首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Land use changes have resulted in large environmental impacts, and in agricultural landscapes sometimes only forest fragments remain. Riparian forest remnants can positively influence stream water quality, and serve as refuges for aquatic species. We evaluated whether the presence of a riparian forest remnant influenced the structure and composition of macroinvertebrate communities in a rural stream in southeastern Brazil. We sampled three reaches upstream (within abandoned sugarcane cultivation) and nine downstream the remnant edge, until 600 m inside the forested area, using leaf litter bags. The abundances of Elmidae, Chironomidae, and total macroinvertebrates increased along the forest remnant, whereas the abundance of Baetidae, proportion of Ephemeroptera, Plecoptera, and Trichoptera (EPT), rarefied taxonomic richness, and diversity decreased. Taxon richness and EPT abundance did not vary along the forest remnant. Increases in Chironomidae and total abundance within the forest remnant can be related to moderate increases in nutrient concentrations, or to the availability of high quality leaf litter patches. Forest remnants can influence macroinvertebrate communities, although variation both in temperate and tropical studies can be related to local agricultural practices and land use at the watershed scale. Forest remnants are important in maintaining stream water quality in rural landscapes, and deserve attention in watershed management projects.  相似文献   

2.
Relationships between environmental variables and benthic macroinvertebrate assemblages were investigated among several sites that varied in disturbance history in Bwindi Impenetrable National Park, an Afromontane site in East Africa. Environmental variables were correlated with the level of past catchment disturbance – logging, agricultural encroachment, and present tourism activity. For example, sites in medium and high disturbance categories had higher values of specific conductance and lower water transparency than low disturbance category sites, these environmental variables may therefore act indicators of ecological quality of rivers. Environmental variables such as conductivity and water transparency were found to be good predictors of benthic macroinvertebrate assemblages, with anthropogenically stressed sites having lower diversity than the reference sites. Impacted sites were dominated by tolerant taxa such as chironomid and leeches, while ‘clean water’ taxa such as Ephemeroptera, Plecoptera and Trichoptera dominated at minimally impacted sites. Comparison of sites with different disturbance histories provided evidence for differences in benthic macroinvertebrate communities that reflect the state of forest restoration and recovery. We recommend quarterly monitoring of water quality to act as an early warning system of deterioration and tracking ecological recovery of previously impacted sites.  相似文献   

3.
1. Few studies have evaluated the effectiveness of riparian buffers in the tropics, despite their potential to reduce the impacts of deforestation on stream communities. We examined macroinvertebrate assemblages and stream habitat characteristics in small lowland streams in southeastern Costa Rica to assess the impacts of deforestation on benthic communities and the influence of riparian forest buffers on these effects. Three different stream reach types were compared in the study: (i) forested reference reaches, (ii) stream reaches adjacent to pasture with a riparian forest buffer at least 15 m in width on both banks and (iii) stream reaches adjacent to pasture without a riparian forest buffer. 2. Comparisons between forest and pasture reaches suggest that deforestation, even at a very local scale, can alter the taxonomic composition of benthic macroinvertebrate assemblages, reduce macroinvertebrate diversity and eliminate the most sensitive taxa. The presence of a riparian forest buffer appeared to significantly reduce the effects of deforestation on benthic communities, as macroinvertebrate diversity and assemblage structure in forest buffer reaches were generally very similar to those in forested reference reaches. One forest buffer reach was clearly an exception to this pattern, despite the presence of a wide riparian buffer. 3. The taxonomic structure of macroinvertebrate assemblages differed between pool and riffle habitats, but contrasts among the three reach types in our study were consistent across the two habitats. Differences among reach types also persisted across three sampling periods during our 15‐month study. 4. Among the environmental variables we measured, only stream water temperature varied significantly among reach types, but trends in periphyton abundance and stream sedimentation may have contributed to observed differences in macroinvertebrate assemblage structure. 5. Forest cover was high in all of our study catchments, and more research is needed to determine whether riparian forest buffers will sustain similar functions in more extensively deforested landscapes. Nevertheless, our results provide support for Costa Rican regulations protecting riparian forests and suggest that proper riparian management could significantly reduce the impacts of deforestation on benthic communities in tropical streams.  相似文献   

