首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In primary culture of chick embryo muscle cells myosin synthesis is detected in mononucleated cells and increases at the onset of fusion with a maximal increment of 20-fold per plate in differentiated myotube. The possibility that the myosin synthetized by duplicating myoblast could be different from that present in post-mitotic myoblast and myotube was evaluated by investigating the regulation of its synthesis and the turnover of the molecule. Following Actinomycin D treatment (0.05 μg/ml, 8 h), myosin synthesis is partially affected (about 50% inhibition) in pre-fusion myoblast while the synthesis is more sensitive to the drug at the onset of fusion (80% inhibition).
With the progress of the differentiative stage the half-life of the molecule increases from 30 h in duplicating myoblasts to 200 h in fibers. The half-life of myosin synthetized by duplicating myoblasts in the explanted embryonic muscle, is 12 h.
These data show different features of myosin heavy chains related to specific stages of differentiation and suggest the possibility that modulative changes of the molecule could induce its functional maturation during myogenesis.  相似文献   

2.
3.
4.
Temporal patterns of biosynthesis of the sarcoplasmic reticulum protein, calsequestrin, were analyzed and compared with rates of ATPase synthesis in primary cultures of rat skeletal muscle cells. Rates of synthesis were measured by the incorporation of radioactive leucine into the isolated proteins. Cells at various stages of differentiation were incubated for 2 h with tritium-labeled leucine and extracted with detergent. The extracts were incubated with antibodies specific against calsequestrin or the ATPase and immunoprecipitates were separated by disc gel electrophoresis. Incorporation of radioactivity into bands identified as calsequestrin or the ATPase was analyzed by counting of gel slices. In Dulbecco's modified Eagles medium (DME medium) containing 0.1 volume of horse serum and 0.005 volume of chick embryo extract, the cells began to fuse after about 50 h in culture, forming multinucleated myotubes. Calsequestrin synthesis was barely detectable after 24 h in culture. After 44 h, before fusion of myoblasts began, the rate of calsequestrin synthesis increased severalfold. The rate of synthesis continued to increase until about 72 h and then diminished. If cells were transferred at 44 h to DME medium containing 0.2 volume of fetal calf serum and 0.08 volume of chick embryo extract, fusion was delayed by about 20 h. In this medium the rate of calsequestrin synthesis diminished after a peak at 44 h but, by contrast, the rate of synthesis of the ATPase increased dramatically following fusion at about 80 h. If cells were transferred at about 40 h to DME medium containing 0.1 volume of horse serum and only 60 muM Ca2+ the cells did not fuse and, again, the rate of calsequestrin synthesis was diminished after a peak at about 40 h. By contrast the rate of ATPase synthesis increased sharply in spite of the lack of fusion. Both proteins were degraded with a half-life of about 20 h. These studies show that the synthesis of calsequestrin, an extrinsic membrane protein, and the ATPase, an intrinsic protein of the same membrane, are synthesized under separate control.  相似文献   

5.
The synthesis of the heavy chain subunit of myosin has been studied in breast muscle myoblasts from embryos of the Japanese quail, Coturnix coturnix japonica, during differentiation of these cells in culture. Specifically, these experiments were done to examine the roles of myoblast fusion and the regulation of myoblast cell division in the control of myosin heavy chain synthesis.The rates of myosin heavy chain synthesis have been quantitated in cultures of fusing myoblasts by measurement of the incorporation of radioactive leucine and valine precursors into myosin heavy chain, and simultaneous determination of the intracellular specific activities of these radioactive amino acids. These measurements demonstrate that, prior to fusion, dividing myoblasts synthesize little, if any, myosin heavy chain, but that during the period of myoblast fusion, myosin heavy chain synthesis becomes activated at least 50 to 100-fold. Myosin heavy chain synthesis was also measured in mononucleated myoblasts inhibited from fusing by the presence of EGTA in the culture medium. These experiments demonstrate that myosin synthesis can be activated in mononucleated myoblasts to reach rates similar to those attained in fused myoblasts. This activation occurs under conditions in which EGTA-inhibited myoblasts were induced to withdraw from the cell division cycle by reducing the concentrations of the serum and embryo extract components of the culture medium or by prior “conditioning” of standard growth medium.These experiments, therefore, establish that the activation of myosin synthesis in breast muscle myoblasts does not require fusion, but indicate that activation is co-ordinated with the withdrawal of myoblasts from the cell division cycle.  相似文献   

