首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human replication protein A is a heterotrimeric protein involved in various processes of DNA metabolism. To understand the contribution of replication protein A individual subunits to DNA binding, we have expressed them separately as soluble maltose binding protein fusion proteins. Using a DNA construct that had a photoreactive group incorporated at the 3'-end of the primer strand, we show that the p70 subunit on its own is efficiently cross-linked to the primer at physiological concentrations. In contrast, crosslinking of the p32 subunit required two orders of magnitude higher protein concentrations. In no case was the p14 subunit labelled above background. p70 seems to be the predominant subunit to bind single-stranded DNA and this interaction positions the p32 subunit to the 3'-end of the primer.  相似文献   

2.
The heterotrimeric replication protein A (RPA) has multiple essential activities in eukaryotic DNA metabolism and in signaling pathways. Despite extensive analyses, the functions of the smallest RPA subunit p14 are still unknown. To solve this issue we produced and characterized a dimeric RPA complex lacking p14, RPADeltap14, consisting of p70 and p32. RPADeltap14 was able to bind single-stranded DNA, but its binding mode and affinity differed from those of the heterotrimeric complex. Moreover, in the RPADeltap14 complex p32 only minimally recognized the 3'-end of a primer in a primer-template junction. Partial proteolytic digests revealed that p14 and p32 together stabilize the C terminus of p70 against degradation. Although RPADeltap14 efficiently supported bidirectional unwinding of double-stranded DNA and interacted with both the simian virus 40 (SV40) large T antigen and cellular DNA polymerase alpha-primase, it did not support cell-free SV40 DNA replication. This inability manifested itself in a failure to support both the primer synthesis and primer elongation reactions. These data reveal that efficient binding and correct positioning of the RPA complex on single-stranded DNA requires all three subunits to support DNA replication.  相似文献   

3.
Although the mechanical aspects of the single-stranded DNA (ssDNA) binding activity of human replication protein A (RPA) have been extensively studied, only limited information is available about its interaction with other physiologically relevant DNA structures. RPA interacts with partial DNA duplexes that resemble DNA intermediates found in the processes of DNA replication and DNA repair. Limited proteolysis of RPA showed that RPA associated with ssDNA is less protected against proteases than RPA bound to a partial duplex DNA containing a 5'-protruding tail that had the same length as the ssDNA. Modification of both the 70- and 32-kDa subunits, RPA70 and RPA32, respectively, by photoaffinity labeling indicates that RPA can bind the primer-template junction of partial duplex DNAs by interacting with the 3'-end of the primer. The identification of the protein domains modified by the photoreactive 3'-end of the primer showed that domains located in the central part of the RPA32 subunit (amino acids 39-180) and the C-terminal part of the RPA70 subunit (amino acids 432-616) are involved in these interactions.  相似文献   

4.
Analogues of dUTP bearing a photoreactive 2-nitro-5-azidobenzoyl (NAB) group linked via spacers of varying length (n = 2, 4, 7-13 atoms) to the 5-position of the uridine ring (NAB-n-dUTP) were synthesized and characterized. DNA polymerase beta efficiently incorporated these analogues into synthetic primer-template substrates in place of TTP, which allowed us to selectively introduce a photoreactive group at the 3' primer terminus. After completing photoreactive primer synthesis, the reaction mixtures were irradiated with monochromatic UV light (315 nm) in the presence of human replication protein A (RPA), a heterotrimer consisting of three subunits with molecular mass 70 kDa (p70), 32 kDa (p32), and 14 kDa (p14), and were separated by SDS-PAGE. The photoreactive primers cross-linked directly with p70 and p32, but cross-linking of p14 was not achieved even by varying the length of the spacer group. The data speak in favor of the protection of p14 by other RPA subunits from the interaction with 3'-end of the primer. Cross-linking of substrates to pol beta is inhibited when the analogue bears a short spacer (n = 2, 4, 7, and 8), but this is abrogated somewhat when longer spacers (n = 9-13) are examined. On the basis of these observations, we suggest that RPA and pol beta form a complex on primer-template substrates.  相似文献   

5.
FABdCTP was found to be a substrate of DNA polymerization catalyzed by a DNA polymerase alpha-DNA primase complex on the 5'-GTGAGTAAGTGGAGTTTGGCACGAT-3' template and 3'-CTCAAACCGT-5' primer. After complete primer extension in the presence of FABdCTP under UV-irradiation of the reaction mixture, 70% of the template was covalently linked to the primer. Labeling of the 165 kDa subunit of the DNA polymerase alpha, 59 kDa and 49 kDa subunits of the DNA primase and an unknown protein with apparent molecular weight of 31 kDa was observed. By another way of protein labeling FABdCTP was covalently bound to the subunits of the enzyme under UV irradiation and then this moiety was introduced into the 3'-end of the 5'-[32P]primer by the catalytic activity of DNA polymerase or DNA primase. In this case covalent labeling of the 165 kDa, 49 kDa and 31 kDa subunits was observed.  相似文献   

