首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
In both rod-shaped Bacillus subtilis and Escherichia coli cells, Min proteins are involved in the regulation of division septa formation. In E. coli , dynamic oscillation of MinCD inhibitory complex and MinE, a topological specificity protein, prevents improper polar septation. However, in B. subtilis no MinE is present and no oscillation of Min proteins can be observed. The function of MinE is substituted by that of an unrelated DivIVA protein, which targets MinCD to division sites and retains them at the cell poles. We inspected cell division when the E. coli Min system was introduced into B. subtilis cells. Expression of these heterologous Min proteins resulted in cell elongation. We demonstrate here that E. coli MinD can partially substitute for the function of its B. subtilis protein counterpart. Moreover, E. coli MinD was observed to have similar helical localization as B. subtilis MinD.  相似文献   

2.
Shih YL  Fu X  King GF  Le T  Rothfield L 《The EMBO journal》2002,21(13):3347-3357
The MinE protein functions as a topological specificity factor in determining the site of septal placement in Escherichia coli. MinE assembles into a membrane-associated ring structure near midcell and directs the localization of MinD and MinC into a membrane- associated polar zone that undergoes a characteristic pole-to-pole oscillation cycle. Single (green fluorescent protein) and double label (yellow fluorescent protein/cyan fluorescent protein) fluorescence labeling experiments showed that mutational alteration of a site on the alpha-face of MinE led to a failure to assemble the MinE ring, associated with loss of the ability to support a normal pattern of division site placement. The absence of the MinE ring did not prevent the assembly and disassembly of the MinD polar zone. Mutant cells lacking the MinE ring were characterized by the growth of MinD polar zones past their normal arrest point near midcell. The results suggested that the MinE ring acts as a stop-growth mechanism to prevent the MinCD polar zone from extending beyond the midcell division site.  相似文献   

3.
We report that MinE, the topological specificity factor of cell division in Escherichia coli, inhibits septation when fused to the C terminus of the maltose-binding protein MalE. This contrasts with overexpression of MinE alone, which affects growth but has no effect on division. Inhibition by MalE-MinE was minCD independent and depended on MinE segments involved in dimerization and prevention of MinCD division inhibition. The SOS and the heat shock responses were not involved, suggesting that the inhibition comes from a direct interaction of MalE-MinE with the septation apparatus. MalE-MinE lethality was suppressed by overexpression of ftsZ, as well as by overexpression of ftsN, a suppressor of temperature-sensitive mutations in genes ftsQ, ftsA, and ftsI. We also report that high-level synthesis of MalE disturbs nucleoid partitioning.  相似文献   

4.
Correct placement of the division septum in Escherichia coli requires the co-ordinated action of three proteins, MinC, MinD and MinE. MinC and MinD interact to form a non-specific division inhibitor that blocks septation at all potential division sites. MinE is able to antagonize MinCD in a topologically sensitive manner, as it restricts MinCD activity to the unwanted division sites at the cell poles. Here, we show that the topological specificity function of MinE residues in a structurally autonomous, trypsin-resistant domain comprising residues 31-88. Nuclear magnetic resonance (NMR) and circular dichroic spectroscopy indicate that this domain includes both alpha and beta secondary structure, while analytical ultracentrifugation reveals that it also contains a region responsible for MinE homodimerization. While trypsin digestion indicates that the anti-MinCD domain of MinE (residues 1-22) does not form a tightly folded structural domain, NMR analysis of a peptide corresponding to MinE1-22 indicates that this region forms a nascent helix in which the peptide rapidly interconverts between disordered (random coil) and alpha-helical conformations. This suggests that the N-terminal region of MinE may be poised to adopt an alpha-helical conformation when it interacts with the target of its anti-MinCD activity, presumably MinD.  相似文献   

5.
In Gram‐negative bacteria, proper placement of the FtsZ ring, mediated by nucleoid occlusion and the activities of the dynamic oscillating Min proteins MinC, MinD and MinE, is required for correct positioning of the cell division septum. MinE is a topological specificity factor that counters the activity of MinCD division inhibitor at the mid‐cell division site. Its structure consists of an anti‐MinCD domain and a topology specificity domain (TSD). Previous NMR analysis of truncated Escherichia coli MinE showed that the TSD domain contains a long α‐helix and two anti‐parallel β‐strands, which mediate formation of a homodimeric α/β structure. Here we report the crystal structure of full‐length Helicobacter pylori MinE and redefine its TSD based on that structure. The N‐terminal region of the TSD (residues 19–26), previously defined as part of the anti‐MinCD domain, forms a β‐strand (βA) and participates in TSD folding. In addition, H. pylori MinE forms a dimer through the interaction of anti‐parallel βA‐strands. Moreover, we observed serial dimer–dimer interactions within the crystal packing, resulting in the formation of a multimeric structure. We therefore redefine the functional domain of MinE and propose that a multimeric filamentous structure is formed through anti‐parallel β‐strand interactions.  相似文献   

