首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the proteomic response to UV irradiation, two cultivars, i.e., Lemont (UV tolerant) and Dular (UV sensitive), were exposed to natural and enhanced ultraviolet-B (UV-B) irradiation for 1, 7, and 14 days, and two-dimensional gel electrophoresis in combination with mass spectrometry (MS) and bioinformatics were used to compare the different proteomic responses in the leaves of the two cultivars. Thirty-nine proteins were up- or downregulated following the UV-B treatments. Among them, 30 increased or decreased more than 1.5-fold in abundance. They were further tested by using matrix-assisted laser desorption/ionization time of flight MS and performed a database search. Twenty-four proteins were thus identified. These identified proteins were mostly upregulated in Lemont, whereas only 14 of them upregulated in Dular. Nine proteins involved in glycometabolism and fatty acid metabolisms, signal transduction, and protein synthesis and folding in Dular were not changed. These results suggest that there was a complex regulative mechanism on the proteomes in rice leaves upon UV-B exposure.  相似文献   

2.
Liquid cultures of the terrestrial cyanobacterium Nostoc commune derived from field material were treated with artificial UV-B and UV-A irradiation. We studied the induction of various pigments which are though to provide protection against damaging UV-B irradiation. First, UV-B irradiation induced an increase in carotenoids, especially echinenone and myxoxanthophyll, but did not influence production of chlorophyll a. Second, an increase of an extracellular, water-soluble UV-A/B-absorbing mycosporine occurred, which was associated with extracellular glycan synthesis. Finally, synthesis of scytonemin, a lipid-soluble, extracellular pigment known to function as a UV-A sunscreen, was observed. After long-time exposure, the UV-B effect on carotenoid and scytonemin synthesis ceased whereas the mycosporine content remained constantly high. The UV-B sunscreen mycosporine is exclusively induced by UV-B (< 315 nm). The UV-A sunscreen scytonemin is induced only slightly by UV-B (< 315 nm), very strongly by near UV-A (350 to 400 nm), and not at all by far UV-A (320 to 350 nm). These results may indicate that the syntheses of these UV sunscreens are triggered by different UV photoreceptors.  相似文献   

3.
4.
5.
Growth response and changes in the spectral properties of methanolic extract of an estuarine cyanobacterium, Lyngbya aestuarii Agardh, to UV-B radiation were studied. Increase in growth accompanied by increase in chlorophyll a, protein and carbohydrate content was observed up to 12 h of UV-B irradiation followed by a decline with further increase in the duration of UV exposure. Carotenoid content progressively increased with the UV-B dose. The organism synthesized, to a significant extent, mycosporine amino acid-like substances (MAAs) upon UV-B exposure. The cells in the trichome became coiled followed by formation of small bundles as a response to UV-B radiation. SDS protein profile of the UV irradiated cells showed repression of 20 and 22 kDa proteins. However, irradiation with UV-B for 6–24 h led to overproduction of 84, 73, 60, 46, 40, 37 KDa proteins, possibly conferring protection to the organism from UV-B. UV irradiated cells cultured in florescent light for up to 7 days showed revival from UV damage of the pigments and macromolecular contents, suggesting existence of a repair mechanism in the organism.  相似文献   

6.
Cold acclimation and over-wintering by herbaceous plants are energetically expensive and are dependent on functional plastid metabolism. To understand how the stroma and the lumen proteomes adapt to low temperatures, we have taken a proteomic approach (difference gel electrophoresis) to identify proteins that changed in abundance in Arabidopsis chloroplasts during cold shock (1 day), and short- (10 days) and long-term (40 days) acclimation to 5 degrees C. We show that cold shock (1 day) results in minimal change in the plastid proteomes, while short-term (10 days) acclimation results in major changes in the stromal but few changes in the lumen proteome. Long-term acclimation (40 days) results in modulation of the proteomes of both compartments, with new proteins appearing in the lumen and further modulations in protein abundance occurring in the stroma. We identify 43 differentially displayed proteins that participate in photosynthesis, other plastid metabolic functions, hormone biosynthesis and stress sensing and signal transduction. These findings not only provide new insights into the cold response and acclimation of Arabidopsis, but also demonstrate the importance of studying changes in protein abundance within the relevant cellular compartment.  相似文献   

