首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteins on the merozoite surface of the human malarial parasite Plasmodium falciparum are targets of the host's immune response. The merozoite surface location of p75, a 75 kd P. falciparum protein, was established by immunoelectron microscopy using antisera raised to the expressed product of a cDNA clone. Immunoprecipitation from protein extracts biosynthetically labeled during different periods of the asexual cycle showed that p75 is made continuously, although ring-stage parasites appear to synthesize larger quantities. p75 is conserved and invariant in size in eight isolates of P. falciparum. The 880 bp cDNA sequence encoding part of p75 reveals one open reading frame containing a repetitive sequence unit of four amino acids. The predicted reading frame is correct since antisera to a synthetic peptide corresponding to the repetitive region recognize p75 in immunoblots. The sequence of p75 is homologous with the sequences of proteins from the ubiquitous, highly conserved family of 70 kd heat-shock proteins, suggesting an important physiological function for p75. The cDNA fragment encoding part of p75 hybridizes with multiple genomic fragments, whose sizes are identical in DNA from nine P. falciparum strains, suggesting that the gene for p75 is well conserved and may be part of a gene family.  相似文献   

2.
Chromosomal DNA was prepared from seven Plasmodium falciparum isolates that had been cultured in vitro and from a cloned P. falciparum line. The DNA was cleaved with restriction endonucleases, fractionated by agarose gel electrophoresis, blotted to nitrocellulose, and hybridized with a series of radioactively labeled DNA probes. The probes had been derived from cDNA clones encoding portions of P. falciparum antigens. Simple, reproducible band patterns that differed for many of the isolates were obtained. Parasite isolates collected from different continents could be readily distinguished, as could some but not all isolates collected from one restricted region of Papua New Guinea. Application of this technique for the identification and differentiation of parasite strains was explored. The patterns of hybridization observed were consistent with the proposition that blood stages of P. falciparum have a haploid genome.  相似文献   

3.
The cDNA for a novel Plasmodium cysteine protease (falcipain-2) has been isolated from a Plasmodium falciparum cDNA library. A 602 bp fragment was amplified from P. falciparum by PCR using degenerate oligonucleotide primers. The primers were designed based upon the amino acids flanking the active site cysteine and asparagine residues that are conserved in the eukaryotic cysteine proteases. This fragment was used to screen a P. falciparum cDNA library and isolated a 2.1 kb clone that encoded a novel cysteine protease. The sequence of the 2.1 kb clone predicted a 56 kDa protein containing a typical signal sequence, a prosequence and a 24.7 kDa mature protease with 37% identity to falcipain-1, a hemoglobin-degrading cysteine protease of P. falciparum. Northern blot analysis detected a 2.1 kb message in trophozoites. Taken together, we have isolated a novel cysteine protease of P. falciparum, which may play an important role at the late stages of the erythrocytic cycle of the parasite.  相似文献   

4.
R F Howard  H A Stanley  R T Reese 《Gene》1988,64(1):65-75
During its intra-erythrocytic cycle, Plasmodium falciparum synthesizes a protein of apparent Mr 250,000-300,000. Its precise size is dependent on the P. falciparum isolate examined. This protein contains phosphate covalently bound to one or more serine residues and hence is termed PP300. Monoclonal antibody, McAb4-1F, binds to PP300 on immunoblots of protein extracts from all parasite isolates tested, both those exhibiting and those lacking the knob phenotype. Using McAb4-1F, the polypeptide was shown to be physically associated with the plasma membrane in a membrane-isolation procedure. However, in an indirect immunofluorescence assay the McAb appeared to bind to antigen associated with the erythrocyte plasma membrane in parasitized cells. However, it reacted only to fixed, not unfixed, parasitized erythrocytes indicating that the epitope is not normally exposed to extracellular antibodies. Clone 29-2 was isolated by a McAb4-1F immunoscreen of a P. falciparum complementary DNA (cDNA) expression library created in pUC8. Rat anti-clone serum which was raised to the purified protein encoded by the lacZ-29-2 fusion in pUC8 reacted with PP300 in immunoblots of parasite antigen. In Southern-blot analyses of parasite DNA digested with EcoRI, HindIII, or EcoRV, the 29-2 DNA insert hybridized to more than one fragment even though the insert lacked internal sites for these enzymes. In addition, hybridization studies were conducted using two oligodeoxy-nucleotides which were constructed based on the sequence of a cDNA clone which encoded part of a similar high-molecular-weight P. falciparum protein [Coppel et al., Mol. Biochem. Parasitol. 20 (1986) 265-277]. Analysis of these results indicates that the two cDNA sequences are parts of the same gene or a family of related genes.  相似文献   

