首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thyrotropin-releasing hormone stimulates the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) in GH3 cell membranes. The stimulation of the phosphoinositide phospholipase C (PI/PLC) activity can be blocked by incubation of GH3 membranes with polyclonal antibodies directed against a peptide derived from the C-terminal region of G alpha q and G alpha 11. Antibodies directed against the C-terminal region of other G alpha-subunits had no detectable effect. The inhibition was specific since addition of the peptide that was used to prepare the antibody completely reversed the inhibition. Further evidence for the coupling of the TRH receptor to G alpha q or G alpha 11 comes from a reconstitution experiment in which human embryonic kidney cells were transiently transfected with cDNAs corresponding to the TRH receptor, G alpha q or G alpha 11. The PIP2 hydrolysis detected with membranes from cells that over-expressed the TRH receptor alone was low, however, co-expression with the G alpha q or G alpha 11 subunits produced a synergistic stimulation of PI-PLC activity. In contrast, co-expression of these alpha-subunits with the M2 muscarinic acetylcholine receptor induced a weak stimulation of PIP2 hydrolysis. The results presented here suggest that the TRH-dependent stimulation of PI-PLC in GH3 cells is mediated through the G-protein alpha-subunits, G alpha q and/or G alpha 11.  相似文献   

2.
The thyrotropin-releasing hormone (TRH) receptor was expressed in embryonic fibroblasts from mice lacking the alpha subunits of Gq and G11 (Fq/11 cells) to determine whether G protein coupling is necessary for agonist-dependent receptor internalization. Neither TRH nor agonists acting on endogenous receptors increased intracellular calcium unless the cells were co-transfected with the alpha subunit of Gq. In contrast, temperature-dependent internalization of [3H]MeTRH in Fq/11 cells was the same whether Gqalpha was expressed or not. A rhodamine-labeled TRH analog and fluorescein-labeled transferrin co-localized in endocytic vesicles in Fq/11 cells, indicating that endocytosis took place via the normal clathrin pathway. Cotransfection with beta-arrestin or V53D beta-arrestin increased TRH-dependent receptor sequestration. Fq/11 cells were co-transfected with the TRH receptor and a green fluorescent protein (GFP)-beta-arrestin conjugate. GFP-beta-arrestin was uniformly distributed in the cytoplasm of untreated cells and quickly translocated to the periphery of the cells when TRH was added. A truncated TRH receptor that lacks potential phosphorylation sites in the cytoplasmic carboxyl terminus signaled but did not internalize or cause membrane localization of GFP-beta-arrestin. These results prove that calcium signaling by the TRH receptor requires coupling to a G protein in the Gq family, but TRH-dependent binding of beta-arrestin and sequestration do not.  相似文献   

3.
The hypothalamic hormone gonadotropin-releasing hormone (GnRH) stimulates the synthesis and release of the pituitary gonadotropins. GnRH acts through a plasma membrane receptor that is a member of the G protein-coupled receptor (GPCR) family. These receptors interact with heterotrimeric G proteins to initiate downstream signaling. In this study, we have investigated which G proteins are involved in GnRH receptor-mediated signaling in L beta T2 pituitary gonadotrope cells. We have shown previously that GnRH activates ERK and induces the c-fos and LH beta genes in these cells. Signaling via the G(i) subfamily of G proteins was excluded, as neither ERK activation nor c-Fos and LH beta induction was impaired by treatment with pertussis toxin or a cell-permeable peptide that sequesters G beta gamma-subunits. GnRH signaling was partially mimicked by adenoviral expression of a constitutively active mutant of G alpha(q) (Q209L) and was blocked by a cell-permeable peptide that uncouples G alpha(q) from GPCRs. Furthermore, chronic activation of G alpha(q) signaling induced a state of GnRH resistance. A cell-permeable peptide that uncouples G alpha(s) from receptors was also able to inhibit ERK, c-Fos, and LH beta, indicating that both G(q/11) and G(s) proteins are involved in signaling. Consistent with this, GnRH caused GTP loading on G(s) and G(q/11) and increased intracellular cAMP. Artificial elevation of cAMP with forskolin activated ERK and caused a partial induction of c-Fos. Finally, treatment of G alpha(q) (Q209L)-infected cells with forskolin enhanced the induction of c-Fos showing that the two pathways are independent and additive. Taken together, these results indicate that the GnRH receptor activates both G(q) and G(s) signaling to regulate gene expression in L beta T2 cells.  相似文献   