4.
1. To examine the effects of forest harvest practices on headwater stream macroinvertebrates, we compiled a 167 site database with macroinvertebrate, fish, physical habitat and catchment land cover data from the three forested ecoregions in western Oregon. For our analysis, headwater streams were defined by catchment areas <10 km2 and perennial water during summer low flows. Almost all sites in the database were selected using a randomised survey design, constituting a representative sample of headwater streams in these ecoregions. 2. Macroinvertebrate taxonomic and functional feeding group composition were very similar among the three ecoregions in the study area (Coast Range, Cascades and Klamath Mountains). On average, 55% of the individuals at each site were in the orders Ephemeroptera, Plecoptera or Trichoptera. Dipteran taxa (mostly chironomids) accounted for another 34%. At almost all sites, non‐insects made up <10% of the macroinvertebrate assemblage. Almost half (49%) of the assemblages were collectors; remaining individuals were about evenly divided among scrapers, shredders and predators. 3. There were 189 different macroinvertebrate taxa at the 167 sites with richness at individual sites ranging from 7 to 71 taxa. Ordination by non‐metric multidimensional scaling revealed a strong association between % Ephemeroptera, especially Baetis, and site scores along the first axis. This axis was also strongly related to % coarse substratum and fast water habitat. The second axis was strongly related to % intolerant individuals, site slope and altitude. No strong relationships were evident between any ordination axis and either logging activity, presence/absence of fish, catchment size or ecoregion. 4. Based on macroinvertebrate index of biotic integrity (IBI) scores, 62% of the sites had no impairment, 31% of the sites had slight impairment and only 6% of the sites had moderate or severe impairment. IBI scores were not strongly related to forest harvest history. All four severely impaired sites and five of the seven sites with moderate impairment were lower altitude, shallower slope stream reaches located in the Coast Range with evidence of agricultural activity in their catchment or riparian zone. % sand + fine substratum was the environmental variable most strongly related to macroinvertebrate IBI.  相似文献   

5.
Tropical landscapes are changing rapidly as a result of human modifications; however, despite increasing deforestation, human population growth, and the need for more agricultural land, deforestation rates have exceeded the rate at which land is converted to cropland or pasture. For deforested lands to have conservation value requires an understanding of regeneration rates of vegetation, the rates at which animals colonize and grow in regenerating areas, and the nature of interactions between plants and animals in the specific region. Here, we present data on forest regeneration and animal abundance at four regenerating sites that had reached the stage of closed canopy forest where the average dbh of the trees was 17 cm. Overall, 20.3 percent of stems were wind‐dispersed species and 79.7 percent were animal‐dispersed species, while in the old‐growth forest 17.3 percent of the stems were wind‐dispersed species. The regenerating forest supported a substantial primate population and encounter rate (groups per km walked) in the regenerating sites was high compared to the neighboring old‐growth forests. By monitoring elephant tracks for 10 yr, we demonstrated that elephant numbers increased steadily over time, but they increased dramatically since 2004. In general, the richness of the mammal community detected by sight, tracks, feces, and/or camera traps, was high in regenerating forests compared to that documented for the national park. We conclude that in Africa, a continent that has seen dramatic declines in the area of old‐growth forest, there is ample opportunity to reclaim degraded areas and quickly restore substantial animal populations.  相似文献   

6.
Riparian deforestation is a major threat to the ecological integrity of streams and aquatic biodiversity, influencing microhabitat availability and susceptibility to disturbances. Here we tested if riparian deforestation of tropical streams influenced beta diversity of macroinvertebrate assemblages, by comparing indices that weighted differentially rare and dominant taxa, and testing if nestedness in community composition increased in deforested streams. Within-stream beta diversity was higher in deforested than forested streams, mainly due to taxon loss and higher dominance. In disturbed streams, higher sedimentation in pool mesohabitats resulted in larger differences in community composition, whereas mesohabitats in forested streams were more stable.  相似文献   