6.
Replication protein A (RPA) is a stable heterotrimeric complex consisting of p70, p32 and p14 subunits. The protein plays a crucial role in SV40 minichromosome replication. Peptides of p70 representing interaction sites for the smaller two subunits, DNA as well as the viral initiator protein large T-antigen (Tag) and the cellular DNA polymerase alpha-primase (Pol) all interfered with the replication process indicating the importance of the different p70 activities in this process. Inhibition by the peptide disrupting protein-protein interactions was observed only during the pre-initiation stage prior to primer synthesis, suggesting the formation of a stable initiation complex between RPA, Tag and Pol at the primer end.  相似文献   

7.
Polarity of human replication protein A binding to DNA   总被引:6,自引:4,他引:2       下载免费PDF全文
Replication protein A (RPA), the nuclear single-stranded DNA binding protein is involved in DNA replication, nucleotide excision repair (NER) and homologous recombination. It is a stable heterotrimer consisting of subunits with molecular masses of 70, 32 and 14 kDa (p70, p32 and p14, respectively). Gapped DNA structures are common intermediates during DNA replication and NER. To analyze the interaction of RPA and its subunits with gapped DNA we designed structures containing 9 and 30 nucleotide gaps with a photoreactive arylazido group at the 3′-end of the upstream oligonucleotide or at the 5′-end of the downstream oligonucleotide. UV crosslinking and subsequent analysis showed that the p70 subunit mainly interacts with the 5′-end of DNA irrespective of DNA structure, while the subunit orientation towards the 3′-end of DNA in the gap structures strongly depends on the gap size. The results are compared with the data obtained previously with the primer–template systems containing 5′- or 3′-protruding DNA strands. Our results suggest a model of polar RPA binding to the gapped DNA.  相似文献   

8.
Replication factor A (RPA) is a protein that binds single-stranded DNA in eukaryotic cells; it participates in replication, repair, and recombination of DNA. RPA is composed of three subunits with molecular masses 70 (p70), 32 (p32), and 14 kD (p14). The photoaffinity labeling method was used to study the interaction of RPA with the 3;-end of duplex DNA containing extended 5;-end of a single strand. We have synthesized dTTP analogs containing photoreactive 2,3,5,6-tetrafluoro-4-azidobenzoyl group attached to the 5th position of the uracil residue with linkers of variable length (9, 11, and 13 atom chains). Using these analogs and dTTP analog containing the same photoreactive residue attached to the 5th position of the uracil residue with a 4-atom linker, a number of oligonucleotide primers carrying a single photoreactive group on the 3;-end were enzymatically synthesized. Using the complex of the photoreactive primers with DNA template containing extended 19-base 5;-end, human RPA was photoaffinity modified. The primers were covalently bound to the p70 and p32 subunits of RPA and the p14 subunit was not labeled by the primers. The data are discussed considering the previously suggested model of interaction of RPA with DNA during replication.  相似文献   

9.
Replication protein A (RPA) is a heterotrimeric protein that has high affinity for single-stranded (ss) DNA and is involved in DNA replication, repair, and recombination in eukaryotic cells. Photoaffinity modification was employed in studying the interaction of human RPA with DNA duplexes containing various gaps, which are similar to structures arising during DNA replication and repair. A photoreactive dUMP derivative was added to the 3' end of a gap-flanking oligonucleotide with DNA polymerase beta, and an oligonucleotide containing a 5'-photoreactive group was chemically synthesized. The 5' end predominantly interacted with the large RPA subunit (p70) regardless of the gap size, whereas interactions of the 3' end with the RPA subunits depended both on the gap size and on the RPA concentration. Subunit p32 was mostly labeled in the case of a larger gap and a lower RPA concentration. The results confirmed the model of polar RPA-DNA interaction, which has been advanced earlier.  相似文献   