4.
B Kühn  T Gudermann 《Biochemistry》1999,38(38):12490-12498
Binding of lutropin/choriogonadotropin (LH/CG) to its cognate receptor results in the activation of adenylyl cyclase and phospholipase C. This divergent signaling of the LH receptor is based on the independent activation of distinct G protein subfamilies, i.e. , Gs, Gi, and potentially also Gq. To examine the selectivity of LH receptor coupling to phospholipase C beta-activating G proteins, we used an in vivo reconstitution system based on the coexpression of the LH receptor and different G proteins in baculovirus-infected insect cells. In this paper, we describe a refined expression strategy for the LH receptor in insect cells. The receptor protein was inserted into the cell membrane at an expression level of 0.8 pmol/mg of membrane protein. Sf9 cells expressing the LH receptor responded to hCG challenge with a concentration-dependent accumulation of intracellular cAMP (EC50 = 630 nM) but not of inositol phosphates, whereas stimulation of the histamine H1 receptor in Sf9 cells led to increased phospholipase C (PLC) activity. Immunoblotting experiments using G protein-specific antisera revealed the absence of quantitative amounts of alpha i in Sf9 cells, whereas alpha s and alpha q/11 were detected. We therefore attempted to restore the hCG-dependent PLC activation by infection of Sf9 cells with viruses encoding the LH receptor and different G protein alpha subunits. HCG stimulation of cells coexpressing the LH receptor and exogenous alpha i2 resulted in stimulation of PLC activity. In cells coinfected with an alpha i3-baculovirus, hCG challenge led to a minor activation of PLC, whereas no hCG-dependent PLC stimulation was observed in cells coexpressing alpha i1. Most notably, coinfection with baculoviruses encoding alpha q or alpha 11 did not reproduce the PLC activation by the LH receptor. Thus, the murine LH receptor activates adenylyl cyclase via Gs and PLC via selective coupling to Gi2.  相似文献   

5.
6.
Chronic GnRH treatment causes homologous desensitization by reducing GnRH receptor and Gq/11 expression and by down-regulating protein kinase C (PKC), cAMP, and calcium-dependent signaling. It also causes heterologous desensitization of other Gq-coupled receptors, but the mechanisms involved remain elusive. In this study, we investigated the effect of constitutive activation of Gq signaling on GnRH-induced signaling and LH secretion. We show that adenoviral expression of a constitutively active mutant Gq(Q209L) results in a state of GnRH resistance but does not alter GnRH receptor expression. We observed that Gq(Q209L) reduced expression of phospholipase C (PLC)beta1, a target of Gq in these cells, but not PLCbeta3 or PLCgamma1. Downstream of PLCbeta1, expression of novel PKC isoforms (delta and epsilon) was reduced. Adenoviral expression of a kinase-inactive, dominant-negative version of PKCdelta impaired GnRH activation of ERK, but not induction of c-Fos and LHbeta proteins, indicating that the novel PKCs signal to the ERK cascade. Despite reductions in PLCbeta1, calcium responses to GnRH were elevated in Gq(Q209L)-infected cells due to increased calcium influx through L-type calcium channels. Paradoxically, downstream calcium-dependent signaling and LH secretion were impaired. Taken together, these data demonstrate that prolonged activation of the Gq pathway desensitizes GnRH-induced signaling by selectively down-regulating the PLC-PKC-Ca2+ pathway, leading to reduced LHbeta synthesis and LH secretion.  相似文献   

