首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dai R  Ali MK  Lezcano N  Bergson C 《Neuro-Signals》2008,16(2-3):112-123
D1-like dopamine receptors stimulate Ca(2+) transients in neurons but the effector coupling and signaling mechanisms underlying these responses have not been elucidated. Here we investigated potential mechanisms using both HEK 293 cells that stably express D1 receptors (D1HEK293) and hippocampal neurons in culture. In D1HEK293 cells, the full D1 receptor agonist SKF 81297 evoked a robust dose-dependent increase in Ca(2+)(i) following 'priming' of endogenous G(q/11)-coupled muscarinic or purinergic receptors. The effect of SKF81297 could be mimicked by forskolin or 8-Br-cAMP. Further, cholera toxin and the cAMP-dependent protein kinase (PKA) inhibitors, KT5720 and H89, as well as thapsigargin abrogated the D1 receptor evoked Ca(2+) transients. Removal of the priming agonist and treatment with the phospholipase C inhibitor U73122 also blocked the SKF81297-evoked responses. D1R agonist did not stimulate IP(3) production, but pretreatment of cells with the D1R agonist potentiated G(q)-linked receptor agonist mobilization of intracellular Ca(2+) stores. In neurons, SKF81297 and SKF83959, a partial D1 receptor agonist, promoted Ca(2+) oscillations in response to G(q/11)-coupled metabotropic glutamate receptor (mGluR) stimulation. The effects of both D1R agonists on the mGluR-evoked Ca(2+) responses were PKA dependent. Altogether the data suggest that dopamine D1R activation and ensuing cAMP production dynamically regulates the efficiency and timing of IP(3)-mediated intracellular Ca(2+) store mobilization.  相似文献   

2.
The effect of the muscarinic receptors agonist carbachol (Cch) on intracellular calcium concentration ([Ca(2+)](i)) and cAMP level was studied in polarized Fischer rat thyroid (FRT) epithelial cells. Cch provoked a transient increase in [Ca(2+)](i), followed by a lower sustained phase. Thapsigargin, a specific microsomal Ca(2+)-ATPase inhibitor, caused a rapid rise in [Ca(2+)](i) and subsequent addition of Cch was without effect. Removal of extracellular Ca(2+) reduced the initial transient response and completely abolished the plateau phase. Ryanodine, an agent that depletes intracellular Ca(2+) stores through stimulation of ryanodine receptors (RyRs), had no effect on [Ca(2+)](i). However, the transitory activation of [Ca(2+)](i) was dose-dependently attenuated in cells pretreated with U73122, a specific inhibitor of phospholipase C (PLC). These data suggest that the Cch-stimulated increment of [Ca(2+)](i) required IP(3) formation and binding to its specific receptors in Ca(2+) stores. Further studies were performed to investigate whether the effect of Cch on Ca(2+) entry into FRT cells was via L-type voltage-dependent Ca(2+) channels (L-VDCCs). Nicardipine, a nonspecific L-type Ca(2+) channel blocker, decreased Cch-induced increase on [Ca(2+)](i), while Bay K-8644, an L-type Ca(2+) channel agonist, slightly increased [Ca(2+)](i) in FRT cells. These data indicate that Ca(2+) entry into these nondifferentiated thyroid cells occurs through an L-VDCC, and probably through another mechanism such as a capacitative pathway. Cch did not affect the intracellular cAMP levels, but its effects on [Ca(2+)](i) were significantly reduced when cells were pretreated with forskolin, suggesting the existence of an intracellular cross-talk between PLC and cAMP mechanisms in the regulation of intracellular Ca(2+) mobilization in neoplastic FRT cells.  相似文献   