7.
8.
Although enhancement of freezing tolerance in plants during cold acclimation is closely associated with an increase in the cryostability of plasma membrane, the molecular mechanism for the increased cryostability of plasma membrane is still to be elucidated. In Arabidopsis, enhanced freezing tolerance was detectable after cold acclimation at 2 degrees C for as short as 1 day, and maximum freezing tolerance was attained after 1 week. To identify the plasma membrane proteins that change in quantity in response to cold acclimation, a highly purified plasma membrane fraction was isolated from leaves before and during cold acclimation, and the proteins in the fraction were separated with gel electrophoresis. We found that there were substantial changes in the protein profiles after as short as 1 day of cold acclimation. Subsequently, using matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS), we identified 38 proteins that changed in quantity during cold acclimation. The proteins that changed in quantity during the first day of cold acclimation include those that are associated with membrane repair by membrane fusion, protection of the membrane against osmotic stress, enhancement of CO2 fixation, and proteolysis.  相似文献   

9.
The nuclear proteomes of maize (Zea mays) lines that differ in UV-B tolerance were compared by two-dimensional gel electrophoresis after UV light treatment. Differential accumulation of chromatin proteins, particularly histones, constituted the largest class identified by mass spectrometry. UV-B-tolerant landraces and the B73 inbred line show twice as many protein changes as the UV-B-sensitive b, pl W23 inbred line and transgenic maize expressing RNA interference constructs directed against chromatin factors. Mass spectrometic analysis of posttranslational modifications on histone proteins demonstrates that UV-B-tolerant lines exhibit greater acetylation on N-terminal tails of histones H3 and H4 after irradiation. These acetylated histones are enriched in the promoter and transcribed regions of the two UV-B-upregulated genes examined; radiation-sensitive lines lack this enrichment. DNase I and micrococcal nuclease hypersensitivity assays indicate that chromatin adopts looser structures around the selected genes in the UV-B-tolerant samples. Chromatin immunoprecipitation experiments identified additional chromatin factor changes associated with the nfc102 test gene after UV-B treatment in radiation-tolerant lines. Chromatin remodeling is thus shown to be a key process in acclimation to UV-B, and lines deficient in this process are more sensitive to UV-B.  相似文献   

10.
11.
J V Anderson  Q B Li  D W Haskell    C L Guy 《Plant physiology》1994,104(4):1359-1370
The 70-kD heat-shock proteins (HSP70s) are encoded by a multigene family in eukaryotes. In plants, the 70-kD heat-shock cognate (HSC70) proteins are located in organellar and cytosolic compartments of cells in most tissues. Previous work has indicated that HSC70 proteins of spinach (Spinacia oleracea) are actively synthesized during cold-acclimating conditions. We have isolated, sequenced, and characterized cDNA and genomic clones for the endoplasmic reticulum (ER) luminal HSC70 protein (immunoglobulin heavy chain-binding protein; BiP) of spinach. The spinach ER-luminal HSC70 is a constitutively expressed gene consisting of eight exons. Spinach BiP mRNA appears to be up-regulated during cold acclimation but is not expressed during water stress or heat shock. In contrast to the differential regulation of mRNA, the ER-luminal HSC70 protein levels remain constant in response to various environmental stresses. Two other members of the spinach 70-kD heat-shock (HS70) multigene family also show differential expression in response to a variety of environmental stresses. A constitutively expressed cytosolic HSC70 protein in spinach appears also to be up-regulated in response to both cold-acclimating and heat-shock treatments. Spinach also contains a cold-shock-induced HS70 gene that is not expressed during heat shock or water stress. Since HSP70s are considered to be involved with the chaperoning and folding of proteins, the data further support the concept that they may be important for maintaining cellular homeostasis and proper protein biogenesis during cold acclimation of spinach.  相似文献   

