergoes conformational changes during cell entry. To characterize such domains and to identify their functional partners, we analyzed a set of intergenotypic E1E2 heterodimers derived from E1 and E2 of different genotypes. The infectivity of virions indicated that Con1 E1 did not form functional heterodimers when associated with E2 from H77. Biochemical analyses demonstrated that the reduced infectivity was not related to alteration of conformation and incorporation of Con1 E1/H77 E2 heterodimers but rather to cell entry defects. Thus, we generated chimeric E1E2 glycoproteins by exchanging different domains of each protein in order to restore functional heterodimers. We found that both the ectodomain and transmembrane domain of E1 influenced infectivity. Site-directed mutagenesis highlighted the role of amino acids 359, 373, and 375 in transmembrane domain in entry. In addition, we identified one domain involved in entry within the N-terminal part of E1, and we isolated a motif at position 219 that is critical for H77 function. Interestingly, using additional chimeric E1E2 complexes harboring substitutions in this motif, we found that the transmembrane domain of E1 acts as a partner of this motif. Therefore, we characterized domains of E1 and E2 that have co-evolved inside a given genotype to optimize their interactions and allow efficient entry.  相似文献   

14.
To understand how YidC and SecYEG function together in membrane protein topogenesis, insertion and folding of the lactose permease of Escherichia coli (LacY), a 12-transmembrane helix protein LacY that catalyzes symport of a galactoside and an H+, was studied. Although both the SecYEG machinery and signal recognition particle are required for insertion of LacY into the membrane, YidC is not required for translocation of the six periplasmic loops in LacY. Rather, YidC acts as a chaperone, facilitating LacY folding. Upon YidC depletion, the conformation of LacY is perturbed, as judged by monoclonal antibody binding studies and by in vivo cross-linking between introduced Cys pairs. Disulfide cross-linking also demonstrates that YidC interacts with multiple transmembrane segments of LacY during membrane biogenesis. Moreover, YidC is strictly required for insertion of M13 procoat protein fused into the middle cytoplasmic loop of LacY. In contrast, the loops preceding and following the inserted procoat domain are dependent on SecYEG for insertion. These studies demonstrate close cooperation between the two complexes in membrane biogenesis and that YidC functions primarily as a foldase for LacY.  相似文献   

15.
苏云金芽孢杆菌(Bt)微生物制剂是农业、林业和饮用水等领域用来控制靶标害虫幼虫的有效工具,至今已经有50余年的使用历史。同时其在美国、欧洲和其他一些国家被广泛用于经过认证的有机农业生产之中。目前已获审批的转基因Bt作物中最常使用的是Cry蛋白。Cry蛋白的作用机制、食品安全性以及致敏性已经经过啮齿类动物、农场动物和人体内试验和生物信息学研究的严格检验。Cry蛋白的杀虫作用只在靶标害虫的碱性消化道内,与中肠上皮细胞的特异蛋白受体结合才能起到杀虫作用,而其他非靶标生物体内(人类、猕猴、小鼠、大鼠和牛等)都被证明没有这种特异蛋白质受体。美国、欧洲和其他国家的管理机构都已经证实了转基因Bt作物和Cry蛋白在农作物和饮用水中残留的安全性。食物加工过程能够最大化地减少转基因作物中功能性Cry蛋白的摄入。转基因抗虫作物有利于降低农药杀虫剂的使用的同时,也能够有效防止玉米中伏马菌毒素的污染。  相似文献   

16.
Superantigens (SAgs) are bacterial or viral toxins that bind MHC class II (MHC-II) molecules and T-cell receptor (TCR) in a nonconventional manner, inducing T-cell activation that leads to inflammatory cytokine production, which may result in acute toxic shock. In addition, the emerging threat of purpura fulminans and community-associated meticillin-resistant Staphylococcus aureus emphasizes the importance of a better characterization of SAg binding to their natural ligands that may allow the development of reagents to neutralize their action. The three-dimensional structure of the complex between a mouse TCR β chain (mVβ8.2) and staphylococcal enterotoxin G (SEG) at 2.0 Å resolution revealed a binding site that does not conserve the “hot spots” present in mVβ8.2-SEC2, mVβ8.2-SEC3, mVβ8.2-SEB, and mVβ8.2-SPEA complexes. Analysis of the mVβ8.2-SEG interface allowed us to explain the higher affinity of this complex compared with the others, which may account for the early activation of T-cells bearing mVβ8.2 by SEG. This mode of interaction between SEG and mVβ8.2 could be an adaptive advantage to bestow on the pathogen a faster rate of colonization of the host.  相似文献   

17.
In prototypic Escherichia coli K-12 the introduction of disulfide bonds into folding proteins is mediated by the Dsb family of enzymes, primarily through the actions of the highly oxidizing protein EcDsbA. Homologues of the Dsb catalysts are found in most bacteria. Interestingly, pathogens have developed distinct Dsb machineries that play a pivotal role in the biogenesis of virulence factors, hence contributing to their pathogenicity. Salmonella enterica serovar (sv.) Typhimurium encodes an extended number of sulfhydryl oxidases, namely SeDsbA, SeDsbL, and SeSrgA. Here we report a comprehensive analysis of the sv. Typhimurium thiol oxidative system through the structural and functional characterization of the three Salmonella DsbA paralogues. The three proteins share low sequence identity, which results in several unique three-dimensional characteristics, principally in areas involved in substrate binding and disulfide catalysis. Furthermore, the Salmonella DsbA-like proteins also have different redox properties. Whereas functional characterization revealed some degree of redundancy, the properties of SeDsbA, SeDsbL, and SeSrgA and their expression pattern in sv. Typhimurium indicate a diverse role for these enzymes in virulence.  相似文献   