6.
The proper placement of the cell division site in Escherichia coli requires the site-specific inactivation of potential division sites at the cell poles in a process that requires the coordinate action of the MinC, MinD, and MinE proteins. In the absence of MinE, the coordinate expression of MinC and MinD leads to a general inhibition of cell division. MinE gives topological specificity to the division inhibition process, so that the septation block is restricted to the cell poles. At normal levels of expression, both MinC and MinD are required for the division block. We show here that, when expressed at high levels, MinC acts as a division inhibitor even in the absence of MinD. The division inhibition that results from MinC overexpression in the absence of MinD is insensitive to the MinE topological specificity factor. The results suggest that MinC is the proximate cause of the septation block and that MinD plays two roles in the MinCDE system--it activates the MinC-dependent division inhibition mechanism and is also required for the sensitivity of the division inhibition system to the MinE topological specificity factor.  相似文献   

7.
Division inhibition caused by the minCD gene products of Escherichia coli is suppressed specifically at mid-cell by MinE protein expressed at physiological levels. Excess MinE allows division to take place also at the poles, leading to a minicell-forming (Min) phenotype. In order to investigate the basis of this topological specificity, we have analysed the ability of truncated derivatives of MinE to suppress either minCD -dependent division inhibition in a chromosomal Δ( minB ) background, or the division inhibition exerted by MinCD at the cell poles in a minB,+ strain. Our results indicate that these two effects are not mediated by identical interactions of MinE protein. In addition, gel filtration and the yeast two-hybrid system indicated that MinE interacts with itself by means of its central segment. Taken together, our results favour a model in which wild-type MinE dimer molecules direct the division inhibitor molecules to the cell poles, thus preventing polar divisions and allowing non-polar sites to divide. This model explains how excess MinE, or an excess of certain MinE derivatives which prevent the accumulation of the division inhibitor at the poles, can confer a Min phenotype in a minB + strain.  相似文献   

8.
In plant cells, plastids divide by binary fission involving a complex pathway of events. Although there are clear similarities between bacterial and plastid division, limited information exists regarding the mechanism of plastid division in higher plants. Here we demonstrate that AtMinE1, an Arabidopsis homologue of the bacterial MinE topological specificity factor, is an essential integral component of the plastid division machinery. In prokaryotes MinE imparts topological specificity during cell division by blocking division apparatus assembly at sites other than midcell. We demonstrate that overexpression of AtMinE1 in E. coli results in loss of topological specificity and minicell formation suggesting evolutionary conservation of MinE mode of action. We further show that AtMinE1 can indeed act as a topological specificity factor during plastid division revealing that AtMinE1 overexpression in Arabidopsis seedlings results in division site misplacement giving rise to multiple constrictions along the length of plastids. In agreement with cell division studies in bacteria, AtMinE1 and AtMinD1 show distinct intraplastidic localisation patterns suggestive of dynamic localisation behaviour. Taken together our findings demonstrate that AtMinE1 is an evolutionary conserved topological specificity factor, most probably acting in concert with AtMinD1, required for correct plastid division in Arabidopsis.  相似文献   

9.
The proper placement of the cell division site in Escherichia coli requires the site-specific inactivation of potential division sites at the cell poles in a process that is mediated by the MinC, MinD and MinE proteins. During the normal division cycle MinD plays two roles. It activates the MinC-dependent mechanism that is responsible for the inactivation of potential division sites and it also renders the division inhibition system sensitive to the topological specificity factor MinE. MinE suppresses the division block at the normal division site at mid-cell but not all cell poles, thereby ensuring the normal division pattern. In this study the MinD protein was purified to homogeneity and shown to bind ATP and to have ATPase activity. When the putative ATP binding domain of MinD was altered by site-directed mutagenesis, the mutant protein was no longer able to activate the MinC-dependent division inhibition system. Immunoelectron microscopy showed that MinD was located in the inner membrane region of the cell envelope. These results show that MinD is a membrane ATPase and suggest that the ATPase activity plays an essential role in the functions of the MinD protein during the normal division process.  相似文献   

