首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In culture, the phytopathogenic fungus Phytophthora cryptogea secretes a protein which elicits hypersensitive-like necroses and protects tobacco plants against invasion by the pathogen Phytophthora parasitica var. nicotianae. This protein, named cryptogein, has been purified and its amino acid sequence determined. In this work, we studied the effect of cryptogein on tobacco cell suspension cultures. Cryptogein was lethal at about 0.10 micromolar. When added at sublethal doses, it elicited the production of ethylene and phytoalexins. It also induced a rapid increase in pH and conductivity of the extracellular medium without affecting the integrity of the plasma membrane. Cryptogein reduced the fusicoccin-induced acidification of the extracellular medium. The concentration which inhibited the fusicoccin response by 50% was 0.8 nanomolar, while 1 micromolar erythrosine B, an ATPase inhibitor, was needed to produce the same inhibition. However, cryptogein did not inhibit the activity of a purified plasma membrane ATPase. Results of binding studies with whole cells suggested the presence of elicitor-binding sites with a high affinity for cryptogein. The involvement of the plasma membrane during the initial interaction between elicitor and cells is discussed.  相似文献   

2.
In culture, Phytophthora fungi — except P. nicotianae — secrete proteins, called elicitins, which cause necrosis on the leaf of the non-host tobacco (Nicotiana tabacum L.) at a distance from the inoculation site, and are responsible for the incompatible reaction. Cryptogein and capsicein are elicitins secreted by P. cryptogea and P. capsici, respectively, and form part of a novel family of 10-kDa holoproteins. On tobacco, the necrotic activity of cryptogein is approx. 100-fold higher than that of capsicein. Using elicitins radioactively labelled in vivo, we have demonstrated that cryptogein and capsicein (i) move from a wound in the stem towards the leaves where they interact directly, (ii) reach their target without undergoing any molecular alteration, (iii) are carried in, and at the same rate as, the sap flow in the xylem, (iv) do not alter the rate of the xylem flow although they are able to provoke drastic damage to the lamina. Consequently, the remote necrotic activity of elicitins does not require any transportable secondary plant elicitor, so the differences in necrotic properties should be due to structural features involved in the interaction of elicitins with the leaf target cells.Abbreviations Mr relative molecular mass - RPLC reversephase liquid chromatography - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis The authors are indebted to Mauricette Sallé-Tourné, Marc Sallantin and Christian Ouali for their skilful technical assistance.  相似文献   

3.
Migration of the Fungal Protein Cryptogein within Tobacco Plants   总被引:9,自引:3,他引:6       下载免费PDF全文
Cryptogein (CRY), a protein secreted by Phytophthora cryptogea, causes necrosis on tobacco (Nicotiana tabacum) plants at the site of application (the stem or the roots) and also on distant leaves. Autoradiography of plantlets after root absorption of radioiodinated CRY demonstrated a rapid migration of the label to the leaf lamina via the veins. Using an anti-CRY antiserum, a CRY-related antigen was detected in the stem and leaves of CRY-treated plants at a distance from the site of application. This antigen had the same molecular weight as CRY and was detected in the leaves as early as 1 hour after stem treatment, i.e. long before necrosis was detectable. The antigen was also detected in plants inoculated with P. cryptogea. The distant location of the necrosis induced by the fungus or by CRY can be ascribed to the migration of this protein, which is toxic to tobacco cells. It is proposed that CRY, which also elicits defense reactions in tobacco, might contribute to the hypersensitive response of tobacco to P. cryptogea.  相似文献   

4.
Cryptogein is a 10 kDa protein secreted by the oomycete Phytophthora cryptogea that activates defence mechanisms in tobacco plants. Among early signalling events triggered by this microbial‐associated molecular pattern is a transient apoplastic oxidative burst which is dependent on the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity of the RESPIRATORY BURST OXIDASE HOMOLOG isoform D (RBOHD). Using radioactive [33P]‐orthophosphate labelling of tobacco Bright Yellow‐2 suspension cells, we here provide in vivo evidence for a rapid accumulation of phosphatidic acid (PA) in response to cryptogein because of the coordinated onset of phosphoinositide‐dependent phospholipase C and diacylglycerol kinase (DGK) activities. Both enzyme specific inhibitors and silencing of the phylogenetic cluster III of the tobacco DGK family were found to reduce PA production upon elicitation and to strongly decrease the RBOHD‐mediated oxidative burst. Therefore, it appears that PA originating from DGK controls NADPH‐oxidase activity. Amongst cluster III DGKs, the expression of DGK5‐like was up‐regulated in response to cryptogein. Besides DGK5‐like is likely to be the main cluster III DGK isoform silenced in one of our mutant lines, making it a strong candidate for the observed response to cryptogein. The relevance of these results is discussed with regard to early signalling lipid‐mediated events in plant immunity.  相似文献   