18.
Pasteurella multocida toxin (PMT) is a virulence factor responsible for the pathogenesis of some forms of pasteurellosis. The toxin activates Gq- and G12/13-dependent pathways through the deamidation of a glutamine residue in the α-subunit of heterotrimeric GTPases. We recently reported the crystal structure of the C terminus (residues 575–1285) of PMT (C-PMT), which is composed of three domains (C1, C2, and C3), and that the C1 domain is involved in the localization of C-PMT to the plasma membrane, and the C3 domain possesses a cysteine protease-like catalytic triad. In this study, we analyzed the membrane-targeting function of the C1 domain in detail. The C1 domain consists of seven helices of which the first four (residues 590–670), showing structural similarity to the N terminus of Clostridium difficile toxin B, were found to be involved in the recruitment of C-PMT to the plasma membrane. C-PMT lacking these helices (C-PMT ΔC1(4H)) neither localized to the plasma membrane nor stimulated the Gq/12/13-dependent signaling pathways. When the membrane-targeting property was complemented by a peptide tag with an N-myristoylation motif, C-PMT ΔC1(4H) recovered the PMT activity. Direct binding between the C1 domain and liposomes containing phospholipids was evidenced by surface plasmon resonance analyses. These results indicate that the C1 domain of C-PMT functions as a targeting signal for the plasma membrane.  相似文献   

19.
【目的】苏云金芽胞杆菌LM1212与传统Bt相比,芽胞和晶体形成产生了分化,研究目的是明确质粒缺失对LM1212菌株细胞分化的影响。【方法】采用高温法对含有cry35-like基因启动子与lac Z基因融合质粒的LM(p35'Z)菌株进行内源大质粒缺失。在含X-gal的HCO平板培养初步筛选缺失突变株,进一步提取野生型及突变株的质粒进行脉冲场凝胶电泳分析,并用cry基因引物进行鉴定、激光共聚焦扫描显微镜和光学显微镜观察、芽胞形成率分析及利用SDS-PAGE和LC-MS/MS(Q-TOF)质谱分析质粒缺失对LM1212细胞分化和Cry蛋白表达的影响。【结果】筛选得到两株质粒缺失突变株LM(p35'Z)-W菌株和LM(p35'Z)-DB菌株,在含X-gal的HCO平板上,LM(p35'Z)-W菌株菌落颜色为白色,LM(p35'Z)-DB菌株菌落颜色为深蓝色,说明cry35-like基因启动子活性在这两株菌中受到影响;细胞形态观察发现LM(p35'Z)-DB菌株形成更多晶体产生细胞,LM(p35'Z)-W菌株形成更少晶体产生细胞。SDS-PAGE结果表明LM(p35'Z)-DB菌株Cry蛋白表达量提高,LM(p35'Z)-W菌株Cry蛋白表达量减少。【结论】LM1212质粒缺失可以影响细胞分化和晶体蛋白产量,此发现为深入解析LM1212细胞分化的调控机制和Bt菌株的遗传改良奠定了基础。  相似文献   

20.
The glial transporter excitatory amino acid transporter-2 (EAAT2) is the main mediator of glutamate clearance in brain. The wild-type transporter (EAAT2wt) forms trimeric membrane complexes in which each protomer functions autonomously. Several EAAT2 variants are found in control and Alzheimer-diseased human brains; their expression increases with pathological severity. These variants might alter EAAT2wt-mediated transport by abrogating membrane trafficking, or by changing the configuration or functionality of the assembled transporter complex. HEK293 cells were transfected with EAAT2wt; EAAT2b, a C-terminal variant; or either of two exon-skipping variants: alone or in combination. Surface biotinylation studies showed that only the exon-7 deletion variant was not trafficked to the membrane when transfected alone, and that all variants could reach the membrane when co-transfected with EAAT2wt. Fluorescence resonance energy transfer (FRET) studies showed that co-transfected EAAT2wt and EAAT2 splice variants were expressed in close proximity. Glutamate transporter function was measured using a whole cell patch clamp technique, or by changes in membrane potential indexed by a voltage-sensitive fluorescent dye (FMP assay): the two methods gave comparable results. Cells transfected with EAAT2wt or EAAT2b showed glutamate-dependent membrane potential changes consistent with functional expression. Cells transfected with EAAT2 exon-skipping variants alone gave no response to glutamate. Co-transfection of EAAT2wt (or EAAT2b) and splice variants in various ratios significantly raised glutamate EC50 and decreased Hill coefficients. We conclude that exon-skipping variants form heteromeric complexes with EAAT2wt or EAAT2b that traffic to the membrane but show reduced glutamate-dependent activity. This could allow glutamate to accumulate extracellularly and promote excitotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号