6.
R B Devlin  C P Emerson 《Cell》1978,13(4):599-611
The synthesis of contractile proteins has been studied during the differentiation of quail skeletal muscle myoblasts in culture. Myoblast differentiation was synchronized by transferring secondary cultures of rapidly dividing myoblasts into medium lacking cell division-promoting factors. Cultures at various stages of differentiation were then pulse-labeled with 35S-methionine, and cell extracts were resolved by electrophoresis on two-dimensional gels. Incorporation into specific proteins was quantitated by autoradiography and fluorography using a scanning densitometer. Contractile proteins synthesized by muscle cultures were identified by their co-electrophoresis on two-dimensional gels with contracile proteins purified from quail breast muscle. Our results show that the synthesis of myosin heavy chain, two myosin light chains, two subunits of troponin and two subunits of tropomyosin is first detected at the time of myoblast fusion and then rapidly increase at least 500 fold to maximum rates which remain constant in muscle fibers. Both the kinetics of activation and the molar rates of synthesis of these contractile proteins are virtually identical. Muscle-specific actin (alpha) synthesis also increases at the time of myoblast fusion, but this actin (alpha) is synthesized at 3 times the rate of other contractile proteins. The synthesis of 30 other muscle cell proteins was quantitated, and most of these are shown to follow different patterns of regulation. From these results, we conclude that the contractile proteins are regulated coordinately during myoblast differentiation.  相似文献   

7.
Increasing the K+ from 5.4 mM to 12 mM in the culture medium of developing chick myotubes causes an immediate cessation of spontaneous contractions and leads to an inhibition of myosin accumulation. The synthesis of myosin continues at the same rate in 12 mM K+ as in 5.4 mM K+ as measured by [3H]leucine incorporation into myosin corrected for differences in pool specific activity. Total protein synthesis and total protein accumulation are unaffected by growth in 12 mM K+. In addition, growth in 12 mM K+ did not alter the type of myosin heavy- chain isoform expression nor did it alter the pattern of myosin light- chain synthesis. However, the rate of myosin turnover increased threefold in cultures grown in 12 mM K+ compared to cultures grown in 5.4 mM K+, while total protein turnover was only marginally increased. We conclude that suppressed electrical or contractile activity of myotubes leads to an increased rate of myofibrillar protein turnover and that spontaneous mechanical and or electrical activity is required for continued myotube maturation in culture.  相似文献   

8.
The biosynthesis and accumulation of the myosin heavy chain (MHC) peptide has been examined in embryonic chick skeletal muscle cultures under conditions of normal or arrested cell fusion. When compared with primary chick fibroblasts, the myogenic cells accumulated significantly more MHC, even while mononucleated. Electron microscopy of the fusion-blocked cultures revealed the presence of myosinlike thick filaments in the myoblasts. It is concluded that cell fusion is not a prerequisite for myosin accumulation or myofilament assembly during embryonic chick muscle differentiation.  相似文献   

9.
Biosynthesis of titin in cultured skeletal muscle cells   总被引:8,自引:1,他引:7       下载免费PDF全文
Although significant progress has been made regarding the structure and function of titin, little data exist on the biosynthesis of this large protein in developing muscle. Using pulse-labeling with [35S]methionine and immunoprecipitation with an anti-titin mAb, we have examined the biosynthesis of titin in synchronized cultures of skeletal muscle cells derived from day 12 chicken embryos. We find that: (a) titin synthesis increases greater than 4-fold during the first week in culture and during this same time period, synthesis of muscle-specific myosin heavy chain increases greater than 12-fold; (b) newly synthesized titin has a t1/2 of approximately 70 h; (c) titin is resistant to extraction with Triton X-100 both during and immediately after its synthesis. These observations suggest that newly synthesized titin molecules are stable proteins that rapidly associate with the cytoskeleton of developing myotubes.  相似文献   

