首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin binding to rat liver plasma membranes promotes proteolysis of the Mr 135,000 alpha subunit of the insulin receptor to a fragment of Mr 120,000 (Lipson, K. E., Yamada, K., Kolhatkar, A. A., and Donner, D. B. (1986) J. Biol. Chem. 261, 10833-10838). The enzyme that catalyzes this degradation copurifies with plasma membranes and cannot be identified in any other cellular organelle or in cytosol. The proteinase has optimal activity above pH 7 and is an integral protein based upon its resistance to extraction with 2 M NaCl. After affinity labeling, degraded insulin receptors were identified in plasma membranes isolated from a liver perfused with 1 nM 125I-insulin for 10 min at 37 degrees C, indicating that proteolysis occurs in the hepatocyte cell membrane under physiological conditions. Microsomes do not contain the receptor degrading activity or a detectable amount of degraded receptors under basal conditions. After perfusion of a liver with 125I-insulin, Mr 135,000 and Mr 120,000 complexes were detected in microsomes, suggesting that both intact and degraded receptors can be internalized. The initial absence of degraded receptors in plasma membranes suggests that, following internalization, such sites do not recycle. Thus, hormone-induced proteolysis of the insulin receptor begins at the surface of the rat hepatocyte and can lead to loss of receptors from the plasma membrane.  相似文献   

2.
Hormone-induced conformational changes in the hepatic insulin receptor   总被引:3,自引:0,他引:3  
The insulin receptor can exist in either a lower or a higher affinity state. Hormone binding alters the equilibrium between the two states of the insulin receptor, favoring the formation of that of higher affinity (Corin, R.E., and Donner, D.B. (1982), J. Biol. Chem. 257, 104-110). After brief or extended incubations with hormone, during which the fraction of higher affinity receptors increased, 125I-insulin was covalently coupled to the alpha subunits of its receptor using disuccinimidyl suberate. Some 125I-insulin remained bound to higher affinity receptors after dissociation of hormone from lower affinity sites. This hormone could also be covalently coupled to the alpha subunit of the receptor. During extended incubations between 125I-insulin and liver plasma membranes, components of the receptor were cleaved to yield degradation products of 120,000 and 23,000 Da. The significance of this process remains undetermined. Unoccupied insulin receptors were cleaved by trypsin to produce fragments of 94,000 and 37,000 Da which remained membrane-bound and could be covalently coupled to 125I-insulin. Trypsin treatment after binding yielded an additional receptor fragment of 64,000 Da. As the incubation time between 125I-insulin and membranes was lengthened, components of the receptor became progressively less sensitive to trypsin. Higher affinity binding sites isolated after release of rapid dissociating insulin were less sensitive to trypsin than were mixtures of higher and lower affinity receptors. These observations suggest that hormone binding produces two conformational changes (alterations of tryptic lability) in the hepatic insulin receptor. The first change is rapid and exposes parts of the receptor to tryptic degradation. The second, slower conformational change renders the receptor less sensitive to trypsin and occurs with the same time course as the increase of receptor affinity mediated by site occupancy.  相似文献   

3.
Purification and characterization of the human brain insulin receptor   总被引:2,自引:0,他引:2  
The insulin receptor from human brain cortex was purified by a combination monoclonal antibody affinity column and a wheat germ agglutinin column. This purified receptor preparation exhibited major protein bands of apparent Mr = 135,000 and 95,000, molecular weights comparable to those for the alpha and beta subunits of the purified human placental and rat liver receptors. A minor protein band of apparent Mr = 120,000 was also observed in the brain receptor preparation. Crosslinking of 125I-insulin to all three receptor preparations was found to preferentially label a protein of apparent Mr = 135,000. In contrast, cross-linking of 125I-labeled insulin-like growth factor I to the brain preparation preferentially labeled the protein of apparent Mr = 120,000. The purified brain insulin receptor was found to be identical with the placental insulin receptor in the amount of neuraminidase-sensitive sialic acid and reaction with three monoclonal antibodies to the beta subunit of the placental receptor. In contrast, a monoclonal antibody to the insulin binding site recognized the placental receptor approximately 300 times better than the brain receptor. These results indicate that the brain insulin receptor differs from the receptor in other tissues and suggests that this difference is not simply due to the amount of sialic acid on the receptor.  相似文献   