7.
G proteins of the Gq/11 subfamily functionally couple cell surface receptors to phospholipase C beta (PLC beta) isoforms. Stimulation of PLC beta induces Ca2+ elevation by inositol 1,4,5-trisphosphate (InsP3)-mediated Ca2+ release and store-dependent 'capacitative' Ca2+ entry through Ca(2+)-permeable channels. The Drosophila trp gene, as well as some human trp homologs, code for such store-operated channels. The related trp-like (trpl) gene product also forms a Ca(2+)-permeable cation channel, but is not activated by store depletion. Co-expression of the constitutively active Gq subfamily member G alpha 11 (G alpha 11) with trpl enhanced trpl currents 33-fold in comparison with co-expression of trpl with other G alpha isoforms or G beta gamma complexes. This activation could not be attributed to signals downstream of PLC beta. In particular, InsP3 infusion, modulation of protein kinase C activity or elevation of intracellular calcium concentration failed to induce trpl currents. In contrast, purified G alpha 11 (but not other G protein subunits) activated trpl channels in inside-out patches. We conclude that trpl is regulated by G11 proteins in a membrane-confined manner not involving cytosolic factors. Thus, G proteins of the Gq subfamily may induce Ca2+ entry not only indirectly via store-operated mechanisms but also by directly stimulating cation channels.  相似文献   

8.
9.
In rat pituitary GH3 cells, thyrotropin-releasing hormone (TRH) down-regulates TRH receptor (TRH-R) mRNA (Fujimoto, J., Straub, R.E., and Gershengorn, M.C. (1991) Mol. Endocrinol. 5, 1527-1532), at least in part, by stimulating its degradation (Fujimoto, J., Narayanan, C.S., Benjamin, J.E., Heinflink, M., and Gershengorn, M.C. (1992) Endocrinology 130, 1879-1884). Here we show that TRH regulates RNase activity in GH3 cells and that specific mRNA sequences are needed for in vivo regulation of TRH-R mRNA by TRH. TRH affected RNase activity in a biphasic manner with rapid stimulation (by 10 min) followed by a decrease to a rate slower than in control lysates within 6 h. This time course paralleled the effects of TRH on degradation of TRH-R mRNA in vivo. The regulated RNase activity was in a polysome-free fraction of the lysates and was not specific for TRH-R RNA. A truncated form of TRH-R RNA that was missing the entire 3'-untranslated region (TRHR-R5) was more stable than full-length TRH-R RNA (TRHR-WT). In contrast to TRHR-WT mRNA, TRHR-R5 mRNA and TRHR-D9 mRNA, which was missing the 143 nucleotides 5' of the poly(A) tail, were not down-regulated by TRH in stably transfected GH3 cells as their rates of degradation were not increased. These data show that TRH regulates RNase activity in GH3 cells, that the 3'-untranslated region bestows decreased stability on TRH-R mRNA and that the 3' end of the mRNA is necessary for regulation by TRH of TRH-R mRNA degradation. We present an hypothesis that explains specific regulation of TRH-R mRNA degradation by TRH in GH3 pituitary cells.  相似文献   