7.
SUMMARY 1. There is little information on the impacts of deforestation on the fish fauna in neotropical streams, and on parameters influencing species diversity and community structure of fish. We analysed these aspects in 12 stream sites in the Ecuadorian Amazon. The stream sites represented a large gradient in canopy cover and were located in an area of fragmented forest. While some streams had been deforested, they had not suffered gross degradation of the habitat.
2. The species richness of stream fish was not related to deforestation. Local fish diversity (Fisher's Alpha) was positively related to the surface area of stream pools (m2). Beta diversity was higher among forested than deforested sites, indicating greater heterogeneity in species composition among forested than deforested sites. The percentage of rare species was positively correlated with canopy cover.
3. Total fish density increased with deforestation, and the fish community changed from dominance by omnivorous and insectivorous Characiformes at forested sites to dominance of periphyton-feeding loricariids at deforested sites.
4. Multidimensional statistical analysis of fish community structure showed that six environmental variables (the area of stream bottom covered by leaves, relative pool area, particulate organic matter, mean depth, conductivity and suspended solids) were related to the ordination axes. The presence of leaves, which was strongly correlated to canopy cover, was the variable most closely related to fish community structure, while relative pool area was the second strongest variable. Thus, fish community structure was strongly affected by deforestation.  相似文献   

8.
Three streams in the Piedmont ecoregion of North Carolina were studied to evaluate the effect of land use (forested, agricultural, urban) on water quality and aquatic biota. In comparison with the forested stream, there were few changes in water quality at the agricultural and urban streams. Suspended-sediment yield was greatest for the urban catchment and least at the forested catchment. Suspended-sediment concentrations during storm events followed this same pattern, but at low-moderate flows suspended-sediment concentrations were greatest at the agricultural site. Most nutrient concentrations were highest at the agricultural site, and the amount of available dissolved nitrogen was elevated at both the urban and agricultural sites. High concentrations of metals (totals) in the water column were sometimes observed at all sites, but maximum average concentrations were recorded at the urban site (especially Cr, Cu, and Pb). Maximum sediment metal concentrations, however, were not found at the urban site, but were usually recorded at the forested site. Only minor differences were noted between fish communities of the forested and agricultural sites, although both abundance and average size of some species increased at the agricultural site. The fish community at the urban site was characterized by low species richness, low biomass, and the absence of intolerant species.Invertebrate taxa richness, a biotic index, and the number of unique invertebrate species (found at only one site) indicated moderate stress (Fair water quality) at the agricultural site and severe stress (Poor water quality) at the urban site. At the agricultural site, declines in taxa richness within intolerant groups were partially offset by increases within tolerant groups. The agricultural stream had the highest abundance values, indicating enrichment. The urban site, however, was characterized by low species richness for most groups and very low abundance values. Analysis of seasonal patterns suggested detritus was the most important food source for invertebrates in the forested stream, while periphyton was of greater importance in the agricultural stream. Dominant macroinvertebrate groups shifted from Ephemeroptera at the forested site, to Chironomidae at the agricultural site, and Oligochaeta at the urban site. There was little between-site overlap in dominant species (8–7%), indicating that land use strongly influenced the invertebrate community. Chemical and physical parameters measured at the three sites did not seem sufficient to account for all of the observed differences in the invertebrate communities, suggesting some unmeasured toxicity. Biological measurements, especially macroinvertebrates community structure, consistently indicated strong between-site differences in water and habitat quality.  相似文献   

9.
1. Rainforest streams in eastern Madagascar have species‐rich and diverse endemic insect communities, while streams in deforested areas have relatively depauperate assemblages dominated by collector‐gatherer taxa. We sampled a suite of benthic insects and their food resources in three primary rainforest streams within Ranomafana National Park in eastern Madagascar and three agriculture streams in the park's deforested peripheral zone. We analysed gut contents and combined biomass and stable isotope data to examine stream community responses to deforestation in the region, which is a threatened and globally important hotspot for freshwater biodiversity. 2. Gut analyses showed that most taxa depended largely on amorphous detritus, obtained either from biofilms (collector‐gatherers) or from seston (microfilterers). Despite different resource availability in forest versus agriculture streams, diets of each taxon did not differ between stream types, suggesting inflexible feeding modes. Carbon sources for forest stream insects were difficult to discern using δ13C. However, in agriculture streams dependence on terrestrial carbon sources was low relative to algal sources. Most insect taxa with δ13C similar to terrestrial carbon sources (e.g. the stonefly Madenemura, the caddisfly Chimarra sp. and Simulium blackflies) were absent or present at lower biomass in agriculture streams relative to forest streams. Conversely, collector‐gatherers (Afroptilum mayflies) relied on algal carbon sources and had much higher biomass in agriculture streams. 3. Our analyses indicate that a few collector‐gatherer species (mostly Ephemeroptera) can take advantage of increased primary production in biofilms and consequently dominate biomass in streams affected by deforestation. In contrast, many forest stream insects (especially those in the orders Plecoptera, Trichoptera and Diptera) depend on terrestrial carbon sources (i.e. seston and leaf litter), are unable to track resource availability and consequently decline in streams draining deforested landscapes. These forest‐specialists are often micro‐endemic and particularly vulnerable to deforestation. 4. The use of consumer biomass data in stable isotope research can help detect population‐level responses to shifts in basal resources caused by anthropogenic change. We also suggest that restoration of vegetated riparian zones in eastern Madagascar and elsewhere could mitigate the deleterious effects of deforestation on sensitive, endemic stream taxa that are dependent on terrestrial carbon sources.  相似文献   