10.
Mouse cell extracts support vigorous replication of polyomavirus (Py) DNA in vitro, while human cell extracts do not. However, the addition of purified mouse DNA polymerase alpha-primase to human cell extracts renders them permissive for Py DNA replication, suggesting that mouse polymerase alpha-primase determines the species specificity of Py DNA replication. We set out to identify the subunit of mouse polymerase alpha-primase that mediates this species specificity. To this end, we cloned and expressed cDNAs encoding all four subunits of mouse and human polymerase alpha-primase. Purified recombinant mouse polymerase alpha-primase and a hybrid DNA polymerase alpha-primase complex composed of human subunits p180 and p68 and mouse subunits p58 and p48 supported Py DNA replication in human cell extracts depleted of polymerase alpha-primase, suggesting that the primase heterodimer or one of its subunits controls host specificity. To determine whether both mouse primase subunits were required, recombinant hybrid polymerase alpha-primases containing only one mouse primase subunit, p48 or p58, together with three human subunits, were assayed for Py replication activity. Only the hybrid containing mouse p48 efficiently replicated Py DNA in depleted human cell extracts. Moreover, in a purified initiation assay containing Py T antigen, replication protein A (RP-A) and topoisomerase I, only the hybrid polymerase alpha-primase containing the mouse p48 subunit initiated primer synthesis on Py origin DNA. Together, these results indicate that the p48 subunit is primarily responsible for the species specificity of Py DNA replication in vitro. Specific physical association of Py T antigen with purified recombinant DNA polymerase alpha-primase, mouse DNA primase heterodimer, and mouse p48 suggested that direct interactions between Py T antigen and primase could play a role in species-specific initiation of Py replication.  相似文献   

11.
Replication protein A (RPA) is a heterotrimeric protein that has high affinity for single-stranded (ss) DNA and is involved in DNA replication, repair, and recombination in eukaryotic cells. Photoaffinity modification was employed in studying the interaction of human RPA with DNA duplexes containing various gaps, which are similar to structures arising during DNA replication and repair. A photoreactive dUMP derivative was added to the 3" end of a gap-flanking oligonucleotide with DNA polymerase , and an oligonucleotide containing a 5"-photoreactive group was chemically synthesized. The 5" end predominantly interacted with the large RPA subunit (p70) regardless of the gap size, whereas interactions of the 3" end with the RPA subunits depended both on the gap size and on the RPA concentration. Subunit p32 was mostly labeled in the case of a larger gap and a lower RPA concentration. The results confirmed the model of polar RPA–DNA interaction, which has been advanced earlier.  相似文献   

12.
The single-stranded DNA binding protein RP-A is required in SV40 DNAin vitro replication. The RP-A purified from calf thymus contains 4 polypeptides with molecular weights 70kDa, 53kDa, 32kDa, and 14kDa. The p70 subunit and its proteolysed form p53 are recognized by the monoclonal antibody 70C (Kenny et al. (1990)) and bind to ssDNA. The p70 and p32 subunits of bovine RP-A are phosphorylated by CDC2-cyclin B kinase. Bovine RP-A supports the origin dependent unwinding of SV40 DNA by T antigen. Furthermore, bovine RP-A can efficiently substitute for human RP-A in SV40 DNA replicationin vitro. A modified blotting technique revealed that RP-A interacts specifically and directly with the p48 subunit of DNA polymerase α-primase complex.  相似文献   

13.
To analyze the interaction of human replication protein A (RPA) and its subunits with the DNA template-primer junction in the DNA replication fork, we designed several template-primer systems differing in the size of the single-stranded template tail (4, 9, 13, 14, 19 and 31 nt). Base substituted photoreactive dNTP analogs-5-[ N -(2-nitro-5-azidobenzoyl)- trans -3-amino-propenyl-1]-2'-deoxyuridine-5'-triphosphate (NAB-4-dUTP) and 5-[ N -[ N -(2-nitro-5-azidobenzoyl)glycyl]- trans -3-aminopropenyl-1]-2'-deoxyuridine-5'-triphosphate (NAB-7-dUTP)-were used as substrates for elongation of radiolabeled primer-template by DNA polymerases in the presence or absence of RPA. Subsequent UV crosslinking showed that the pattern of p32 and p70 RPA subunit labeling, and consequently their interaction with the template-primer junction, is strongly dependent on the template extension length at a particular RPA concentration, as well as on the ratio of RPA to template concentration. Our results suggest a model of changes in the RPA configuration modulating by the length of the template extension in the course of nascent DNA synthesis.  相似文献   

14.
A new reagent for photoaffinity modification of biopolymers, 5-[E-N-(2-nitro-5-azidobenzoyl)-3-amino-1-propen-1-yl]-2',3'-dideoxyuridine 5'-triphosphate (NAB-ddUTP), was synthesized. Like a similar derivative of 2'-deoxyuridine 5'-triphosphate (NAB-dUTP), it was shown to be able to effectively substitute for dTTP in the synthesis of DNA catalyzed by eukaryotic DNA polymerase beta and to terminate DNA synthesis. A 5'-32P-labeled primer with a photoreactive group at the 3'-terminus was derived from NAB-ddUTP and used for photoaffinity labeling of the human replication protein A (RPA). The covalent attachment of RPA p32 and p70 subunits to the labeled primers was demonstrated. NAB-ddUTP is a promising tool for studying the interaction of proteins of the replicative complex with NA in cellular extracts and living cells during the termination of DNA synthesis.  相似文献   