10.
The cell configuration-related control of a cytoskeletal protein (vimentin) expression was examined by varying cell shape between flat and spherical. Cultivation of cells in monolayer or in a spherical configuration on poly-2-hydroxyethylmethacrylate-coated plates revealed a preferential down regulation of vimentin synthesis during suspension culture. The mechanism(s) regulating the decrease in the expression of vimentin in spherical cells appears to be at the level of translation, because mRNAs extracted from monolayer and suspension-cultured cells were equally active in directing vimentin synthesis in the rabbit reticulocyte cell-free system. When after prolonged suspension culture, the cells were allowed to reattach and spread, vimentin synthesis recovered rapidly to the control monolayer rate. The phosphorylation of vimentin was also reduced dramatically during suspension culture. However, unlike the rapid recovery of vimentin biosynthesis upon reattachment (less than 6 h), the recovery in the rate of vimentin phosphorylation was much slower (greater than 20 h) and paralleled the recovery to the monolayer growth rate. Although the control of vimentin biosynthesis in suspension culture is a cell configuration-related process, the decrease in the rate of vimentin phosphorylation in suspension culture appears to be the result of the slower growth rate and may reflect the reported correlation between the rate of vimentin phosphorylation and the accumulation of cells in mitosis.  相似文献   

11.
Amino acid biosynthesis and central carbon metabolism of Pichia pastoris were studied using biosynthetically directed fractional (13)C labeling. Cells were grown aerobically in a chemostat culture fed at two dilution rates (0.05 h(-1), 0.16 h(-1)) with glycerol as the sole carbon source. For investigation of amino acid biosynthesis and comparison with glycerol cultivations, cells were also grown at 0.16 h(-1) on glucose. Our results show that, firstly, amino acids are synthesized as in Saccharomyces cerevisiae. Secondly, biosynthesis of mitochondrial pyruvate via the malic enzyme is not registered for any of the three cultivations. Thirdly, transfer of oxaloacetate across the mitochondrial membrane appears bidirectional, with a smaller fraction of cytosolic oxaloacetate stemming from the mitochondrial pool at the higher dilution rate of 0.16 h(-1) (for glucose or glycerol cultivation) when compared to the glycerol cultivation at 0.05 h(-1). Fourthly, the fraction of anaplerotic synthesis of oxaloacetate increases from 33% to 48% when increasing the dilution rate for glycerol supply, while 38% is detected when glucose is fed. Finally, the cultivation on glucose also allowed qualitative comparison with the flux ratio profile previously published for Pichia stipitis and S. cerevisiae grown on glucose in a chemostat culture at a dilution rate of 0.1 h(-1). This provided a first indication that regulation of central carbon metabolism in P. pastoris and S. cerevisiae might be more similar to each other than to P. stipitis.  相似文献   

12.
6-(R)-(L-erythro-1',2'-Dihydroxypropyl)-2-amino- 4-hydroxy-5,6,7,8-tetrahydropteridine (tetrahydrobiopterin, BH4) synthesis rate and turnover time were estimated in cultures derived from the embryonic rat mesencephalon (MES) and hypothalamus (HYP) by following the decline in BH4 levels after blockade of BH4 biosynthesis by N-acetylserotonin (NAS) or 2,4-diamino-6-hydroxypyrimidine (DAHP). BH4 content of both culture systems decreased by 75% following an 8-h incubation with maximally effective concentrations of NAS (200 microM) or DAHP (10 mM). Parameters describing BH4 metabolism were calculated from steady-state levels of BH4 and first-order rate constants determined by a nonlinear regression analysis of the exponential BH4 decline. These parameters were confirmed using an alternative procedure that examined the first-order rate of recovery of BH4 following termination of BH4 synthesis inhibition. Steady-state levels of BH4 in HYP cultures (70.3 +/- 9.4 pg/culture) were significantly greater than that for MES (46.5 +/- 2.8 pg/culture). The average fractional rate constants of BH4 loss for MES (0.153 +/- 0.015/h) and HYP (0.159 +/- 0.014/h) were equivalent. The calculated rate of BH4 synthesis was significantly greater for HYP (11.29 +/- 2.13 pg/culture/h) than for MES (7.11 +/- 0.85 pg/culture/h), owing to the greater steady-state concentration of BH4. BH4 turnover time for MES (6.68 +/- 0.67 h) and HYP (6.40 +/- 0.62 h) and half-life for MES (4.63 +/- 0.46 h) and HYP (4.44 +/- 0.43 h) did not differ. The turnover of the cofactor is thus rapid enough that alterations in its synthesis or degradation could acutely modify the rate of monoamine biosynthesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
M K O'Farrell 《FEBS letters》1986,204(2):233-238
Stimulation of quiescent Swiss mouse 3T3 cells either by serum or by pure growth factors induces DNA synthesis after a lag period of about 15 h. Following restimulation by serum or by growth factors there is an overall increase of 2-4-fold in the rate of biosynthesis of nuclear proteins. Two nuclear polypeptides show specific temporal correlations with the transition from quiescence to proliferation. The synthesis of p30 (30 kDa, pI 5.2) is at a maximum within 5 h of restimulation, while the synthesis of p36 (36 kDa, pI 4.25) is first seen at 10-12 h after restimulation. The synthesis of p36 correlates well with the initiation of DNA biosynthesis. The metabolic turnover of both of these proteins has been estimated by pulse-chase and by cycloheximide inhibition experiments. They both have a half-life of 10-15 h and appear to be cell-cycle related.  相似文献   