4.
Biologic actions of insulin and insulin-like growth factors (IGFs) are thought to be initiated by binding of peptides to tissues, followed by phosphorylation of specific hormone receptors. Both insulin and IGF bind to renal membranes, suggesting functional roles for these peptides in kidney. The present studies further characterize the interaction of multiplication-stimulating activity (MSA)/IGF II with its renal receptor. Specific binding of 125I-IGF II was measured in basolateral membranes isolated from proximal tubular cells of dog kidney. Binding was half-maximal at 10(-9) M MSA and was not inhibited by human growth hormone, IGF I, insulin, or anti-insulin receptor antibodies. Concentration-dependent MSA-stimulated phosphorylation of a Mr 135,000 protein band was demonstrated in autoradiograms of sodium dodecyl sulfate-polyacrylamide gels from basolateral membrane suspensions. Insulin increased phosphorylation of this band only in the presence of MSA, while a Mr 92,000 band was consistently phosphorylated with insulin alone. The phosphorylated Mr 135,000 band which had been solubilized with detergent from basolateral membranes was immunoprecipitated using serum from a patient with anti-insulin receptor antibodies suggesting that the band is the alpha subunit of the insulin receptor. This was supported by the demonstration of covalent cross-linkage of 125I-insulin to the Mr 135,000 band. We conclude that receptor-mediated MSA-stimulated phosphorylation of isolated basolateral membranes may reflect a process by which biological actions of IGF II are mediated in vivo. Our data suggest that insulin and IGF II may interact by regulating protein phosphorylation.  相似文献   

5.
Insulin receptors purified from human placental membranes by gel-filtration and insulin-agarose affinity chromatography were found to be composed of eight different high molecular weight complexes as identified by nonreducing sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The subunit stoichiometry of these different high molecular weight forms of the insulin receptor were determined by comparisons of silver-stained gel profiles with the autoradiograms of 125I-insulin specifically cross-linked to the alpha subunit and [gamma-32P]ATP specifically autophosphorylated beta subunit gel profiles. Two-dimensional SDS-polyacrylamide gel electrophoresis in the absence and presence of reductant confirmed the subunit stoichiometries as alpha 2 beta 2, alpha 2 beta beta 1, alpha 2 (beta 1)2, alpha 2 beta, alpha 2 beta 1, alpha 2, alpha beta, and beta, where alpha is the Mr = 130,000 subunit, beta is the Mr = 95,000 subunit, and beta 1 is the Mr = 45,000 subunit. Treatment of the insulin receptor preparations with oxidized glutathione or N-ethylmaleimide prior to SDS-polyacrylamide gel electrophoresis increased the relative amount of the alpha 2 beta 2 complex concomitant with a total disappearance of the alpha 2 beta, alpha 2 beta 1, alpha 2, and free beta forms. The effects of oxidized glutathione were found to be completely reversible upon extensive washing of the treated insulin receptors. In contrast, the effects of N-ethylmaleimide were totally irreversible by washing, consistent with known sulfhydryl alkylating properties of this reagent. The formation of these lower molecular weight insulin receptor subunit complexes was further demonstrated to be due to SDS/heat-dependent intramolecular sulfhydryl-disulfide exchange occurring within the alpha 2 beta 2 complex. These studies demonstrate that the largest disulfide-linked complex (alpha 2 beta 2) is the predominant insulin receptor form purified from the human placenta with the other complexes being generated by proteolysis and by internal subunit dissociation.  相似文献   