5.
6.
The phytopathogenic fungi Phytophthora cryptogea and Phytophthora capsici cause systemic leaf necrosis on their non-host tobacco; in culture they release proteins, called cryptogein and capsicein, which elicit similar necrosis. In addition, both proteins protect tobacco against invasion by the pathogen Phytophthora nicotianac, the agent of the tobacco black shank, that is unable to produce such an elicitor. Cryptogein causes visible leaf necrosis starting at about 1 microgram/plant, whereas 50-fold as much capsicein is required for the same reaction. Capsicein induces protection even in near absence of leaf necrosis. The activities of both elicitors are eliminated upon pronase digestion. They are proteins of similar Mr (respectively 10,323 and 10,155) and their complete amino acid sequences were determined. They consist of 98 residues, with some internal repetitions of hexapeptides and heptapeptides. 85% identity was observed between both sequences: only two short terminal regions are heterologous, while the central core is entirely conserved. Secondary structure predictions, hydropathy and flexibility profiles differ only around position 15 and at the C-terminus; these modifications could play a role in the modulation of their biological activities. After a search of the sequence data bases, they appear to be novel proteins.  相似文献   

7.
8.
Eicosapentaenoic and arachidonic acids in extracts of Phytophthora infestans mycelium were identified as the most active elicitors of sesquiterpenoid phytoalexin accumulation in potato tuber slices. These fatty acids were found free or esterified in all fractions with elicitor activity including cell wall preparations. Yeast lipase released a major portion of eicosapentaenoic and arachidonic acids from lyophilized mycelium. Concentration response curves comparing the elicitor activity of the polyunsaturated fatty acids to a cell-free sonicate of P. infestans mycelium indicated that the elicitor activity of the sonicated mycelium exceeded that which would be obtained by the amount of eicosapentaenoic and arachidonic acids (free and esterified) present in the mycelium. Upon acid hydrolysis of lyophilized mycelium, elicitor activity was obtained only from the fatty acid fraction. However, the fatty acids accounted for only 21% of the activity of the unhydrolyzed mycelium and the residue did not enhance their activity. Centrifugation of the hydrolysate, obtained from lyophilized mycelium treated with 2n NaOH, 1 molarity NaBH4 at 100°C, yielded a supernatant fraction with little or no elicitor activity. Addition of this material to the fatty acids restored the activity to that which was present in the unhydrolyzed mycelium. The results indicate that the elicitor activity of the unsaturated fatty acids is enhanced by heat and base-stable factors in the mycelium.  相似文献   

9.
Phytophthora quercina, P. citricola and P. gonapodyides isolated from declining oak roots and from soil rhizosphere in the field, released proteins into their culture medium. The proteins of P. quercina and P. gonapodyides caused severe chlorosis and necrosis on tobacco leaves. Only few symptoms were seen for the P. citricola protein. Surprisingly leaf chlorosis and necrosis were only visible in the light, whereas wilt symptoms were light-independent. The proteins were characterized on SDS gels as small peptides with basic and acidic isoelectric points. All proteins were heat stable. Even boiling for 15 min did not affect their activity. However, pronase treatment totally destroyed their activity. Transmission electron microscopy studies clearly showed that membrane structures especially of chloroplasts were damaged. The proteins of P. quercina and P. gonapodyides strongly crossreacted with the antibody raised against the P. cryptogea protein cryptogein. Therefore, these proteins might belong to the family of Phytophthora leaf necrotic proteins called elicitins.  相似文献   