3.
We have studied histamine (HA)-evoked intracellular Ca(2+) release in single, freshly isolated myocytes from the guinea pig urinary bladder. Short applications of histamine (5 s) produced a thapsigargin (TG)-sensitive transient increase in intracellular calcium concentration ([Ca(2+)](i)). It was established that histamine and caffeine (Caff) released Ca(2+) from the same intracellular stores in these cells. Reducing the Ca(2+) content of internal stores by incubating cells with U-73343 or cyclopiazonic acid (CPA) inhibited the histamine-evoked Ca(2+) release in 69% and 60% of cells, respectively. Under these conditions, all cells released Ca(2+) in response to either caffeine or acetylcholine (ACh). However, decreasing internal Ca(2+) stores by removing external Ca(2+) inhibited histamine-induced Ca(2+) mobilization in only 22% of cells. A similar small fraction of cells was inhibited when sarcoplasmic reticulum (SR) Ca(2+) pumps were quickly blocked to avoid a significant reduction of luminal Ca(2+). In conclusion, lowering the luminal Ca(2+) content in combination with an impairment of the SR Ca(2+) pump activity significantly diminishes the ability of histamine to evoke an all-or-none intracellular Ca(2+) release.  相似文献   

4.
1. The effect of nitroprusside on cGMP concn., cAMP concn., shape change, aggregation, intracellular free Ca2+ concn. (by quin-2 fluorescence) and Mn2+ entry (by quenching of quin-2) was investigated in human platelets incubated with 1 mM-Ca2+ or 1 mM-EGTA. 2. Nitroprusside (10 nM-10 microM) caused similar concentration-dependent increases in platelet cGMP concn. and was without effect on cAMP concn. in the presence of extracellular Ca2+ or EGTA. 3. In ADP (3-6 microM)-stimulated platelets, nitroprusside caused 50% inhibition of shape change at 0.4 microM (+Ca2+) or 1.3 microM (+EGTA), aggregation at 0.09 microM (+Ca2+) and of increased intracellular Ca2+ at 0.02 microM (+Ca2+) or 2.1 microM (+EGTA). Entry of 1 mM-Mn2+ (-Ca2+) was inhibited by 80% by 5 microM-nitroprusside. 4. In ionomycin (20-500 nM)-stimulated platelets, nitroprusside (10 nM-100 microM) did not inhibit shape change or intracellular-Ca2+-increase responses, and only partially inhibited aggregation. 5. In phorbol myristate acetate (10 nM)-stimulated platelets, neither shape change nor aggregation was inhibited by 5 microM-nitroprusside. 6. The data demonstrate that nitroprusside inhibits ADP-mediated Ca2+ influx more potently than Ca2+ mobilization. Nitroprusside appears not to influence Ca2+ efflux or sequestration and not to affect the sensitivity of the activation mechanism to intracellular Ca2+ concn. or activation of protein kinase C.  相似文献   

5.
Despite the general importance of Ca(2+) signaling in signal transduction, and of goblet cell mucin hypersecretion in inflammatory pulmonary diseases, measurement of airway goblet cell intracellular Ca(2+) (Ca(i)(2+)) has not been reported. In this article, we describe the results of experiments measuring Ca(i)(2+) in primary cultures of human bronchial goblet cells after stimulation with the purinergic agonist adenosine 5'-O-(3-thiotriphosphate) (ATPgammaS) and phorbol 12-myristate 13-acetate (PMA). Ca(2+) signaling in human goblet cells after purinergic stimulation follows the classic paradigm of a Ca(i)(2+) transient from a basal activity of 110 nM to a peak response of 260.1 +/- 41.2 nM within 2 min, followed by a long superbasal plateau (155.3 +/- 0.2 nM) between 10 and 15 min. The rise in Ca(i)(2+) appears to result from a mobilization of intracellular stores, because the transient was nearly abolished by inhibition of PLC with the phosphatidylinositol-specific PLC inhibitor U-73122, and it was not affected significantly by removal of extracellular Ca(2+). Loading goblet cells with BAPTA inhibited the ATPgammaS-induced Ca(2+) transient by 86.0 +/- 13.1%, relative to control. Finally, in contrast to the massive effects of high doses of PMA (300 nM) on mucin secretion from goblet cells, phorbol ester stimulated a small (27.1 +/- 7% of the ATPgammaS control peak), brief rise in Ca(i)(2+). This diminutive signal likely denotes a local Ca(2+) gradient, which may be associated with the mucin granule exocytotic process.  相似文献   