10.
Ramos D  Ducat T  Cheng J  Eng NF  Dillon JA  Goto NK 《Biochemistry》2006,45(14):4593-4601
Symmetric division of Gram-negative bacteria depends on the combined action of three proteins that ensure correct positioning of the cell division septum, namely, MinC, MinD, and MinE. To achieve this function, MinC and MinD form a membrane-bound complex that blocks cell division at all potential sites. Opposing this inhibition is MinE, which interacts with MinD via its N-terminal anti-MinCD domain to site-specifically counter the action of the MinCD complex. The anti-MinCD domain has been proposed to bind MinD in a helical conformation; however, little is actually known about the structure of this functionally critical region. To understand how MinE can perform its anti-MinCD function, we have therefore investigated the conformation of the full-length MinE from Neisseria gonorrhoeae by solution NMR. Although solubility considerations required the use of sample conditions that limit the observation of amide resonances to regions that are protected from solvent exchange, backbone chemical shifts from both N- and C-terminal domains could be assigned. In contrast to previous models, secondary chemical shift analysis of these solvent-protected regions shows that parts of the N-terminal anti-MinCD domain are stably folded with many functionally important residues localizing to a beta-structure. In addition, this N-terminal domain may be interacting with the C-terminal topological specificity domain, since mutations made in one domain led to NMR spectral changes in both domains. The nonfunctional MinE mutant L22D showed even larger evidence of structural perturbations in both domains, with significant destabilization of the entire MinE structure. Overall, these results suggest that there is an intimate structural association between the anti-MinCD and topological specificity domains, allowing the functional properties of the two domains to be modulated through this interaction.  相似文献   

11.
By inhibiting FtsZ ring formation near the cell ends, the MinC protein plays a critical role in proper positioning of the division apparatus in Escherichia coli. MinC activity requires that of MinD, and the MinE peptide provides topological specificity by suppressing MinC-MinD-mediated division inhibition specifically at the middle of the cell. We recently presented evidence that MinE not only accumulates in an FtsZ-independent ring structure at the cell's middle but also imposes a unique dynamic localization pattern upon MinD in which the latter accumulates alternately in either one of the cell halves in what appears to be a rapidly oscillating membrane association-dissociation cycle. Here we show that functional green fluorescent protein-MinC displays a very similar oscillatory behavior which is dependent on both MinD and MinE and independent of FtsZ. The results support a model in which MinD recruits MinC to its site of action and in which FtsZ ring assembly at each of the cell ends is blocked in an intermittent and alternate fashion.  相似文献   

12.
Interactions between the MinD and MinE proteins are required for proper placement of the Escherichia coli division septum. The site within MinE that is required for interaction with MinD was mapped by studying the effects of site-directed minE mutations on MinD-MinE interactions in yeast two-hybrid and three-hybrid experiments. This confirmed that the MinE N-terminal domain is responsible for the interaction of MinE with MinD. Mutations that interfered with the interaction defined an extended surface on one face of the alpha-helical region of the MinE N-terminal domain, consistent with the idea that the MinE-MinD interaction involves formation of a coiled-coil structure by interaction with a complementary helical surface within MinD.  相似文献   

13.
The structure of Mth677, a hypothetical protein from Methanobacterium thermoautotrophicum (Mth), has been determined by using heteronuclear nuclear magnetic resonance (NMR) methods on a double-labeled (15)N-(13)C sample. Mth677 adopts a novel alpha+beta fold, consisting of two alpha-helices (one N terminal and one C terminal) packed on the same side of a central beta-hairpin. This structure is likely shared by its three orthologs, detected in three other Archaebacteria. There are no clear features in the sequences of these proteins or in the genome organization of Mth to make a reliable functional assignment to this protein. However, the structural similarity to Escherichia coli MinE, the protein which controls that division occurs at the midcell site, lends support to the proposal that Mth677 might be, in Mth, the counterpart of the topological specificity domain of MinE in E. coli.  相似文献   

14.
Bacteria and plastids divide symmetrically through binary fission by accurately placing the division site at midpoint, a process initiated by FtsZ polymerization, which forms a Z-ring. In Escherichia coli precise Z-ring placement at midcell depends on controlled oscillatory behavior of MinD and MinE: In the presence of ATP MinD interacts with the FtsZ inhibitor MinC and migrates to the membrane where the MinD-MinC complex recruits MinE, followed by MinD-mediated ATP hydrolysis and membrane release. Although correct Z-ring placement during Arabidopsis plastid division depends on the precise localization of the bacterial homologs AtMinD1 and AtMinE1, the underlying mechanism of this process remains unknown. Here we have shown that AtMinD1 is a Ca2+-dependent ATPase and through mutation analysis demonstrated the physiological importance of this activity where loss of ATP hydrolysis results in protein mislocalization within plastids. The observed mislocalization is not due to disrupted AtMinD1 dimerization, however; the active site AtMinD1(K72A) mutant is unable to interact with the topological specificity factor AtMinE1. We have shown that AtMinE1, but not E. coli MinE, stimulates AtMinD1-mediated ATP hydrolysis, but in contrast to prokaryotes stimulation occurs in the absence of membrane lipids. Although AtMinD1 appears highly evolutionarily conserved, we found that important biochemical and cell biological properties have diverged. We propose that correct intraplastidic AtMinD1 localization is dependent on AtMinE1-stimulated, Ca2+-dependent AtMinD1 ATP hydrolysis, ultimately ensuring precise Z-ring placement and symmetric plastid division.  相似文献   