10.
Deforestation causes habitat loss, fragmentation, degradation, and can ultimately cause extinction of the remnant species. Tropical montane birds face these threats with the added natural vulnerability of narrower elevational ranges and higher specialization than lowland species. Recent studies assess the impact of present and future global climate change on species’ ranges, but only a few of these evaluate the potentially confounding effect of lowland deforestation on species elevational distributions. In the Western Andes of Colombia, an important biodiversity hotspot, we evaluated the effects of deforestation on the elevational ranges of montane birds along altitudinal transects. Using point counts and mist-nets, we surveyed six altitudinal transects spanning 2200 to 2800m. Three transects were forested from 2200 to 2800m, and three were partially deforested with forest cover only above 2400m. We compared abundance-weighted mean elevation, minimum elevation, and elevational range width. In addition to analysing the effect of deforestation on 134 species, we tested its impact within trophic guilds and habitat preference groups. Abundance-weighted mean and minimum elevations were not significantly different between forested and partially deforested transects. Range width was marginally different: as expected, ranges were larger in forested transects. Species in different trophic guilds and habitat preference categories showed different trends. These results suggest that deforestation may affect species’ elevational ranges, even within the forest that remains. Climate change will likely exacerbate harmful impacts of deforestation on species’ elevational distributions. Future conservation strategies need to account for this by protecting connected forest tracts across a wide range of elevations.  相似文献   

11.
1. The influence of altitude and land-use changes on macroinvertebrate assemblages from riffles in forty-three streams in the Dolpo region of western Nepal were examined. Sampling sites ranged in altitude from 850 to 4250m, and land-use patterns fell into five categories: alpine, forest, grassland, pasture and agricultural land. 2. TWTNSPAN classification of physicochemical data separated streams into groups on the basis of climatic and physical factors. Streams from high, cold, alpine areas were separated from those in warmer, lower, agricultural areas. 3. In all, 138 macroinvertebrate taxa were collected from fifty-three insect families. Ephemeroptera were most common, especially Baetidae. 4. Taxonomic richness declined with increasing altitude. Ten insect families were significantly more abundant in lowland streams, and five were more common in alpine streams. 5. TWINSPAN and DECORANA revealed distinct invertebrate groupings of the forty-three streams surveyed. A high percentage of the variance (79.3%) in ordination space was explained by DECORANA axes 1 and 2. Altitude, temperature, stream width and land use were implicated in structuring invertebrate communities.  相似文献   

12.
Y. Zhang  L.-D. Guo  R.-J. Liu 《Plant and Soil》2004,261(1-2):257-263
The diversity of arbuscular mycorrhizal (AM) fungi in deforested (Mantoushan) and natural forest (Banruosi) land in the subtropical region of Dujiangyan was surveyed and compared. A total of 44 taxa of AM fungi were isolated, and the same number of AM fungus taxa (34 taxa) was found in both deforested and natural forest land. Acaulospora and Glomus were the dominant genera in the two sites. Glomus convolutum and G. versiforme were the dominant species in the natural forest land, while only G. versiforme was dominant in the deforested land. There was no significant difference in total spore density of AM fungi between the two sites, but the total species richness of AM fungi was significantly higher in the deforested land than in the natural forest land. The Shannon-Weiner index of AM fungus diversity was a higher in the natural forest land (2.67) than in the deforested land (2.15). There was high AM fungus composition similarity (Sorenson's coefficient C S=0.71) between the two sites. We suggest that there was little effect of deforestation on the diversity of AM fungi, and that annual herbaceous plants play a major role in maintaining and increasing AM fungus spore density and species richness in deforested land.  相似文献   