12.
Casati P  Walbot V 《Plant physiology》2004,136(2):3319-3332
Ultraviolet-B (UV-B) photons can cause substantial cellular damage in biomolecules, as is well established for DNA. Because RNA has the same absorption spectrum for UV as DNA, we have investigated damage to this cellular constituent. In maize (Zea mays) leaves, UV-B radiation damages ribosomes by crosslinking cytosolic ribosomal proteins S14, L23a, and L32, and chloroplast ribosomal protein L29 to RNA. Ribosomal damage accumulated during a day of UV-B exposure correlated with a progressive decrease in new protein production; however, de novo synthesis of some ribosomal proteins is increased after 6 h of UV-B exposure. After 16 h without UV-B, damaged ribosomes were eliminated and translation was restored to normal levels. Ribosomal protein S6 and an S6 kinase are phosphorylated during UV-B exposure; these modifications are associated with selective translation of some ribosomal proteins after ribosome damage in mammalian fibroblast cells and may be an adaptation in maize. Neither photosynthesis nor pigment levels were affected significantly by UV-B, demonstrating that the treatment applied is not lethal and that maize leaf physiology readily recovers.  相似文献   

13.
In posttranslational translocation in yeast, completed protein substrates are transported across the endoplasmic reticulum membrane through a translocation channel formed by the Sec complex. We have used photo-cross-linking to investigate interactions of cytosolic proteins with a substrate synthesized in a reticulocyte lysate system, before its posttranslational translocation through the channel in the yeast membrane. Upon termination of translation, the signal recognition particle (SRP) and the nascent polypeptide-associated complex (NAC) are released from the polypeptide chain, and the full-length substrate interacts with several different cytosolic proteins. At least two distinct complexes exist that contain among other proteins either 70-kD heat shock protein (Hsp70) or tailless complex polypeptide 1 (TCP1) ring complex/chaperonin containing TCP1 (TRiC/CCT), which keep the substrate competent for translocation. None of the cytosolic factors appear to interact specifically with the signal sequence. Dissociation of the cytosolic proteins from the substrate is accelerated to the same extent by the Sec complex and an unspecific GroEL trap, indicating that release occurs spontaneously without the Sec complex playing an active role. Once bound to the Sec complex, the substrate is stripped of all cytosolic proteins, allowing it to subsequently be transported through the membrane channel without the interference of cytosolic binding partners.  相似文献   

14.
15.
The psychrotrophic bacterium Pseudomonas fragi was subjected to cold shocks from 30 or 20 to 5 degrees C. The downshifts were followed by a lag phase before growth resumed at a characteristic 5 degrees C growth rate. The analysis of protein patterns by two-dimentional gel electrophoresis revealed overexpression of 25 or 17 proteins and underexpression of 12 proteins following the 30- or 20-to-5 degrees C shift, respectively. The two downshifts shared similar variations of synthesis of 20 proteins. The kinetic analysis distinguished the induced proteins into cold shock proteins (Csps), which were rapidly but transiently overexpressed, and cold acclimation proteins (Caps), which were more or less rapidly induced but still overexpressed several hours after the downshifts. Among the cold-induced proteins, four low-molecular-mass proteins, two of them previously characterized as Caps (CapA and CapB), and heat acclimation proteins (Haps) as well as heat shock proteins (Hsps) for the two others (TapA and TapB) displayed higher levels of induction. Partial amino acid sequences, obtained by microsequencing, were used to design primers to amplify by PCR the four genes and then determine their nucleotide sequences. A BamHI-EcoRI restriction fragment of 1.9 kb, containing the complete coding sequence for capB, was cloned and sequenced. The four peptides belong to the family of small nucleic acid-binding proteins as CspA, the major Escherichia coli Csp. They are likely to play a major role in the adaptative response of P. fragi to environmental temperature changes.  相似文献   

16.
Ultraviolet B (UV-B) acclimation comprises complex and poorly understood changes in plant metabolism. The effects of chronic and ecologically relevant UV-B dose rates on Arabidopsis thaliana were determined. The UV-B acclimation process was studied by measuring radiation effects on morphology, physiology, biochemistry and gene expression. Chronic UV-B radiation did not affect photosynthesis or the expression of stress responsive genes, which indicated that the UV-acclimated plants were not stressed. UV-induced morphological changes in acclimated plants included decreased rosette diameter, decreased inflorescence height and increased numbers of flowering stems, indicating that chronic UV-B treatment caused a redistribution rather than a cessation of growth. Gene expression profiling indicated that UV-induced morphogenesis was associated with subtle changes in phytohormone (auxins, brassinosteroids and gibberellins) homeostasis and the cell wall. Based on the comparison of gene expression profiles, it is concluded that acclimation to low, chronic dose rates of UV-B is distinct from that to acute, stress-inducing UV-B dose rates. Hence, UV-B-induced morphogenesis is functionally uncoupled from stress responses.  相似文献   