15.
MinE is an oligomeric protein that, in conjunction with other Min proteins, is required for the proper placement of the cell division site of Escherichia coli . We have examined the self-association properties of MinE by analytical ultracentrifugation and by studies of hetero-oligomer formation in non-denaturing polyacrylamide gels. The self-association properties of purified MinE predict that cytoplasmic MinE is likely to exist as a mixture of monomers and dimers. Consistent with this prediction, the C-terminal MinE22–88 fragment forms hetero-oligomers with MinE+ when the proteins are co-expressed. In contrast, the MinE36–88 fragment does not form MinE+/MinE36–88 hetero-oligomers, although MinE36–88 affects the topological specificity of septum placement as shown by its ability to induce minicell formation when co-expressed with MinE+ in wild-type cells. Therefore, hetero-oligomer formation is not necessary for the induction of minicelling by expression of MinE36–88 in wild-type cells. The interference with normal septal placement is ascribed to competition between MinE36–88 and the corresponding domain in the complete MinE protein for a component required for the topological specificity of septal placement.  相似文献   

16.
Margolin W 《Current biology : CB》2001,11(10):R395-R398
Placement of the division site in Escherichia coli is determined in part by three Min proteins. Recent studies have shown that MinE, previously thought to form a static ring near the division site at the midcell position, actually joins MinC and MinD in their rapid oscillation between the cell poles.  相似文献   

17.

Background  

In E. coli, the Min operon (MinCDE) plays a key role in determining the site of cell division. MinE oscillates from the middle to one pole or another to drive the MinCD complex to the end of the cell. The MinCD complex prevents FtsZ ring formation and the subsequent cell division at cell ends. In Arabidopsis thaliana, a homologue of MinD has been shown to be involved in the positioning of chloroplast division site.  相似文献   

18.
Escherichia coli cells contain potential division sites at midcell and adjacent to the cell poles. Selection of the correct division site at midcell is controlled by three proteins: MinC, MinD, and MinE. It has previously been shown (D. Raskin and P. de Boer, Cell 91:685-694, 1997) that MinE-Gfp localizes to the midcell site in an MinD-dependent manner. We use here Gfp-MinD to show that MinD associates with the membrane around the entire periphery of the cell in the absence of the other Min proteins and that MinE is capable of altering the membrane distribution pattern of Gfp-MinD. Studies with the isolated N-terminal and C-terminal MinE domains indicated different roles for the two MinE domains in the redistribution of membrane-associated MinD.  相似文献   

19.
SulA and MinCD are specific inhibitors of cell division in Escherichia coli. In this paper, size exclusion chromatography was used to study the effect of the SulA and MinCD division inhibitors on the oligomerization state of endogenous FtsZ in cytoplasmic extracts, and immunofluorescence microscopy was used to determine the effect of SulA and MinCD on the formation of FtsZ, FtsA and ZipA rings at potential division sites. SulA prevented the formation of high-molecular-weight FtsZ polymers by interfering with FtsZ dimerization and subsequent oligomerization. In contrast, the MinCD division inhibitor did not prevent the oligomerization of FtsZ in the cell extracts or the formation of FtsZ and ZipA ring structures in vivo. However, MinCD did prevent the formation of FtsA rings. Increased expression of ftsA suppressed MinCD-induced division inhibition, but had no effect on SulA-induced division inhibition. These results indicate that MinCD blocks the assembly of the septation machinery at a later step than SulA, at the stage at which FtsA is added to the FtsZ ring.  相似文献   

20.
In Escherichia coli, the min system prevents division away from midcell through topological regulation of MinC, an inhibitor of Z-ring formation. The topological regulation involves oscillation of MinC between the poles of the cell under the direction of the MinDE oscillator. Since the mechanism of MinC involvement in the oscillation is unknown, we investigated the interaction of MinC with the other Min proteins. We observed that MinD dimerized in the presence of ATP and interacted with MinC. In the presence of a phospholipid bilayer, MinD bound to the bilayer and recruited MinC in an ATP-dependent manner. Addition of MinE to the MinCD-bilayer complex resulted in release of both MinC and MinD. The release of MinC did not require ATP hydrolysis, indicating that MinE could displace MinC from the MinD-bilayer complex. In contrast, MinC was unable to displace MinE bound to the MinD-bilayer complex. These results suggest that MinE induces a conformational change in MinD bound to the bilayer that results in the release of MinC. Also, it is argued that binding of MinD to the membrane activates MinC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号