15.
To introduce photoreactive dNTP residues to the 3'-end of a mononucleotide gap, base-substituted photoreactive deoxynucleoside triphosphate derivatives, (5-[N-(2,3,5,6-tetrafluoro-4-azidobenzoyl)-trans-3-aminopropenyl-1]- and 5-(N-[N-(4-azido-2,5-difluoro-3-chloropyridine-6-yl)-3-aminopropionyl]- trans-3-aminopropenyl-1)-2'-deoxyuridine 5'-triphosphates, were used as substrates in the DNA polymerase beta-catalyzed reaction. The resulting nick, containing a modified base at the 3'-end, was sealed by T4 phage DNA ligase. This approach enables the preparation of DNA duplexes bearing photoreactive groups at predetermined position(s) of the nucleotide chain. Using the generated photoreactive DNA duplexes, the photoaffinity modifications of DNA polymerase beta and human replicative protein A (hRPA) were carried out. It was shown that DNA polymerase beta and hRPA subunits were modified with the photoreactive double-stranded DNA considerably less effectively than by the nicked DNA. In the case of double-stranded DNA, the hRPA p70 subunit was preferentially labeled, implying a crucial role of this subunit in the protein-DNA interaction.  相似文献   

16.
Eukaryotic replication protein A (RPA) is a single-stranded(ss) DNA binding protein with multiple functions in DNA replication, repair, and genetic recombination. The 70-kDa subunit of eukaryotic RPA contains a conserved four cysteine-type zinc-finger motif that has been implicated in the regulation of DNA replication and repair. Recently, we described a novel function for the zinc-finger motif in the regulation of human RPA's ssDNA binding activity through reduction-oxidation (redox). Here, we show that yeast RPA's ssDNA binding activity is regulated by redox potential through its RPA32 and/or RPA14 subunits. Yeast RPA requires a reducing agent, such as dithiothreitol (DTT), for its ssDNA binding activity. Also, under non-reducing conditions, its DNA binding activity decreases 20 fold. In contrast, the RPA70 subunit does not require DTT for its DNA binding activity and is not affected by the redox condition. These results suggest that all three subunits are required for the regulation of RPA's DNA binding activity through redox potential.  相似文献   

17.
Replication protein A phosphorylation and the cellular response to DNA damage   总被引:12,自引:0,他引:12  
Binz SK  Sheehan AM  Wold MS 《DNA Repair》2004,3(8-9):1015-1024
Defects in cellular DNA metabolism have a direct role in many human disease processes. Impaired responses to DNA damage and basal DNA repair have been implicated as causal factors in diseases with DNA instability like cancer, Fragile X and Huntington's. Replication protein A (RPA) is essential for multiple processes in DNA metabolism including DNA replication, recombination and DNA repair pathways (including nucleotide excision, base excision and double-strand break repair). RPA is a single-stranded DNA-binding protein composed of subunits of 70-, 32- and 14-kDa. RPA binds ssDNA with high affinity and interacts specifically with multiple proteins. Cellular DNA damage causes the N-terminus of the 32-kDa subunit of human RPA to become hyper-phosphorylated. Current data indicates that hyper-phosphorylation causes a change in RPA conformation that down-regulates activity in DNA replication but does not affect DNA repair processes. This suggests that the role of RPA phosphorylation in the cellular response to DNA damage is to help regulate DNA metabolism and promote DNA repair.  相似文献   

18.
19.
Kim A  Park JS 《Molecules and cells》2002,13(3):493-497
The eukaryotic replication protein A (RPA) is a heterotrimeric protein complex. It consists of 70, 32, and 14 kDa subunits that are involved in DNA replication, repair, and genetic recombination. RPA is a 4-cysteine type zinc-finger protein. RPA's zinc-finger domain is not essential for DNA binding activity, but it is involved in the regulation of RPA's DNA binding activity through reduction-oxidation (redox). In this study, we show that yeast RPA's ssDNA binding activity is regulated by redox potential through its subcomplexes of 32 and 14 kDa subunits. In contrast, the subunits' complex, RPA70, formed a stable complex with ssDNA, even under non-reducing conditions. The addition of DTT and H202 had no effect on its DNA binding activity. In RPA70, since the addition of the subcomplexes of the 32 and 14 kDa subunits, it restored the modulating ssDNA binding activity to native RPA's DNA binding activity. These results suggest that the subcomplexes of the 32 and 14 kDa subunits may be involved in the modulating RPA's DNA binding activity through redox change. These studies, therefore, show the novel structure and function relationship of a multiprotein complex in that the role of a specific domain (or one subunit) is regulated by the other subunits.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号