13.
Fire-driven deforestation is the major source of carbon emissions from Amazonia. Recent expansion of mechanized agriculture in forested regions of Amazonia has increased the average size of deforested areas, but related changes in fire dynamics remain poorly characterized. We estimated the contribution of fires from the deforestation process to total fire activity based on the local frequency of active fire detections from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. High-confidence fire detections at the same ground location on 2 or more days per year are most common in areas of active deforestation, where trunks, branches, and stumps can be piled and burned many times before woody fuels are depleted. Across Amazonia, high-frequency fires typical of deforestation accounted for more than 40% of the MODIS fire detections during 2003–2007. Active deforestation frontiers in Bolivia and the Brazilian states of Mato Grosso, Pará, and Rondônia contributed 84% of these high-frequency fires during this period. Among deforested areas, the frequency and timing of fire activity vary according to postclearing land use. Fire usage for expansion of mechanized crop production in Mato Grosso is more intense and more evenly distributed throughout the dry season than forest clearing for cattle ranching (4.6 vs. 1.7 fire days per deforested area, respectively), even for clearings >200 ha in size. Fires for deforestation may continue for several years, increasing the combustion completeness of cropland deforestation to nearly 100% and pasture deforestation to 50–90% over 1–3-year timescales typical of forest conversion. Our results demonstrate that there is no uniform relation between satellite-based fire detections and carbon emissions. Improved understanding of deforestation carbon losses in Amazonia will require models that capture interannual variation in the deforested area that contributes to fire activity and variable combustion completeness of individual clearings as a function of fire frequency or other evidence of postclearing land use.  相似文献   

14.
Deforestation is associated with increased atmospheric CO2 and alterations to the surface energy and mass balances that can lead to local and global climate changes. Previous modelling studies show that the global surface air temperature (SAT) response to deforestation depends on latitude, with most simulations showing that high latitude deforestation results in cooling, low latitude deforestation causes warming and that the mid latitude response is mixed. These earlier conclusions are based on simulated large scal land cover change, with complete removal of trees from whole latitude bands. Using a global climate model we examine the effects of removing fractions of 5% to 100% of forested areas in the high, mid and low latitudes. All high latitude deforestation scenarios reduce mean global SAT, the opposite occurring for low latitude deforestation, although a decrease in SAT is simulated over low latitude deforested areas. Mid latitude SAT response is mixed. In all simulations deforested areas tend to become drier and have lower SAT, although soil temperatures increase over deforested mid and low latitude grid cells. For high latitude deforestation fractions of 45% and above, larger net primary productivity, in conjunction with colder and drier conditions after deforestation cause an increase in soil carbon large enough to produce a net decrease of atmospheric CO2. Our results reveal the complex interactions between soil carbon dynamics and other climate subsystems in the energy partition responses to land cover change.  相似文献   