10.
Cryptogein is a 10-kD protein secreted by the oomycete Phytophthora cryptogea that induces a hypersensitive response on tobacco (Nicotiana tabacum var. Xanthi) plants and a systemic acquired resistance against various pathogens. The mode of action of this elicitor has been studied using tobacco cell suspensions. Our previous data indicated that within minutes, cryptogein signaling involves various events including changes in ion fluxes, protein phosphorylation, sugar metabolism, and, eventually, cell death. These results suggested that transport of sugars could be affected and, thus, involved in the complex relationships between plant and microorganisms via elicitors. This led us to investigate the effects of cryptogein on glucose (Glc) uptake and mitochondrial activity in tobacco cells. Cryptogein induces an immediate inhibition of Glc uptake, which is not attributable to plasma membrane (PM) depolarization. Conversely, cryptogein-induced valine uptake is because of PM depolarization. Inhibition of the PM Glc transporter(s) was shown to be mediated by a calcium-dependent phosphorylation process, and is independent of active oxygen species production. This inhibition was associated with a strong decrease in O(2) uptake rate by cells and a large mitochondrial membrane depolarization. Thus, inhibition of Glc uptake accompanied by inhibition of phosphorylative oxidation may participate in hypersensitive cell death. These results are discussed in the context of competition between plants and microorganisms for apoplastic sugars.  相似文献   

11.
Cryptogein, a 98 amino acid protein secreted by the fungus Phytophthora cryptogea, induces a hypersensitive response and systemic acquired resistance in tobacco plants (Nicotiana tabacum var Xanthi). The mode of action of cryptogein has been studied using tobacco cell suspensions. The recognition of this elicitor by a plasma membrane receptor leads to a cascade of events including protein phosphorylation, calcium influx, potassium and chloride effluxes, plasma membrane depolarization, activation of a NADPH oxidase responsible for active oxygen species (AOS) production and cytosol acidification, activation of the pentose phosphate pathway, and activation of two mitogen-activated protein kinase (MAPK) homologues. The organization of the cryptogein responses reveals that the earliest steps of the signal transduction pathway involve plasma membrane activities. Their activation generates a complex network of second messengers which triggers the specific physiological responses. This study may contribute to our understanding of plant signaling processes because elicitors and a variety of signals including hormones, Nod factors, light, gravity and stresses share some common transduction elements and pathways.  相似文献   

12.
13.
The most abundant extracellular protein produced by Phytophthora parasitica var nicotianae at early stages of rapid growth in culture has a molecular weight of 46 kilodaltons and has been designated Ppn 46e. Culture conditions for the production of this protein have been optimized and the protein has been purified by gel filtration and ion-exchange chromatography. Ppn 46e is a soluble, acidic protein (pI 4.67). The amino acids Asx (aspartic acid or asparagine), alanine, glycine, Glx (glutamic acid or glutamine), and serine are the most abundant at 13.4%, 12.3%, 12.1%, 9.3%, and 9.3% of the residues, respectively. The purified protein is, by weight, 1.8% glucose, 1.6% mannose, and 0.5% galactose. A bioassay for Ppn 46e based on tobacco callus has been developed. In this assay as little as 20 nanograms (4.3 × 10−13 mole) Ppn 46e causes the accumulation of the sesquiterpenoid phytoalexin, capsidiol, as estimated by gas chromatography. Levels of capsidiol of 25 micrograms per gram fresh weight were elicited by 80 nanograms Ppn 46e per callus piece. Pretreatment of the protein with either pronase or by boiling resulted in a loss of elicitor activity. Periodate treatment, which inactivates glucan elicitors, did not affect the ability of Ppn 46e to cause capsidiol accumulation. Monospecific antibodies to Ppn 46e were raised in mice. Western blotting experiments employing these antibodies showed that Ppn 46e was present in infected tobacco plants. Dot blotting experiments revealed the presence of the Ppn 46e epitope(s) in Phytophthora megasperma, P. cactorum, P. cinnamomi, and P. infestans but not in Fusarium.  相似文献   