6.
The structure of insulin receptors, solubilized from rat skeletal muscle and liver, was studied. The alpha subunit was identified by specific cross-linking to A14 125I-insulin with disuccinimidyl suberate. Muscle- and liver-derived alpha subunits migrated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with a Mr of 131,000 and 135,000, respectively. There was no significant difference in insulin binding affinity. Treatment of cross-linked, immunoprecipitated receptors with either neuraminidase or endoglycosidase H decreased the Mr of muscle- and liver-derived alpha subunits but did not affect the difference in Mr. Autophosphorylated beta subunits migrated with a Mr of 98,000 for muscle and 101,000 for liver. After partial V8 digestion of autophosphorylated, immunoprecipitated receptors the major phosphopeptide fragment migrated on SDS-PAGE at Mr 57,000 from muscle and 60,000 from liver. Glycosidase digestion of autophosphorylated receptors suggested that Mr heterogeneity was due in part to differences in the sialic acid content of beta subunits. Muscle and liver are the major target organs of insulin; the apparent heterogeneity of insulin receptor structure may be relevant to tissue-specific differences in insulin action.  相似文献   

7.
S Gammeltoft  M Fehlmann  E Van Obberghen 《Biochimie》1985,67(10-11):1147-1153
Insulin receptors in rat and human central nervous system have been identified by binding of 125I-insulin on purified synaptic plasma membranes; affinity labelling of receptors by chemical cross-linking 125I-insulin; or phosphorylation of receptors with [gamma-32P]ATP. Brain insulin receptors showed significant differences in their binding characteristics and subunit structure when compared with receptors in other tissues like adipose and liver cells: absence of negatively cooperative interactions; a distinct binding specificity i.e. porcine proinsulin, coypu insulin and insulin-like growth factor I and II showed 2-5 times higher binding affinity in brain than in other cell types; a smaller molecular size of the brain receptor alpha-subunit than in other tissues (Mr approximately 115,000 instead of 130,000). In contrast, the size (Mr approximately 94,000) and function of the insulin receptor beta-subunit kinase was identical with that described in other cells. We conclude, that insulin receptors in mammalian brain represent a receptor subtype which may mediate growth rather than metabolic activity of insulin.  相似文献   

8.
The binding of 125I-cholecystokinin-33 (125I-CCK-33) to its receptors on rat pancreatic membranes was decreased by modification of membrane protein sulfhydryl groups. Sulfhydryl modifying reagents also caused an accelerated release of bound 125I-CCK-33 from its receptor. Because of the presence of an essential sulfhydryl group(s) in CCK receptor binding we studied the application of the heterobifunctional (SH,NH2) cross-linker, m-maleimidobenzoyl N-hydroxysuccinimide ester (MBS), to affinity label 125I-CCK-33 binding proteins on rat pancreatic plasma membranes. Analysis of the cross-linked products by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography revealed that this heterobifunctional cross-linker affinity labeled a major Mr = 80,000-95,000 protein previously identified as part of the CCK receptor on the basis of affinity labeling using homobifunctional and heterobifunctional photoreactive cross-linkers. Additional proteins of Mr greater than 200,000, and Mr = 130,000-140,000 were affinity labeled using MBS. The efficiency of the cross-linking reaction between 125I-CCK-33 and its membrane binding proteins with MBS was significantly greater than that obtained with NH2-directed homobifunctional reagents such as disuccinimidyl suberate. The efficiency of cross-linking could be dramatically improved by reduction of membrane proteins with low-molecular weight thiols prior to binding and cross-linking. The differential labeling patterns of the CCK binding proteins obtained with chemical cross-linkers of similar length but different chemical reactivity underscores the need for caution in predicting native receptor structure from affinity labeling data alone. Using the same pancreatic plasma membrane preparation and 125I-insulin, the Mr = 125,000 alpha-subunit of the insulin receptor was affinity labeled using MBS as cross-linker, demonstrating its utility in identifying other peptide hormone receptors.  相似文献   