15.
1. Ecosystems are strongly influenced by land use practices. However, identifying the mechanisms behind these influences is complicated by the many potential pathways (often indirect) between land use and ecosystems and by the long‐lasting effects of past land use. To support ecosystem restoration and conservation efforts, we need to better understand these indirect and lasting effects. 2. We constructed structural equation models (SEM) to evaluate the direct and indirect effects of contemporary (2002) land use (agriculture and development) and change in land use from 1952 to 2002 on present‐day streams (n = 190) in Maryland, U.S.A. Additional variables examined included site location, system size, altitude, per cent sand in soils, riparian condition, habitat quality, stream water NO3‐N and benthic macroinvertebrate and fish measures of stream condition. Our first SEM (2002 Land Use) included the proportions of contemporary agriculture and development in catchments in the model. The second SEM (Land Use Change) included five measures of land use change (proportion agricultural in both times, developed in both times, agricultural in 1952 and developed in 2002, forested in 1952 and developed in 2002 and agricultural in 1952 and forested in 2002). 3. The data set fit both SEMs well. The 2002 Land Use model explained 71% of variation in NO3‐N and 55%, 42% and 38% of variation in riffle quality, macroinvertebrate condition and fish condition, respectively. The Land Use Change model explained similar amounts of variation in NO3‐N (R2 = 0.72), riffle quality (R2 = 0.57) and macroinvertebrate condition (R2 = 0.44) but slightly more variation in fish condition (R2 = 0.43). 4. Both models identified pathways through which landscape variables affect stream responses, including negative direct effects of latitude on macroinvertebrate and fish conditions and positive direct and indirect effects of altitude on NO3‐N, riffle quality and macroinvertebrate and fish conditions. The 2002 Land Use model showed contemporary development and agriculture had positive total effects on NO3‐N (both through direct pathways); contemporary development had negative effects on macroinvertebrate condition. The Land Use Change model showed that contemporary developed land that was forested in 1952 had no effects on NO3‐N; current developed land that was developed or agricultural in 1952 showed positive effects on NO3‐N. Forests that were agricultural in 1952 had negative effects on NO3‐N, suggesting reduced NO3‐N export with reforestation. The Land Use Change model also showed negative total effects of all types of contemporary developed land (developed, agricultural or forested in 1952) on benthic condition. Developed land that was forested in 1952 had negative effects on fish condition. Forest sites that were agricultural in 1952 had negative effects on fish and macroinvertebrate conditions, suggesting a long‐term imprint of abandoned agriculture in stream communities. 5. Our analyses (i) identified multiple indirect effects of contemporary land use on streams, (ii) showed that current land uses with different land use histories can exhibit different effects on streams and (iii) demonstrated an imprint of land use lasting >50 years. Knowledge of these indirect and long‐term effects of land use will help to conserve and restore streams.  相似文献   

16.
Prudent management of lotic systems requires information on their ecological status that can be estimated by monitoring water quality and biodiversity attributes. To understand environmental conditions in Gatharaini drainage basin in Central Kenya, a study was carried out to establish the relationship between water quality and macroinvertebrate assemblages between the months of March and September 1996. Six sampling sites, each 25 m long were selected along a 24‐km stretch of the stream, which drained land under agricultural, residential and industrial use. Water physico‐chemical data was explored using multivariate analysis of Principal Component Analysis to detect environmental trends downstream. Both macroinvertebrates and water physico‐chemical data of suggested trends were analysed for variations and correlations. Temperatures and invertebrate densities changed significantly between the dry and wet season (P < 0.01) but the fluctuations were not evident downstream. Water physico‐chemical characteristics (total dissolved solids (TDS), pH, turbidity, dissolved oxygen) and biodiversity indices (species richness, diversity, dominance, evenness) changed markedly downstream (P < 0.01). Biodiversity indices correlated inversely with TDS, pH and turbidity but positively with dissolved O2. It was evident macroinvertebrate assemblages changed significantly downstream as opposed to functional feeding groups. Diptera was important in most sites whilst Oligochaeta dominance increased downstream corresponding to the deterioration in water quality. Collectors/browsers were the dominant functional feeding groups at most sites. This study showed that significant changes in aquatic macroinvertebrate assemblages were primarily due to water quality rather than prevailing climatic conditions.  相似文献   

17.
The flux and composition of carbon (C) from land to rivers represents a critical component of the global C cycle as well as a powerful integrator of landscape‐level processes. In the Congo Basin, an expansive network of streams and rivers transport and cycle terrigenous C sourced from the largest swathe of pristine tropical forest on Earth. Increasing rates of deforestation and conversion to agriculture in the Basin are altering the current regime of terrestrial‐to‐aquatic biogeochemical cycling of C. To investigate the role of deforestation on dissolved organic and inorganic C (DOC and DIC, respectively) biogeochemistry in the Congo Basin, six lowland streams that drain catchments of varying forest proportion (12%–77%) were sampled monthly for 1 year. Annual mean concentrations of DOC exhibited an asymptotic response to forest loss, while DIC concentrations increased continuously with forest loss. The isotopic signature of DIC became significantly more enriched with deforestation, indicating a shift in source and processes controlling DIC production. The composition of dissolved organic matter (DOM), as revealed by ultra‐high‐resolution mass spectrometry, indicated that deforested catchments export relatively more aliphatic and heteroatomic DOM sourced from microbial biomass in soils. The DOM compositional results imply that DOM from the deforested sites is more biolabile than DOM from the forest, consistent with the corresponding elevated stream CO2 concentrations. In short, forest loss results in significant and comprehensive shifts in the C biogeochemistry of the associated streams. It is apparent that land‐use conversion has the potential to dramatically affect the C cycle in the Congo Basin by reducing the downstream flux of stable, vascular‐plant derived DOC while increasing the transfer of biolabile soil C to the atmosphere.  相似文献   