10.
In order to investigate the molecular mechanism(s) by which TRH regulates the biosynthesis of TSH, we are studying the effects of TRH on the expression of the TSH subunit genes (alpha and TSH beta). To study the structure-function relation of TRH stimulation of the activity of the single rat TSH beta gene, chimaeric plasmids were constructed. The 5'-flanking region of the rat TSH beta gene including exon 1 (5'-untranslated region) was inserted into a promoterless, modified pBR, chloramphenicol acetyltransferase (CAT) expression vector. After transfection, specific TSH beta promoter activity was evident in both TRH-responsive pituitary-derived GH3 and primary pituitary cell cultures. To determine potential regulation of TSH beta promoter-directed activity in these cells by TRH, cells were incubated with media containing TRH (10(-7) to 10(-11) M) for 1 to 48 h. TRH stimulated a 1.5- to 3-fold increase in TSH beta promoter activity. Concomitant with an increase in CAT activity was an anticipated increase in PRL synthesis in the GH3 cells in response to TRH. The TRH effect on the TSH beta gene was specific; no increase in CAT activity was detected for TKCAT (thymidine kinase of herpes simplex virus promoter), pBRCAT (no promoter), or TSH beta CAT (3'-5'-orientation). Similar results were obtained using primary pituitary cell cultures. Deletion mutation analysis indicated that TRH sensitivity was detected in a 1.1 kilobase, but not in a 0.38 kilobase TSH beta gene fragment suggesting that the TRH responsive element(s) resides at least in part within the 700 base pairs of the 5'-flanking sequence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
Different peptide hormones influence hormone secretion in pituitary cells by diverse second messenger systems. Recent data indicate that luteinizing-hormone-releasing hormone (LHRH) stimulates and somatostatin inhibits voltage-dependent Ca2+ channels of GH3 cells via pertussis-toxin-sensitive mechanisms [Rosenthal et al. (1988) EMBO J. 7, 1627-1633]. In other pituitary cell lines, somatostatin has been shown to cause a pertussis-toxin-sensitive decrease in adenylate cyclase activity, and LHRH and thyrotropin-releasing hormone (TRH) stimulate phosphoinositol lipid hydrolysis in a pertussis-toxin-independent manner. Whether stimulation of Ca2+ influx by TRH is affected by pertussis toxin is not known. In order to elucidate which of the hormone receptors interact with pertussis-toxin-sensitive and -insensitive G-proteins, we measured the effects of LHRH, somatostatin and TRH on high-affinity GTPases in membranes of GH3 cells. In control membranes, both LHRH and TRH stimulated the high-affinity GTPase by 20%, somatostatin by 25%. Maximal hormone effects were observed at a concentration of about 1 microM. Pretreatment of cells with pertussis toxin abolished pertussis-toxin-catalyzed [32P]ADP-ribosylation of 39-40-kDa proteins in subsequently prepared membranes and reduced basal GTPase activity. The toxin also reduced by more than half the increases in GTPase activity induced by LHRH and TRH; stimulation of GTPase by somatostatin was completely suppressed. Stimulation of adenylate cyclase by vasoactive intestinal peptide (VIP) was not impaired by pretreatment of cells with pertussis toxin. Somatostatin but not LHRH and TRH decreased forskolin-stimulated adenylate cyclase activity. The results suggest that the activated receptors for LHRH and TRH act via pertussis-toxin-sensitive and -insensitive G-proteins, whereas effects of somatostatin are exclusively mediated by pertussis-toxin-sensitive G-proteins.  相似文献   

13.
The effect of vasoactive intestinal peptide (VIP) on prolactin (PRL) secretion from pituitary cells is reviewed and compared to the effect of thyrotropin releasing hormone (TRH). These two peptides induced different secretion profiles from parafused lactotrophs in culture. TRH was found to increase PRL secretion within 4 s and induced a biphasic secretion pattern, while VIP induced a monophasic secretion pattern after a lag time of 45–60 s.The secretion profiles are compared to changes in adenylate cyclase activity, production of inositol polyphosphates, changes in intracellular calcium concentrations and changes in electrophysiological properties of the cell membrane.Abbreviations AC adenylate cyclase - DG diacyglycerol - GH growth hormone - GTP guanosine trisphosphate - Gi GTP binding proteins that mediate inhibition of adenylate cyclase and that are pertussis toxin sensitive - Gs GTP binding protein that mediates stimulation of adenylate cyclase - GH cells clonal rat pituitary tumor cells producing PRL and/or growth hormone - GH3 GH4C1 and GH4B6 subclones of GH cells - PKA protein kinase A - PKC protein kinase C - PLC phospholipase C - PRL prolactin - TPA 12-O-tetradecanoyl phorbol 13-acetate - TRH thyrotropin releasing hormone - VIP vasoactive intestinal peptide  相似文献   