5.
A protein of 75 kDa is found in large quantities throughout the blood stages of the human malarial parasite, Plasmodium falciparum. Based on a partial amino acid sequence for p75, previously deduced from a cDNA clone encoding approximately 40% of the molecule, secondary structural predictions were made. The potential role of long range effects on the tertiary structure of the protein stabilized by disulfide bridges was determined by reduction and alkylation of the fusion protein. Five regions were then chosen for peptide modeling. Peptides of 16, 28, 49, 64, and 76 residues were synthesized and used to immunize rabbits. All but the 16-residue peptides were capable of stimulating boostable IgG antibody responses in rabbits, but the antibody produced against the 49 mer did not react with the native parasite protein. Thus, the 28, 64, and 76 residue peptides represent good immunologic models for portions of the P. falciparum 75-kDa protein capable of stimulating both T and B cells in rabbits. The peptides were also used to probe whether any of the selected regions contain epitopes which react with antibodies from owl monkeys immune to P. falciparum. Of these peptides, two were found to be consistently recognized in ELISA by four owl monkey antisera raised in response to malarial infection. Because these two peptides model a cysteine-containing region of the protein, owl monkey sera were also used as probes of the importance of disulfide bonding in maintaining the native structure. The results obtained were consistent with a folding pattern for p75 that incorporates a disulfide bond between cysteines 161 and 194. These results also suggest that most of the epitopes recognized in this part of p75 by the immune system of the monkey are created by folding of the molecule.  相似文献   

6.
7.
We describe the expression in Escherichia coli, isolation by immunological screening and complete nucleotide sequence of a cDNA clone from the malaria parasite Plasmodium falciparum. The deduced amino acid sequence contains separate blocks of repetitive hexapeptide and pentapeptide sequences and we have confirmed that these represent epitopes by reaction of the corresponding synthetic peptides with human antibodies. As the predicted size is Mr 21,000 and the overall composition is 30% His and 29% Ala, the polypeptide has been termed the small histidine-alanine rich protein (SHARP). This polypeptide is highly polymorphic in different P. falciparum isolates and cross reacts immunologically with a distinct gene product of P. falciparum. Although it is related to the Histidine Rich Protein (HRP) of P. lophurae by virtue of its high His content, it shows no obvious sequence relationship to the HRP outside the repeats.  相似文献   

8.
A Plasmodium falciparum protein of 130,000 molecular weight (m.w.) has been identified, cloned in Escherichia coli, and completely sequenced (Kochan et al. 1986). The protein appeared to bind to soluble glycophorin, a host erythrocyte surface protein. In the present study, extracts of parasites from different intraerythrocytic stages were immunoblotted with antibodies, raised against a 30,000 m.w. fusion protein corresponding to the 3' end of the 130,000 m.w. protein. It was demonstrated that the protein is synthesized at the trophozoite stage, accumulates at the schizont stage, and is processed at the merozoite stage to a triplet of three polypeptides. The processed proteins are present in the culture supernatant at the time of merozoite burst from the red cell. Immunofluorescent staining of the parasite at different intracellular stages indicates that the protein is localized on the parasite at the trophozoite stage. At late trophozoite stage, it appears to be transported to the erythrocyte cytoplasm, where it is present in small vesicles or inclusions. In mature schizonts the protein accumulates around the plasma membrane of the erythrocyte. At the segmenter stage, just prior to merozoite release, it appears also to surround the intracellular merozoite, as well as the erythrocyte plasma membrane. The soluble 130,000 m.w. protein binds to erythrocytes but binds significantly greater to erythrocyte membranes, suggesting it binds to an internal domain of glycophorin rather than the domain exposed on the surface. The 130,000 m.w. protein is present in 11 different geographic isolates of P. falciparum from diverse geographic origins. Its molecular weight is similar in all isolates.  相似文献   