9.
Primary neuronal cultures from fetal rat brain were utilized to investigate the possible role of insulin-like growth factor I (IGF-I) in neuronal growth and differentiation. 125I-IGF-I binding to intact cultured neurons was specific and saturable with an apparent Kd of 7.0 +/- 1.2 nM and a Bmax of 1.8 +/- 0.3 pmol/mg protein. Binding of 125I-IGF-I to neurons was inhibited by IGF-I, followed by IGF-II and insulin. 7 S nerve growth factor, but not beta-nerve growth factor, also inhibited 125I-IGF-I binding. A similar binding site was detected on brain membranes. Affinity cross-linking of 125I-IGF-I to intact cultured neurons revealed, under reducing conditions, a major binding moiety with an Mr of 115,000 and a minor component at Mr 260,000. The former represents a neuronal type of the IGF-I receptor alpha subunit, whereas the latter probably represents an alpha dimer. The Mr = 115,000 binding component for 125I-IGF-I was also present in membranes prepared from postnatal whole brain. In contrast, the binding moiety in cultured glial cells was of Mr = 135,000, which was identical to the IGF-I receptor alpha subunit of placenta. Thus mature brain, despite its cellular heterogeneity, expresses a structural subtype of IGF-I receptor which appears to be unique to differentiated neurons. Moreover, glial and neuronal cultures secreted a polypeptide which specifically bound IGF-I; the apparent Mr of this binding protein was determined by affinity cross-linking to be approximately 35,000. The presence of neuronal IGF-I receptors and binding proteins suggested that IGF-I may exert neurotrophic effects on developing neurons. This possibility was supported by the observation that IGF-I markedly stimulated neuronal RNA synthesis.  相似文献   

10.
The rat liver insulin receptor   总被引:1,自引:0,他引:1  
Using insulin affinity chromatography, we have isolated highly purified insulin receptor from rat liver. When evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions, the rat liver receptor contained the Mr 125,000 alpha-subunit, the Mr 90,000 beta-subunit, and varying proportions of the Mr 45,000 beta'-subunit. The specific insulin binding of the purified receptor was 25-30 micrograms of 125I-insulin/mg of protein, and the receptor underwent insulin-dependent autophosphorylation. Rat liver and human placental receptors differ from each other in several functional aspects: (1) the adsorption-desorption behavior from four insulin affinity columns indicated that the rat liver receptor binds less firmly to immobilized ligands; (2) the 125I-insulin binding affinity of the rat liver receptor is lower than that of the placental receptor; (3) partial reduction of the rat liver receptor with dithiothreitol increases its insulin binding affinity whereas the binding affinity of the placental receptor is unchanged; (4) at optimal insulin concentration, rat liver receptor autophosphorylation is stimulated 25-50-fold whereas the placental receptor is stimulated only 4-6-fold. Conversion of the beta-subunit to beta' by proteolysis is a major problem that occurs during exposure of the receptor to the pH 5.0 buffer used to elute the insulin affinity column. The rat receptor is particularly subject to destruction. Frequently, we have obtained receptor preparations that did not contain intact beta-subunit. These preparations failed to undergo autophosphorylation, but their insulin binding capacity and binding isotherms were identical with those of receptor containing beta-subunit. Proteolytic destruction and the accompanying loss of insulin-dependent autophosphorylation can be substantially reduced by proteolysis inhibitors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Previous studies have indicated that turkey erythrocyte and rat liver membranes contain endogenous alpha beta heterodimeric insulin receptors in addition to the disulphide-linked alpha 2 beta 2 heterotetrameric complexes characteristic of most cell types. We utilized 125I-insulin affinity cross-linking to examine the structural properties of insulin receptors from rat liver and turkey erythrocyte membranes prepared in the absence and presence of sulphydryl alkylating agents. Rat liver membranes prepared in the absence of sulphydryl alkylating agents displayed specific labelling of Mr 400,000 and 200,000 bands, corresponding to the alpha 2 beta 2 heterotetrameric and alpha beta heterodimeric insulin receptor complexes respectively. In contrast, affinity cross-linking of membranes prepared with iodoacetamide (IAN) or N-ethylmaleimide identified predominantly the alpha 2 beta 2 heterotetrameric insulin receptor complex. Similarly, affinity cross-linking and solubilization of intact turkey erythrocytes in the presence of IAN resulted in exclusive labelling of the alpha 2 beta 2 heterotetrameric insulin receptor complex, whereas in the absence of IAN both alpha 2 beta 2 and alpha beta species were observed. Turkey erythrocyte alpha 2 beta 2 heterotetrameric insulin receptors from IAN-protected membranes displayed a 3-4-fold stimulation of beta subunit autophosphorylation and substrate phosphorylation by insulin, equivalent to that observed in intact human placenta insulin receptors. Turkey erythrocyte alpha beta heterodimeric insulin receptors, prepared by defined pH/dithiothreitol treatment of IAN-protected membranes, were also fully competent in insulin-stimulated protein kinase activity compared with alpha beta heterodimeric human placenta receptors. In contrast, endogenous turkey erythrocyte alpha beta heterodimeric insulin receptors displayed basal protein kinase activity which was insulin-insensitive. These data indicate that native turkey erythrocyte and rat liver insulin receptors are structurally and functionally similar to alpha 2 beta 2 heterotetrameric human placenta insulin receptors. The alpha beta heterodimeric insulin receptors previously identified in these tissues most likely resulted from disulphide bond reduction and denaturation of the alpha 2 beta 2 holoreceptor complexes during membrane preparation.  相似文献   