14.
15.
We recently derived a GnRH-responsive pituitary cell line of the gonadotrope lineage (alpha T3-1) by targeted oncogenesis in transgenic mice. Here, we report studies characterizing the GnRH receptors present in these cells and the intracellular responses to GnRH treatment. The receptors in alpha T3-1 cells show specificity for different GnRH analogs, with dissociation constants very similar to those found in normal rat and mouse pituitary. The concentration of receptors is within the range found in normal pituitary. The addition of GnRH or GnRH agonists increases phosphoinositide turnover and protein kinase-C translocation to membranes, and enhances activation of voltage-sensitive calcium channels. However, GnRH does not affect cAMP levels. Analysis of alpha-subunit mRNA levels demonstrated induction by GnRH and phorbol esters. Our results indicate that GnRH initiates a cascade of intracellular events that generate a set of second messengers, one or more of which is involved in the regulation of gene expression. The responses of alpha T3-1 cells to GnRH appear to have characteristics equivalent to those of primary pituitary gonadotropes, indicating the utility of this cell line as a model system for the study of GnRH responses.  相似文献   

16.
We previously reported that calcitriol [1,25(OH)2-vitamin D3] in rat skeletal muscle and duodenum stimulates the hydrolysis of polyphosphoinositides by phospholipase C (PLC), generating the second messengers inositol trisphosphate (IP3) and diacylglycerol (DAG), and that this mechanism is altered in old animals. As previously reported in muscle, we show in the present study that GTPgammaS (100 microM, 15 s), the non-hydrolyzable analogue of GTP, increased IP3 release from young rats duodenum to the same extent as 1 nM calcitriol (+ 100%), while GDPbetaS (100 microM) suppressed hormone-dependent IP3 production. Similarly to calcitriol, GTPgammaS response was diminished in old rats. Contrary to muscle, pretreatment with Bordetella pertussis toxin did not modify calcitriol-dependent IP3 in duodenum. The antibody, anti-G alpha q/11 (1:200) and anti-G alpha i (1:200) blocked calcitriol-dependent IP3 release in muscle from young rats, indicating that the hormone activates an isoform of PLC coupled to the alpha subunit of Gq/11 and possibly the betagamma subunits of Gi. The aged muscle was insensitive to anti G alpha i. In rat duodenum the hormone effects were suppressed by anti-Gq/11 both in young and aged animals. In 24-month-old rats, Gq/11 and Gi protein levels were greatly reduced both in muscle and duodenum, suggesting that a deficiency in G protein expression with aging may have important consequences for correct receptor/effector coupling and could explain age-related declines in the function of second messenger systems linked to G-proteins.  相似文献   

17.
So WK  Cheng JC  Poon SL  Leung PC 《The FEBS journal》2008,275(22):5496-5511
The hypothalamic decapeptide gonadotropin-releasing hormone (GnRH) is well known for its role in the control of pituitary gonadotropin secretion, but the hormone and receptor are also expressed in extrapituitary tissues and tumor cells, including epithelial ovarian cancers. It is hypothesized that they may function as a local autocrine regulatory system in nonpituitary contexts. Numerous studies have demonstrated a direct antiproliferative effect on ovarian cancer cell lines of GnRH and its synthetic analogs. This effect appears to be attributable to multiple steps in the GnRH signaling cascade, such as cell cycle arrest at G(0)/G(1). In contrast to GnRH signaling in pituitary gonadotropes, the involvement of G(alpha q), protein kinase C and mitogen-activated protein kinases is less apparent in neoplastic cells. Instead, in ovarian cancer cells, GnRH receptors appear to couple to the pertussis toxin-sensitive protein G(alpha i), leading to the activation of protein phosphatase, which in turn interferes with growth factor-induced mitogenic signals. Apoptotic involvement is still controversial, although GnRH analogs have been shown to protect cancer cells from doxorubicin-induced apoptosis. Recently, data supporting a regulatory role of GnRH analogs in ovarian cancer cell migration/invasion have started to emerge. In this minireview, we summarize the current understanding of the antiproliferative actions of GnRH analogs, as well as the recent observations of GnRH effects on ovarian cancer cell apoptosis and motogenesis. The molecular mechanisms that mediate GnRH actions and the clinical applications of GnRH analogs in ovarian cancer patients are also discussed.  相似文献   