18.
Warmer, and sometimes drier, conditions associated with global climate change are driving many species to shift poleward and/or upslope. I hypothesized that microclimatic changes related to deforestation cause similar shifts for forest species persisting within degraded landscapes. This appears to be the first study to examine this novel hypothesis. I examined elevational distributions of dung beetle communities along parallel intact and disturbed elevational gradients from 290 to 3450 m asl in the Andes of southeastern Peru. Deforested sites were consistently warmer and drier than forested sites. To maintain the same ambient temperature as in forest, species in a deforested landscape would need to shift on average 489±59 m upslope. Dung beetle species showed a mean upslope range shift of 132±64 m (maximum=743 m) in the deforested landscape. Eight species occurred farther upslope in the degraded landscape, while none shifted downslope. In addition to upper range limit expansions, six species shifting upslope also showed range contractions or population declines at their lower range boundary. High elevation and disturbance‐tolerant species did not show range shifts. These findings suggest that land‐use change may both confound and compound the influence of global climate change on biodiversity. Synergies between habitat degradation and climate change could more than double previous range shift projections for this century, leading to unexpectedly rapid changes in biodiversity, especially for sensitive organisms such as tropical insects. On the other hand, range shifts caused by habitat degradation may be mistakenly attributed to global climate change. Abstract in Spanish is available in the online version of this article.  相似文献   

19.
The 2006 completion of the circum‐island Compact Road on the island of Babeldaob in the Republic of Palau resulted in several deforested stream reaches with modified stream channels. To determine the impacts of deforestation and road construction, various ecosystem parameters were compared between road‐impacted reaches, reforested savanna reaches, and forested reaches. Compared to adjacent forested reaches, road‐impacted reaches received significantly more light (0.4 ± 0.1 vs. 87.8 ± 4.1 % light transmittance, respectively), were significantly warmer (25.7 ± 0.1 vs. 26.1 ± 0.1°C, respectively), and received higher nutrient and sediment loads, all of which were attributed to the removal of riparian vegetation and increased surface runoff from the road. These differences were believed to have shifted the benthic algal community in road‐impacted reaches from diatoms to filamentous algae with significantly greater chl a biomass (10×) and benthic algal ash free dry mass AFDM (3×) compared to adjacent forested reaches. Savanna‐impacted and forested reaches had similar chl a, algal AFDM, and received similar amounts of light. Nutrient and sediment concentrations varied between the two reach types. Results from this study emphasize the need for the maintenance of riparian forests especially with predicted increases in population, development, and deforestation. Future studies are needed to determine effective riparian widths and riparian forest community structure to help resource managers and land owners protect and preserve the many ecosystem services that Palauan streams and watersheds provide.  相似文献   

20.
The relative effects of a diffuse disturbance (alteration of land use from forest to plantation) and a point-source disturbance (a village and its associated coffee-processing plant, within the plantation) on longitudinal variation in water chemistry and macroinvertebrate community composition were assessed in Kali Dinoyo, a small upland stream in East Java, Indonesia. Four sites were sampled. The catchments of the two most-upstream sites were covered primarily by rainforest, while the two lower sites fell within a coffee plantation. The lowest site was downstream of a small village and its associated coffee-processing plant. Most of the variance in all water quality variables and in several community composition measures was explained by the difference between plantation and forest sites. Comparatively small differences in total suspended solids and macroinvertebrate community composition were observed downstream of the village. Diffuse disturbances associated with land clearance and plantation agriculture therefore appear to have a larger impact on the ecology of Kali Dinoyo than the point source impacts associated with the village. More robust and powerful study designs to formally test these findings are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号