12.
The present study demonstrated that at physiological concentrations of insulin bacitracin inhibited the degradation of specifically bound insulin by enzymes located in the rat adipocyte plasma membrane. Bacitracin increased the amount of intact insulin specifically bound to the plasma membrane and potentiated the stimulation of adipocyte glucose oxidation by submaximal concentrations of the hormone. In contrast to agents such as chloroquine, which inhibit lysosomal degradation of internalized insulin, bacitracin was shown by two approaches to inhibit a degradative process localized to the adipocyte plasma membrane. Cyanide and 2,4-dinitrophenol, agents which inhibit energy requiring endocytosis, had no effect on the bacitracin inhibition of cellular degradation of 125I-insulin. Bacitracin directly inhibited 125I-insulin degradation by isolated plasma membranes at similar concentrations and to a similar extent as found with cells. The degradative process inhibited by bacitracin accounted for the majority of cellular degradation of the hormone. The increased 125I-insulin bound to adipocytes was shown to be intact by gel chromatographic analysis and was localized to the plasma membrane by direct and indirect approaches. Bacitracin increased 125I-insulin specifically bound to isolated plasma membranes as early as 2 min. The 125I-insulin bound to adipocytes in the presence of bacitracin was completely dissociable by the addition of 8 microM unlabeled insulin whereas a significant portion of 125I-insulin bound to chloroquine-treated cells could not be dissociated. Bacitracin slowed dissociation of 125I-insulin from the cells. Bacitracin increased the 125I-insulin binding to cells in the presence and absence of cyanide and 2,4-dinitrophenol. Bacitracin potentiated the stimulation of adipocyte glucose oxidation at submaximal concentrations of insulin.  相似文献   