17.
The damaging effects of UV-A irradiation on lens water-insoluble alpha-crystallin, plasma membranous and cytoskeletal proteins derived from bovine lenses were studied. Young and adult bovine lenses were kept viable for 2 months in organ culture. After 24 h of incubation they were irradiated, and analyses of the proteins by one-dimensional and two-dimensional gel electrophoresis followed by Western blotting were carried out at several time intervals. RNA isolation, PCR and Northern blotting were also performed. We identified age-related changes in water-insoluble alpha-crystallin, the major membrane protein MP26 and the cytoskeletal proteins vimentin, phakinin and actin between control and UV-irradiated lenses. It appeared that adult lenses are more susceptible to UV light than young lenses, and protein modification occurred more frequently in adult lenses. UV-A irradiation affects not only the cytoskeletal structure, as deduced by the abnormal arrangement of actin in the fiber cells, but also leads to degradation of actin mRNA. Furthermore, analysis of the expression of hsp25 and hsp70 revealed some alteration in the protein pattern of adult lenses. We suggest that degradation of the cytoskeletal proteins following irradiation is due to, at least in part, the decreased protective ability of heat shock proteins upon aging.  相似文献   

18.
Western blot (immunoblot) analysis of cell wall and cytosolic extracts obtained from parental and ssa1 and ssa2 single- and double-mutant strains of Saccharomyces cerevisiae showed that the heat shock protein 70 (Hsp70) products of these genes, previously thought to be restricted to the cell interior, are also present in the cell wall. A cell wall location was further confirmed by indirect immunofluorescence with intact cells and biotinylation of extracellular Hsp70. Hsp70s have been implicated in translocation across the membrane and as molecular chaperones, and changes in the profile of cell wall proteins suggested that these proteins may have a similar role in the cell wall.  相似文献   

19.
To identify proteins that bind mammalian IAP homolog A (MIHA, also known as XIAP), we used coimmuno-precipitation and 2D immobilized pH gradient/SDS PAGE, followed by electrospray ionization tandem mass spectrometry. DIABLO (direct IAP binding protein with low pI) is a novel protein that can bind MIHA and can also interact with MIHB and MIHC and the baculoviral IAP, OpIAP. The N-terminally processed, IAP-interacting form of DIABLO is concentrated in membrane fractions in healthy cells but released into the MIHA-containing cytosolic fractions upon UV irradiation. As transfection of cells with DIABLO was able to counter the protection afforded by MIHA against UV irradiation, DIABLO may promote apoptosis by binding to IAPs and preventing them from inhibiting caspases.  相似文献   

20.
Cyanobacterial mat communities were collected in the mangrove forest bordering the Grand Cul de Sac Marin, Guadeloupe, French West Indies, which supports a community of nitrogen fixing cyanobacterial mats established on the trunk and branches of black mangrove ( Avicennia germinans L.). This study presents results that are focused on the mat community and the physiological and morphological adaptations to UV radiation. The dominant surface species of the mat, Nostoc cf commune Vaucher and Scytonema sp., possessed the UV-shielding pigment scytonemin. Mats grown on medium D agar without nitrogen under photosynthetically active radiation (PAR) only, rapidly became disorganized compared with those exposed to PAR + UV-A (320– 400 nm) + UV-B (280–320 nm) irradiation. Concurrent with disorganization, acetylene reduction activity (ARA = one third of N2 reduction) was severely reduced, whereas mats irradiated with PAR + UV-A + UV-B maintained high ARA activity. Mats incubated for 27 days under PAR + UV-A + UV-B then exposed to PAR only exhibited a 68% stimulation of ARA, whereas ARA values were 33% inhibited in mats incubated with PAR only and then exposed to PAR + UV-A + UV-B. This favorable equilibrium was facilitated by the mats' three-dimensional structure in which the most UV-resistant species, N. commune , covers the surface with UV-sensitive species below this protective covering. The UV stressor was essential for the maintenance of mat structure and ARA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号