18.
Metabotropic receptors coupled to Gq/G11 family G proteins critically contribute to nervous system functions by modulating synaptic transmission, often facilitating excitation. We investigated the role of Gq/G11 family G proteins in the regulation of neuronal excitability in mice that selectively lack the alpha-subunits of Gq and G11, G alpha q and G alpha 11, respectively, in forebrain principal neurons. Surprisingly, mutant mice exhibited increased seizure susceptibility, and the activation of neuroprotective mechanisms was impaired. We found that endocannabinoid levels were reduced under both basal and excitotoxic conditions and that increased susceptibility to kainic acid could be normalized by the enhancement of endocannabinoid levels with an endocannabinoid reuptake inhibitor, while the competitive cannabinoid type 1 receptor antagonist SR141716A did not cause further aggravation. These findings indicate that Gq/G11 family G proteins negatively regulate neuronal excitability in vivo and suggest that impaired endocannabinoid formation in the absence of Gq/G11 contributes to this phenotype.  相似文献   

19.
TRH receptors have been solubilized from GH4C1 cells using the plant glycoside digitonin. Solubilized receptors retain the principal binding characteristics exhibited by the TRH receptor in intact pituitary cells and their membranes. The binding of the methylhistidyl derivative of TRH [( 3H]MeTRH) attained equilibrium within 2-3 h at 4 C, and it was reversible, dissociating with a t1/2 of 7 h. Analysis of [3H]MeTRH binding to soluble receptors at 4 C yielded a dissociation constant (Kd) of 3.8 nM and a total binding capacity (Bmax) of 3.9 pmol/mg protein. Peptides known to interact with non-TRH receptors on GH cells failed to interfere with the binding of [3H]MeTRH, indicating that the TRH binding was specific. Chlordiazepoxide, a competitive antagonist for TRH action in GH cells, inhibited TRH binding to soluble receptors with an IC50 of 11 microM. When [3H]MeTRH was bound to membranes and the membrane proteins were then solubilized, we found enhanced dissociation of the prebound [3H]MeTRH from its solubilized receptor by guanyl nucleotides. Maximal enhancement of [3H]MeTRH dissociation by 10 microM GTP gamma S occurred within about 45 min at 22 C. GTP gamma S, GTP, GDP beta S, and GDP were all effectors of [3H]MeTRH dissociation, exhibiting EC50s in the range of 14-450 nM. The rank order of potency of the tested nucleotides was GTP gamma S greater than GTP congruent to GDP beta S greater than GDP much greater than ATP gamma S greater than GMP. We conclude that TRH receptors have been solubilized from GH cells with digitonin and retain the binding characteristics of TRH receptors in intact pituitary cells. Furthermore, prebinding [3H]MeTRH to GH4C1 cell membranes results in the solubilization of a complex in which the TRH receptor is linked functionally to a GTP binding protein.  相似文献   

20.
Heterotrimeric G proteins of the Gq/11 family transduce signals from a variety of neurotransmitter and hormone receptors and have therefore been implicated in various functions of the nervous system. Using the Cre/loxP system, we generated mice which lack the genes coding for the alpha subunits of the two main members of the Gq/11 family, gnaq and gna11, selectively in neuronal and glial precursor cells. Mice with defective gnaq and gna11 genes were morphologically normal, but they died shortly after birth. Mice carrying a single gna11 allele survived the early postnatal period but died within 3 to 6 weeks as anorectic dwarfs. In these mice, postnatal proliferation of pituitary somatotroph cells was strongly impaired, and plasma growth hormone (GH) levels were reduced to 15%. Hypothalamic levels of GH-releasing hormone (GHRH), an important stimulator of somatotroph proliferation, were strongly decreased, and exogenous administration of GHRH restored normal proliferation. The hypothalamic effects of ghrelin, a regulator of GHRH production and food intake, were reduced in these mice, suggesting that an impairment of ghrelin receptor signaling might contribute to GHRH deficiency and abnormal eating behavior. Taken together, our findings show that Gq/11 signaling is required for normal hypothalamic function and that impairment of this signaling pathway causes somatotroph hypoplasia, dwarfism, and anorexia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号