13.
Incubation of intact rat adipocytes with physiological concentrations of catecholamines inhibits the specific binding of 125I-insulin and 125I-epidermal growth factor (EGF) by 40 to 70%. Affinity labeling of the alpha subunit of the insulin receptor demonstrates that the inhibition of hormone binding is directly reflective of a specific decrease in the degree of receptor occupancy. The stereospecificity and dose dependency of the binding inhibitions are typical of a classic beta 1-adrenergic receptor response with half-maximal inhibition occurring at 10 nM R-(-)-isoproterenol. Specific alpha-adrenergic receptor agonists and beta-adrenergic receptor antagonists have no effect, while beta-adrenergic receptor antagonists block the inhibition of 125I-insulin and 125I-EGF binding to receptors induced by beta-adrenergic receptor agonists. Further, these effects are mimicked by incubation of adipocytes with dibutyryl cyclic AMP or with 3-isobutyl-1-methylxanthine. The beta-adrenergic inhibition of both 125I-insulin and 125I-EGF binding is very rapid, requiring only 10 min of isoproterenol pretreatment at 37 degrees C for a maximal effect. Removal of isoproterenol by washing the cells in the presence of alprenolol leads to complete reversal of these effects. The inhibition of 125I-EGF binding is temperature dependent whereas the inhibition of 125I-insulin binding is relatively insensitive to the temperature of isoproterenol pretreatment. Scatchard analysis of 125I-insulin and 125I-EGF binding demonstrated that the decrease of insulin receptor-binding activity may be due to a decrease in the apparent number of insulin receptors while the inhibition of EGF receptor binding can be accounted for by a decrease in apparent EGF receptor affinity. The decrease in the insulin receptor-binding activity is physiologically expressed as a dose-dependent decrease of insulin responsiveness in the adipocyte with respect to two known responses, stimulation of insulin-like growth factor II receptor binding and activation of the glucose-transport system. These results demonstrate a beta-adrenergic receptor-mediated cyclic AMP-dependent mechanism for the regulation of insulin and EGF receptors in the rat adipocyte.  相似文献   

14.
The insulin receptor. Structural basis for high affinity ligand binding   总被引:4,自引:0,他引:4  
Treatment of the soluble insulin receptor from human placenta with 1.25 mM dithiothreitol and 75 mM Tris at pH 8.5 results in complete reduction of interhalf disulfide bonds (class 1 disulfides) and dissociation of the tetrameric receptor into the dimeric alpha beta form. The alpha beta receptor halves exhibit a reduced affinity for insulin binding (B?ni-Schnetzler, M., Rubin, J. B., and Pilch, P. F. (1986) J. Biol. Chem. 261, 15281-15287). Kinetic experiments reveal that reduction of class 1 disulfides is a faster process than the loss of affinity for ligand, indicating that events subsequent to reduction of interhalf disulfides are responsible for the affinity change. We show that a third class of alpha subunit intrachain disulfides is more susceptible to reduction at pH 7.6 than at pH 8.5 and appears to form part of the ligand binding domain. Reduction of the intrachain disulfide bonds in this part of the alpha subunit leads to a loss of insulin binding. Modification of this putative binding domain by dithiothreitol can be minimized if reduction is carried out at pH 8.5. When the insulin receptor in placental membranes is reduced at pH 8.5, the receptor's affinity for insulin is not changed when binding is measured in the membrane. However, the Kd for insulin binding is reduced 10-fold when alpha beta receptor halves are subsequently solubilized. Scatchard analysis of insulin binding to reduced or intact receptors in the membrane and in soluble form together with sucrose density gradient analysis of soluble receptors suggests that alpha beta receptor halves remain associated in the membrane after reduction, but they are dissociated upon solubilization. We interpret these results to mean that the association of two ligand binding domains, 2 alpha beta receptor halves, is required for the formation of an insulin receptor with high affinity for ligand.  相似文献   