14.
Responses of plant cells to environmental stresses often involve morphological changes, differentiation and redistribution of various organelles and cytoskeletal network. Tobacco BY-2 cells provide excellent model system for in vivo imaging of these intracellular events. Treatment of the cell cycle-synchronized BY-2 cells with a proteinaceous oomycete elicitor, cryptogein, induces highly synchronous programmed cell death (PCD) and provide a model system to characterize vacuolar and cytoskeletal dynamics during the PCD. Sequential observation revealed dynamic reorganization of the vacuole and actin microfilaments during the execution of the PCD. We further characterized the effects cryptogein on mitotic microtubule organization in cell cycle-synchronized cells. Cryptogein treatment at S phase inhibited formation of the preprophase band, a cortical microtubule band that predicts the cell division site. Cortical microtubules kept their random orientation till their disruption that gradually occurred during the execution of the PCD twelve hours after the cryptogein treatment. Possible molecular mechanisms and physiological roles of the dynamic behavior of the organelles and cytoskeletal network in the pathogenic signal-induced PCD are discussed.Key words: actin microfilament, cell cycle, cryptogein, microtubules, nuclei, programmed cell death, tobacco BY-2 cells, vacuoles  相似文献   

15.
Characterization of the cryptogein binding sites on plant plasma membranes   总被引:15,自引:0,他引:15  
Cryptogein is a 98-amino acid proteinaceous elicitor of tobacco defense reactions. Specific binding of cryptogein to high affinity binding sites on tobacco plasma membranes has been previously reported (K(d) = 2 nM; number of binding sites: 220 fmol/mg of protein). In this study, biochemical characterization of cryptogein binding sites reveals that they correspond to a plasma membrane glycoprotein(s) with an N-linked carbohydrate moiety, which is involved in cryptogein binding. Radiation inactivation experiments performed on tobacco plasma membrane preparations indicated that cryptogein bound specifically to a plasma membrane component with an apparent functional molecular mass of 193 kDa. Moreover, using the homobifunctional cross-linking reagent disuccinimidyl suberate and tobacco plasma membranes incubated with (125)I-cryptogein, we identified, after SDS-polyacrylamide gel electrophoresis and autoradiography, two (125)I-cryptogein linked N-glycoproteins of about 162 and 50 kDa. Similar results were obtained using Arabidopsis thaliana and Acer pseudoplatanus plasma membrane preparations, whereas cryptogein did not induce any effects on the corresponding cell suspensions. These results suggest that either cryptogein binds to nonfunctional binding sites, homologues to those present in tobacco plasma membranes, or that a protein involved in signal transduction after cryptogein recognition is absent or inactive in both A. pseudoplatanus and A. thaliana.  相似文献   

16.
The rapid and effective activation of disease resistance responses is essential for plant defense against pathogen attack. These responses are initiated when pathogen-derived molecules (elicitors) are recognized by the host. We have developed a strategy for creating novel disease resistance traits whereby transgenic plants respond to infection by a virulent pathogen with the production of an elicitor. To this end, we generated transgenic tobacco plants harboring a fusion between the pathogen-inducible tobacco hsr 203J gene promoter and a Phytophthora cryptogea gene encoding the highly active elicitor cryptogein. Under noninduced conditions, the transgene was silent, and no cryptogein could be detected in the transgenic plants. In contrast, infection by the virulent fungus P. parasitica var nicotianae stimulated cryptogein production that coincided with the fast induction of several defense genes at and around the infection sites. Induced elicitor production resulted in a localized necrosis that resembled a P. cryptogea-induced hypersensitive response and that restricted further growth of the pathogen. The transgenic plants displayed enhanced resistance to fungal pathogens that were unrelated to Phytophthora species, such as Thielaviopsis basicola, Erysiphe cichoracearum, and Botrytis cinerea. Thus, broad-spectrum disease resistance of a plant can be generated without the constitutive synthesis of a transgene product.  相似文献   

17.
Viard MP  Martin F  Pugin A  Ricci P  Blein JP 《Plant physiology》1994,104(4):1245-1249
Changes in plasmalemma ion fluxes were observed when tobacco (Nicotiana tabacum) cells were treated with cryptogein, a proteinaceous elicitor from Phytophthora cryptogea. A strong alkalization of the culture medium, accompanied by a leakage of potassium, was induced within a few minutes of treatment. These effects reached a maximum after 30 to 40 min and lasted for several hours. This treatment also resulted in a rapid, but transient, production of activated oxygen species. All these physiological responses were fully sensitive to staurosporine, a known protein kinase inhibitor. Furthermore, a study of protein phosphorylation showed that cryptogein induced a staurosporine-sensitive phosphorylation of several polypeptides. These data suggest that phosphorylated proteins may be essential for the transduction of elicitor signals.  相似文献   