14.
We have examined the turnover of 5,6,7,8-tetrahydrobiopterin (BH4) and the effect of decreasing BH4 levels on in situ tyrosine hydroxylase (TH) activity and norepinephrine (NE) content in a homogeneous population of NE-containing neurons derived from the superior cervical ganglion (SCG) of the neonatal rat and maintained in tissue culture. Initial studies indicated that the level of BH4 within SCG cultures increased fourfold between 5 and 37 days in vitro (DIV). This increase in BH4 levels was determined to result from an increase in the rate of BH4 biosynthesis without a change in the rate of degradation. Regardless of culture age, the BH4 content of SCG neurons was observed to turn over with a half-life of approximately 2.5 h. BH4 synthesis by SCG neurons was found to be five times more sensitive to inhibition by 2,4-diamino-6-hydroxypyrimidine (DAHP) and 25 times less sensitive to inhibition by N-acetylserotonin than was previously reported for CNS neurons in culture. Under basal conditions, the rates of in situ TH activity and BH4 biosynthesis were similar. In response to inhibition of BH4 biosynthesis by DAHP and a 90-95% decrease in BH4 levels, in situ TH activity declined by 75%. NE levels declined by 30% following a 24-h period of inhibition of BH4 synthesis. After 2 days of BH4 synthesis inhibition, the level of NE was decreased by 47%. On treatment days 3 and 4, the decline in NE content plateaued at 24% of control levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Temporal patterns of biosynthesis of the Ca2+ + Mg2+-dependent adenosine triphosphatase of sarcomplasmic reticulum were obtained from studies with primary cultures of rat skeletal muscle cells. Rates of synthesis at various stages of differentiation were estimated from the incorporation of tritium-labeled leucine into the ATPase. Cells were solubilized with detergent, and newly synthesized ATPase was isolated from cells by antibody precipitation in the presence of carrier ATPase. Radioactivity incorporated into the ATPase was determined after gel electrophoresis of the precipitates and counting of gel slices containing the ATPase band. In Dulbecco's modified Eagle's medium containing 10% horse serum and 0.5% chick embryo extract, mononucleated myoblast cells began to form multinucleated myotubes after about 50 hours in culture. Prior to fusion little ATPase synthesis was detectable; during fusion the ATPase was synthesized at an accelerating rate for a period of about 30 hours. The rate of synthesis levelled off after about 90 hours coincident with termination of fusion. In Dulbecco's modified Eagle's medium containing 20% fetal calf serum and 8% embryo extract, the onset of fusion was delayed for 30 to 40 hours. In this medium biosynthesis of the ATPase was also delayed so that biosynthesis of the ATPase appeared to be correlated with fusion of muscle cells. Cells cultured in Culbecco's modified Eagle's medium containgin 10% horse serum, but only 60 muM Ca2+, proliferated but did not fuse. Under these conditions, synthesis of the ATPase was measurable at 50 to 60 hours, and the rate of synthesis accelerated until 120 hours when it declined. Under all conditions degradation of the ATPase occurred with a half-life of 20 hours whereas the half-life of total protein degradation was 40 hours. Synthesis of the sarcoplasmic reticulum ATPase, like that of a number of other muscle-specific proteins, is greatly accelerated as myoblasts fuse and differentiate into myotubes. Fusion is not essential for this phenomenon, however, although it is normally concomitant with it.  相似文献   