15.
Summary The kidney plays a major role in the handling of circulating insulin in the blood, primarily via reuptake of filtered insulin at the luminal brush border membrane.125I-insulin associated with rat renal brush border membrane vesicles (BBV) in a time-and temperature-dependent manner accompanied by degradation of the hormone to trichloroacetic acid (TCA)-soluble fragments. Both association and degradation of125I-insulin were linearly proportional to membrane protein concentration with virtually all of the degradative activity being membrane assoicated. Insulin, proinsulin and desoctapeptide insulin all inhibited the association and degradation of125I-insulin by BBV, but these processes were not appreciably afected by the insulin-like growth factors IGF-I and IGF-II or by cytochromec and lysozyme, low molecular weight, filterable, proteins, which are known to be reabsorbed in the renal tubules by luminal endocytosis. When the interaction of125I-insulin with BBV was studied at various medium osmolarities (300–1100 mosm) to alter intravesicular space, association of the ligand with the vesicles was unaffected, but degradation of the ligand by the vesicles decreased progressively with increasing medium osmolarity. Therefore, association of125I-insulin to BBV represented binding of the ligand to the membrane surface and not uptake of the hormone or its degradation products into the vesicles. Attempts to crosslink125I-insulin to a high-affinity insulin receptor using the bifunctional reagent disuccinimidyl suberate revealed only trace amounts of an125I-insulin-receptor complex in brush border membrane vesicles in contrast to intact renal tubules where this complex was readily observed. Both binding and degradation of125I-insulin by brush border membranes did not reach saturation even at concentrations of insulin approaching 10–5 m. These results indicate the presence of low-affinity, high-capacity binding sites for125I-insulin on renal brush border membranes which can clearly distinguish insulin from the insulin-like growth factors and other low molecular weight proteins and polypeptides, but which do not differentiate insulin from its analogues ad do the biological receptors for the hormone. The properties and location of these binding sites make them attractive candidates for the sites at which insulin is reabsorbed in the renal tubule.  相似文献   

16.
A partially purified insulin receptor preparation from rat liver was incubated at 37 degrees C with and without the protein-disulfide interchange enzyme, glutathione-insulin transhydrogenase (thiol: protein-disulfide oxidoreductase/isomerase, EC 1.8.4.2/5.3.4.1). Insulin-binding activity was then assessed by crosslinking receptor-125I-insulin complexes and subjecting them to electrophoresis on SDS-polyacrylamide gels in the absence and presence of reductant followed by autoradiography. Prior incubation of the receptor at 37 degrees C in the absence of the enzyme markedly decreased the subsequent binding of 125I-insulin to the holoreceptor (Mr 350 000) and to its subunits (Mr 180 000 and 130 000), while addition of the enzyme to the preincubation medium served to substantially prevent this decrease. The loss in binding at 37 degrees C was not restored by subsequent addition of the enzyme, nor was the loss prevented by any of the several known inhibitors of proteolysis. The apparent stabilization of receptor by transhydrogenase, as evidenced by the increase in binding above control levels, was proportional to both the enzyme concentration and the duration of incubation. These effects seem to be specific for transhydrogenase, since several other disulfide-containing proteins were found to be ineffective. These data suggest that the stabilization of the subunit structure of the insulin receptor at physiological temperatures may take place via a disulfide interchange reaction catalyzed by glutathione-insulin transhydrogenase.  相似文献   

17.
In the preceding paper (Aiyer, R. A. (1983) J. Biol. Chem. 258, 14992-14999), the hydrodynamic properties of insulin receptors from turkey erythrocyte plasma membranes solubilized in nondenaturing detergents (Triton X-100 and sodium deoxycholate) were characterized. Two specific insulin-binding species are observed after velocity sedimentation in linear sucrose density gradients: peak II whose protein molecular weight (Mp) is 180,000 +/- 45,000 and its disulfide-linked dimer, peak I (Mp, 355,000 +/- 65,000). This paper describes the subunit composition of these species determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Insulin receptors were covalently attached to [125I]iodoinsulin with disuccinimidyl suberate. After solubilization in Triton X-100 or deoxycholate, peaks I and II were separated by sedimentation and subjected to SDS-PAGE; the constituent polypeptides were then identified by autoradiography. Under reducing conditions, both peaks I and II yield a major band of apparent molecular weight (Mapp) of 135,000; this band most likely represents the insulin-binding subunit (alpha). Minor bands of lower molecular weight are also seen whose significance is not entirely obvious. Under nonreducing conditions, peak I yields bands at Mapp = 230,000 and at greater than 240,000, while peak II yields bands at Mapp = 120,000 and 200,000. When these bands were cut out of the gel and subjected to SDS-PAGE following reduction with 10% beta-mercaptoethanol, all of them produced a single band that migrated with Mapp = 135,000. These results indicate that the alpha subunit is linked by disulfide bonds to at least one more subunit (beta). It is also apparent that the alpha subunit travels with higher mobility (Mapp = 120,000) under nonreducing conditions, suggesting the presence of intrachain disulfide bonds. Thus, peak II has a minimum subunit composition of alpha beta, where alpha is the insulin-binding subunit with a minimum Mr = 120,000-135,000 and beta has a minimum Mr = 80,000-90,000. And peak I, the disulfide-linked dimer of peak II, has a minimum subunit composition of alpha 2 beta 2. These results were further confirmed by cross-linking of protein subunits with glutaraldehyde, an (alpha, omega)-dialdehyde that reacts with amino groups. Within the limits of error, these molecular weights are in agreement with those estimated from the hydrodynamic properties of the detergent-solubilized, native receptor species reported in the preceding paper.  相似文献   