9.
The malaria parasite contains a nuclear genome with 14 chromosomes and two extrachromosomal DNA molecules of 6 kb and 35 kb in size. The smallest genome, known as the 6 kb element or mitochondrial DNA, has been sequenced from several Plasmodium falciparum isolates because this is a potential drug target. Here we describe the complete nucleotide sequence of this element from an Indian isolate of P. falciparum. It is 5967 bp in size and shows 99.6% homology with the 6 kb element of other isolates. The element contains three open reading frames for mitochondrial proteins-cytochrome oxidase subunit I (CoI), subunit III (CoIII) and cytochrome b (Cyb) which were found to be expressed during blood stages of the parasite. We have also sequenced the entire cyb gene from several Indian isolates of P. falciparum. The rate of mutation in this gene was very low since 12 of 14 isolates showed the identical sequence. Only one isolate showed a maximum change in five amino acids whereas the other isolate showed only one amino acid change. However, none of the Indian isolates showed any change in those amino acids of cyb which are associated with resistance to various drugs as these drugs are not yet commonly used in India.  相似文献   

10.
The mosquito midgut ookinete stage of the malaria parasite, Plasmodium, possesses microneme secretory organelles that mediate locomotion and midgut wall egress to establish sporogonic stages and subsequent transmission. The purpose of this study was 2-fold: 1) to determine whether there exists a single micronemal population with respect to soluble and membrane-associated secreted proteins; and 2) to evaluate the ookinete micronemal proteins chitinase (PgCHT1), circumsporozoite and TRAP-related protein (CTRP), and von Willebrand factor A domain-related protein (WARP) as immunological targets eliciting sera-blocking malaria parasite infectivity to mosquitoes. Indirect immunofluorescence localization studies in Plasmodium gallinaceum using specific antisera showed that all three proteins are distributed intracellularly with a similar granular cytoplasmic appearance and with focal concentration of PgCHT1 and PgCTRP, but not PgWARP, at the ookinete apical end. Immunogold double-labeling electron microscopy, using antisera against the membrane-associated protein CTRP and the soluble WARP, showed that these two proteins co-localized to the same micronemal population. Within the microneme CTRP was associated peripherally at the microneme membrane, whereas PgCHT1 and WARP were diffuse within the micronemal lumen. Sera produced against Plasmodium falciparum WARP significantly reduced the infectivity of P. gallinaceum to Aedes aegypti and P. falciparum to Anopheles mosquitoes. Antisera against PgCTRP and PgCHT1 also significantly reduced the infectivity of P. gallinaceum for A. aegypti. These results support the concept that ookinete micronemal proteins may constitute a general class of malaria transmission-blocking vaccine candidates.  相似文献   

11.
An exported protein of the erythrocytic stages of the malaria parasite, Plasmodium falciparum, has epitope(s) in common with the surface of the sporozoite stage (1). Two cDNA clones encoding this protein, Ag5.1, have now been isolated and expressed in Escherichia coli. The coding sequence contains a region with strong homology to that of the circumsporozoite protein of P. falciparum. Other features of the sequence can be explained in terms of the observed behaviour of the protein in the parasite life cycle. The Ag5.1 can now be synthesised in bacteria in sufficient amounts to analyse the immune response to this protein.  相似文献   

12.
Differential screening of cDNA libraries constructed from knobby and predominantly knobless Plasmodium falciparum isolates, identified the sequence SD17. Chromosome blotting experiments have shown that this sequence, which is located on chromosome 2 of most isolates, was deleted in the cloned parasite line E12 of the FCQ27/PNG isolate. Here we show that erythrocytes infected with the SD17-containing cloned line D10 have typical knob structures on their surfaces, whereas those infected with the line E12 lack knobs. An expression clone was constructed from SD17 and used to affinity purify antibodies from the sera of individuals living in areas of Papua New Guinea where malaria is endemic. The antibodies reacted in immunoblotting experiments with a single polypeptide that varied in Mr from 85,000 to 105,000 among different isolates. The antigen was not expressed in the knobless clone E12. Postembedding immunoelectron microscopy showed localization of the antigen over the knobs of FC27 and two other isolates, largely on the cytoplasmic side. We conclude that the parasite antigen corresponding to clone SD17 is a knob protein.  相似文献   