16.
17.
18.
Synthesis, accumulation and breakdown of the 200000-mol.wt. heavy subunit of myosin were analysed over an 11 day period in muscle cell cultures isolated from the leg muscle of 12-day chick embryos. Muscle cells accumulated myosin heavy chain rapidly from days 2 to 5 and maintained a maximum, constant myosin-heavy-chain concentration between days 7 and 11. Myosin-heavy-chain content and breakdown rate were compared in steady-state muscle cultures grown either in the presence of an optimum batch of horse serum (control) or in the presence of horse serum that had been pre-selected for its ability to inhibit several-fold the rate of synthesis of myosin heavy chain (inhibitory). The quantity of myosin heavy chain in the inhibited cultures was decreased in direct proportion to the decrease in the rate of synthesis of myosin heavy chain; however, the half-lives of myosin heavy chain (control, 17.7h; inhibitory, 17.0h) were virtually identical. In contrast, the absolute rate of breakdown of myosin heavy chain, expressed as molecules/min per nucleus, was approx. 5-fold lower in the inhibited cultures (4.3 X 10(3) molecules/min per nucleus) than in the control cultures (21.7 X 10(3) molecules/min per nucleus). Thus, inhibition of myosin-heavy-chain synthesis in this case was accompanied by diminished myosin-heavy-chain concentration and absolute breakdown rate at the altered steady state, but relative myosin-heavy-chain breakdown rates were unchanged.  相似文献   

19.
Hepatocyte growth factor (HGF) and epidermal growth factor (EGF) are known to stimulate the locomotion of epithelial cells in culture. However, the molecular mechanisms which mediate these important changes are poorly understood. Here we have determined the effects of HGF and EGF on hepatocyte morphology, cytoskeletal organization, and the expression of molecular motor-encoding genes. Primary cultures of hepatocytes were treated with 10 ng/ml of HGF or EGF and observed with phase and fluorescence microscopy at 10, 24, and 48 h after treatment. We found that, over time, treated cells spread and became elongated after 24 h of treatment while forming long processes with dramatic alterations in the microtubule and actin cytoskeletons by 48 h. Quantitative Northern blot analysis was performed to measure expression of cytoskeletal-(β-actin, α-tubulin) and molecular motor-(dynein, kinesin, and myosin Iα and II) encoding genes which may contribute to this change in form. We observed the highest increase in levels of expression for myosin II (3.3-fold), kinesin (2.7-fold), myosin Iα (2.2- fold), and α-tubulin (1.9-fold) after only 2 h of treatment with HGF. In contrast, EGF upregulated the expression of myosin Iα (2.4-fold), kinesin (1.5-fold), and dynein (1.5-fold) at 10 h. The expression of the β-actin gene remained constant in HGF-treated cells, while EGF induced a slight upregulation after 10 h of treatment. These results show for the first time that a selective upregulation of molecular motor-encoding genes correlates with alterations in cell shape and motility induced by HGF and EGF. © 1996 Wiley-Liss, Inc.  相似文献   

20.
Multiple effects of interferon on myogenesis in chicken myoblast cultures   总被引:1,自引:0,他引:1  
Effects of chicken interferon on the differentiation of chicken skeletal muscle in vitro were examined. Continuous treatment of chicken myoblast culture with 200 IU/ml of interferon (10 IU/mg protein) resulted in significant inhibition of cell fusion and subsequent myotube formation. However, treatment of myoblast culture with 2 to 200 IU/ml of interferon increased activities of creatine kinase and myokinase in 4- or 6-day cultured muscle cells in a dose-dependent fashion. The effect of interferon on myokinase was less than on creatine kinase. Three-fold increase in creatine kinase activity induced by interferon was not accompanied by the accelerated transition of creatine kinase isozyme from BB- to MM-type. On the other hand, accumulation of acetylcholinesterase in interferon-treated cells at day 6 was suppressed to nearly half the level of control cells. Rates of actin and myosin synthesis in 4-day cultures estimated by pulse-labelling with [35S]methionine were also suppressed to 85% of control cultures. However, a proportion of 35S-labelled actin and myosin in labelled proteins associated with glycerinated cells was not changed by interferon treatment. These results indicate that partially purified interferon has multiple effects on the process of the myogenic differentiation of chicken myoblast in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号