18.
The insulin receptor from rat skeletal muscle was characterized. Treatment of muscle membranes with the photoactive insulin analog, 125I[N-epsilonB29-monoazidobenzoyl]-insulin revealed a single protein band of 135,000 Da, the alpha subunit. Iodination of total membrane protein followed by Triton X-100 solubilization and immunoprecipitation demonstrated the presence of a protein band of 90,000 Da, the beta subunit, together with a protein band of 190,000 Da, which may be the receptor precursor. In partially purified receptor preparations, the beta subunit exhibited dose-dependent, insulin-stimulated phosphorylation with incorporation of phosphate solely into tyrosine residues, which was also observed in the 190,000-Da receptor precursor. Purified plasma membranes contained a large amount of insulin-degrading activity which had to be inactivated prior to performing insulin-binding studies. If degradation of insulin was not prevented, apparent enhanced binding in the presence of unlabeled insulin was observed.  相似文献   

19.
The insulin-receptor cycle was investigated in cultured foetal rat hepatocytes by determining the variations in insulin-binding sites at the cell surface after short exposure to the hormone. Binding of 125I-insulin was measured at 4 degrees C after dissociation of prebound native insulin. Two protocols were used: exchange binding assay and binding after acid treatment; both gave the same results. Cell-surface 125I-insulin-receptor binding decreased sharply (by 40%) during the first 5 min of 10 nM-insulin exposure (t1/2 = 2 min) and remained practically constant thereafter; subsequent removal of the hormone restored the initial binding within 10 min. This fall-rise sequence corresponded to variations in the number of insulin receptors at the cell surface, with no detectable change in receptor affinity. The reversible translocation of insulin receptors from the cell surface to a compartment not accessible to insulin at 4 degrees C was hormone-concentration- and temperature-dependent. SDS/polyacrylamide-gel electrophoresis after cross-linking of bound 125I-insulin to cell-surface proteins with disuccinimidyl suberate showed that these variations were not associated with changes in Mr of binding components, in particular for the major labelled band of Mr 130,000. The insulin-receptor cycle could be repeated after intermittent exposure to insulin. Continuous or intermittent exposure to the hormone gave a similar glycogenic response, contrary to the partial effect of a unique short (5-20 min) exposure. A relationship could be established between the repetitive character of the rapid insulin-receptor cycle and the maximal expression of the biological effect in cultured foetal hepatocytes.  相似文献   

20.
Analysis of mouse Swiss/3T3 fibroblasts and rat hepatoma H35 cells using the affinity cross-linking method revealed multiple forms of 125I-insulin binding components (Mr greater than 300,000) in the absence of reducing agents. The same analysis, in the presence of reducing agents, revealed two major components (Mr = 125,000 and Mr = 30,000). The Mr = 125,000 component appeared to be the alpha-subunit of the high-affinity insulin receptor, whereas the small insulin-binding component of Mr = 30,000 was not a degradation product of the alpha-subunit but was apparently associated with the insulin receptor. We suggest that it is likely a novel component for regulating the function of insulin receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号