13.
We have adapted the "directional tag subtractive hybridization" technique as a means of investigating stage-specific gene expression in Plasmodium falciparum. This technique utilizes unidirectional cDNA libraries cloned into separate lambda vectors and involves hydroxyapatite chromatographic separation of target antisense cDNA and driver sense strand cRNA followed by PCR amplification of cDNA sequences specific to the target stage. This technique enabled efficient subtraction of asexual blood stage sequences from a P. falciparum sporozoite cDNA library and led to identification of novel sporozoite sequences. This technique can be applied to study gene expression in parasite stages that are difficult to obtain routinely.  相似文献   

14.
A King  D W Melton 《Nucleic acids research》1987,15(24):10469-10481
The isolation of cDNA clones for hypoxanthine-guanine phosphoribosyltransferase (HPRT) from the human malarial parasite, Plasmodium falciparum, is described. Northern analysis indicates that P. falciparum HPRT mRNA is the same size as that coding for mammalian HPRT. The predicted amino acid sequence of the P. falciparum HPRT protein shows extensive homology to the mammalian enzyme. Homology between the two proteins occurs in distinct blocks and a putative catalytic binding domain in the centre of the protein is also conserved. Five out of the seven characterised mammalian HPRT missense mutations map to regions which are conserved in the P. falciparum protein.  相似文献   

15.
BACKGROUND: The development of Plasmodium falciparum within human erythrocytes induces a wide array of changes in the ultrastructure, function and antigenic properties of the host cell. Numerous proteins encoded by the parasite have been shown to interact with the erythrocyte membrane. The identification of new interactions between human erythrocyte and P. falciparum proteins has formed a key area of malaria research. To circumvent the difficulties provided by conventional protein techniques, a novel application of the phage display technology was utilised. METHODS: P. falciparum phage display libraries were created and biopanned against purified erythrocyte membrane proteins. The identification of interacting and in-frame amino acid sequences was achieved by sequencing parasite cDNA inserts and performing bioinformatic analyses in the PlasmoDB database. RESULTS: Following four rounds of biopanning, sequencing and bioinformatic investigations, seven P. falciparum proteins with significant binding specificity toward human erythrocyte spectrin and protein 4.1 were identified. The specificity of these P. falciparum proteins were demonstrated by the marked enrichment of the respective in-frame binding sequences from a fourth round phage display library. CONCLUSION: The construction and biopanning of P. falciparum phage display expression libraries provide a novel approach for the identification of new interactions between the parasite and the erythrocyte membrane.  相似文献   

16.
17.
The malaria parasite Plasmodium falciparum infects humans and first targets the liver where liver-stage parasites undergo pre-erythrocytic replication. Liver-stage antigen-1 (LSA-1) is currently the only identified P. falciparum protein for which expression is restricted to liver stages. Yet, the importance of LSA-1 for liver-stage parasite development remains unknown. Here we deleted LSA-1 in the NF54 strain of P. falciparum and analysed the lsa-1(-) parasites throughout their life cycle. lsa-1(-) sporozoites had normal gliding motility and invasion into hepatocytes. Six days after infection of a hepatocytic cell line, lsa-1(-) parasites exhibited a moderate phenotype with an ~50% reduction of late liver-stage forms when compared with wild type. Strikingly, lsa-1(-) parasites growing in SCID/Alb-uPA mice with humanized livers showed a severe defect in late liver-stage differentiation and exo-erythrocytic merozoite formation 7 days after infection, a time point when wild-type parasites develop into mature merozoites. The lsa-1(-) parasites also showed aberrant liver-stage expression of key parasite proteins apical membrane antigen-1 and circumsporozoite protein. Our data show that LSA-1 plays a critical role during late liver-stage schizogony and is thus important in the parasite transition from the liver to blood. LSA-1 is the first P. falciparum protein identified to be required for this transitional stage of the parasite life cycle.  相似文献   