18.
We prepared a series of cryptogein mutants, an elicitor from Phytophthora cryptogea, with altered abilities to bind sterols and fatty acids. The induction of the early events, i.e., synthesis of active oxygen species and pH changes, in suspension tobacco cells by these mutated proteins was proportional to their ability to bind sterols but not fatty acids. Although the cryptogein-sterol complex was suggested to be a form triggering a defense reaction in tobacco, some proteins unable to bind sterols induced the synthesis of active oxygen species and pH changes. The modeling experiments showed that conformational changes after the introduction of bulky residues into the omega loop of cryptogein resemble those induced by sterol binding. These changes may be necessary for the ability to trigger the early events by elicitins. However, the ability to stimulate necrosis in suspension tobacco cells and the expression of defense proteins in tobacco plants were linked neither to the lipid binding capacity nor to the capacity to provoke the early events. On the basis of these experiments and previous results, we propose that elicitins could stimulate two signal pathways. The first one induces necroses and the expression of pathogen-related proteins, includes tyrosine protein kinases and mitogen-activated protein kinases, and depends on the overall structure and charge distribution. The second type of interaction is mediated by phospholipase C and protein kinase C. It triggers the synthesis of active oxygen species and pH changes. This interaction depends on the ability of elicitins to bind sterols.  相似文献   

19.
The phylogeny and taxonomy of Phytophthora cryptogea and Phytophthora drechsleri has long been a matter of controversy. To re-evaluate this, a worldwide collection of 117 isolates assigned to either P. cryptogea, P. drechsleri or their sister taxon, Phytophthora erythroseptica were assessed for morphological, physiological (pathological, cultural, temperature relations, mating) and molecular traits. Multiple gene phylogenetic analysis was performed on DNA sequences of nuclear (internal transcribed spacers (ITS), ß-tubulin, translation elongation factor 1α, elicitin) and mitochondrial (cytochrome c oxidase subunit I) genes. Congruence was observed between the different phylogenetic data sets and established that P. drechsleri and P. cryptogea are distinct species. Isolates of P. drechsleri form a monophyletic grouping with low levels of intraspecific diversity whereas P. cryptogea is more variable. Three distinct phylogenetic groups were noted within P. cryptogea with an intermediate group providing strong evidence for introgression of previously isolated lineages. This evidence suggests that P. cryptogea is an operational taxonomic unit and should remain a single species. Of all the morphological and physiological traits only growth rate at higher temperatures reliably discriminated isolates of P. drechsleri and P. cryptogea. As a homothallic taxon, P. erythroseptica, considered the cause of potato pink rot, is clearly different in mating behaviour from the other two species. Pathogenicity, however, was not a reliable characteristic as all isolates of the three species formed pink rot in potato tubers. The phylogenetic evidence suggests P. erythroseptica has evolved from P. cryptogea more recently than the split from the most recent common ancestor of all three species. However, more data and more isolates of authentic P. erythroseptica are needed to fully evaluate the taxonomic position of this species.  相似文献   

20.
Cryptogein, a proteinaceous elicitor secreted by Phytophthora cryptogea , induces a remarkable hypersensitive cell death in tobacco cells. Two cryptogein mutants were analysed to characterize the induction mechanism of cell death; one was a newly synthesized mutant N93A whose 93rd Asn residue was changed to Ala, the other was K13V whose Lys at position 13 was replaced with Val. The effect of these mutations was evaluated in terms of extracellular alkalization, production of active oxygen species (AOS) and progression to death. The mutation N93A resulted in a reduction in activity to 71.0, 74.6 and 24.5% for original rates of extracellular alkalization, AOS production and cell death progression, respectively. In the case of the K13V mutation, these rates changed to 114, 3.38 and 7.40%, respectively. The lipid-binding activities of the mutants were analysed using fluorogenic lipid of dehydroergosterol. The results for N93A and K13V were 38.3 and 3.40% compared with the wild type, respectively. These findings indicate that the lipid-binding form was the only conformation to induce the production of AOS and programmed cell death in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号