18.
The nucleotide and protein sequence of the 40S ribosomal protein S17 (RibS17) of the protozoan parasite Theileria annulata has been determined. Southern blot analysis showed the gene was single copy and comparative sequence analysis revealed that the predicted polypeptide had high sequence homology with the RibS17 from other organisms. Northern blot analysis showed that there was a 3-fold increase in the level of RibS17 RNA between the macroschizont and the piroplasm stage of the lifecycle, whereas, there was no difference in expression between the sporozoite and the macroschizont stages. Antisera to the purified fusion protein, corresponding to the terminal 50 amino acids of the protein sequence, were raised in rabbits. Western analysis detected a polypeptide of the predicted size that was more abundant in the piroplasm stage compared with the macroschizont stage. Immunofluorescence analysis with the same antisera revealed a strong signal in the macroschizont and piroplasm stages, but the antiserum did not cross-react with the bovine host cells. The antisera did, however, cross-react with Toxoplasma gondii tachyzoites and Plasmodium falciparum merozoites. The possible functional significance of the stage related increase in abundance of a ribosomal protein is discussed.  相似文献   

19.
Vacuolar H(+)-ATPase (V-ATPase), an electrogenic proton pump, is highly expressed in Plasmodium falciparum, the human malaria parasite. Although V-ATPase-driven proton transport is involved in various physiological processes in the parasite, the overall features of the V-ATPase of P. falciparum, including the gene organization and biogenesis, are far less known. Here, we report cDNA cloning of proteolipid subunit c of P. falciparum, the smallest and most highly hydrophobic subunit of V-ATPase. RT-PCR analysis as well as Northern blotting indicated expression of the proteolipid gene in the parasite cells. cDNA, which encodes a complete reading frame comprising 165 amino acids, was obtained, and its deduced amino acid sequence exhibits 52 and 57% similarity to the yeast and human counterparts, respectively. Southern blot analysis suggested the presence of a single copy of the proteolipid gene, with 5 exons and 4 introns. Upon transfection of the cDNA into a yeast null mutant, the cells became able to grow at neutral pH, accompanied by vesicular accumulation of quinacrine. In contrast, a mutated proteolipid with replacement of glutamate residue 138 with glutamine did not lead to recovery of the growth ability or vesicular accumulation of quinacrine. These results indicated that the cDNA actually encodes the proteolipid of P. falciparum and that the proteolipid is functional in yeast.  相似文献   

20.
We have identified a homologue of the GTP-binding protein, Sar1p, in Plasmodium falciparum. Sar1p is a small GTPase that is thought to play a crucial role in trafficking of proteins between the endoplasmic reticulum and the Golgi. The P.falciparum SAR1 gene is located on chromosome 4 and comprises two exons separated by a 508 bp intron. The deduced amino acid sequence of PfSar1p (GenBank accession number AF104306) shows 71% similarity (58% identity) to Sar1p from Saccharomyces cerevisiae. Expression of PfSar1p in erythrocytic stages of P. falciparum was confirmed by sequencing of a tryptic peptide derived from a polypeptide excised from an SDS-polyacrylamide gel. A recombinant protein corresponding to approximately 70% of the PfSar1p sequence was used to raise antibodies. The affinity-purified antiserum recognised a protein with an apparent molecular weight of 23 K in Western blots of malaria-infected erythrocytes but not in uninfected erythrocytes. PfSar1p was shown to be largely insoluble in non-ionic detergent and a low ionic strength buffer. Confocal immunofluorescence microscopy of malaria-infected erythrocytes was used to show that PfSar1p is located near the periphery of the parasite in discrete compartments, which appear to be distinct from the parasite endoplasmic reticulum. In addition, PfSar1p appears to be exported to structures outside the parasite in the erythrocyte cytoplasm. The export of PfSar1p to the erythrocyte cytosol is inhibited by treatment with brefeldin A. This provides the first evidence that the malaria parasite is capable of elaborating components of the classical vesicle-mediated trafficking machinery outside the boundaries of its own plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号