6.
The ability of ATP and FSH to induce intracellular calcium [Ca(2+)](i) changes in Sertoli cells is imperfectly understood and reports are conflicting. We have applied the single-cell microfluorometry technique with the calcium probe indo-1 to investigate [Ca(2+)](i) in individual cultured Sertoli cells. When cells were exposed to ATP, cAMP, and FSH, a fast and biphasic increase in [Ca(2+)](i) was obtained in 100%, 70%, and 56% of cells, respectively. Caffeine did not activate Ca(2+) mobilization, while thapsigargin suppressed the peak response. External calcium free-EGTA buffer suppressed the plateau phase, while blockers of voltage-operated Ca(2+) channels did not abolish the response to cAMP and ATP. We conclude that the three messengers mobilized Ca(2+) from intracellular thapsigargin-sensitive stores, which induced a subsequent Ca(2+) influx from the extracellular medium by a voltage-independent Ca(2+) entry. The well-documented mechanisms by which these messengers act on cells support the idea that they release Ca(2+) from smooth endoplasmic reticulum by two different pathways, or that FSH and cAMP first release ATP, which then acts on cells. Among the cells, 77% and 80% responded, respectively, to FSH and cAMP by a delayed long-lasting decrease in [Ca(2+)](i) that was never recorded in the presence of ATP. This suggests that FSH and cAMP also promote a slow redistribution of [Ca(2+)](i) from the exchangeable pool to the bound nonexchangeable pools. Involvement of voltage-operated and voltage-independent calcium channels in the response of Sertoli cells to ATP, FSH, and cAMP is discussed.  相似文献   

7.
Two potential mechanisms by which the intracellular Ca(2 stores might modulate catecholamine release from bovine adrenal chromaffin cells were investigated: (i) that the cytosolic Ca(2+)transient caused by Ca(2+)release from the intracellular stores recruits additional chromaffin granules to a readily releasable pool that results in augmented catecholamine release when this is subsequently evoked, and (ii) that the Ca(2+)influx that follows depletion of intracellular stores (i.e. store-operated Ca(2+)entry) triggers release per se thereby augmenting evoked catecholamine release. When histamine or caffeine were applied in Ca(2+)-free perfusion media, a transient elevation of intracellular free Ca(2+)occurred owing to mobilization of Ca(2+)from the stores. When Ca(2+)was later readmitted to the perfusing fluid there followed a prompt and maintained rise in intracellular Ca(2+)concentrations of magnitude related to the degree of store mobilization. In parallel experiments, increased catecholamine secretion was measured under the conditions when Ca(2+)influx following store-mobilization occurred. Furthermore, the size of the catecholamine release increment correlated with the degree of Ca(2+)influx. Store-operated Ca(2+)entry evoked by mobilization with histamine and/or caffeine did not augment nicotine-evoked secretion per se; that is, it augmented evoked catecholamine release only to the extent that it increased basal catecholamine release. The nicotine-evoked catecholamine release was sensitive to cytosolic BAPTA, which, at the concentration used (50 microM BAPTA-AM), reduced release by approximately 25%. However, the increment in basal catecholamine release which followed Ca(2+)influx triggered by Ca(2+)store mobilization was not reduced by intracellular BAPTA. This finding is inconsistent with the hypothesis that the elevated cytosolic Ca(2+)from store mobilization recruits additional vesicles of catecholamine to the sub-plasmalemmal release sites to augment subsequently evoked secretion. This position is supported by the observation that histamine (10 microM) in Ca(2+)-free medium caused a pronounced elevation of cytosolic free Ca(2+), but this caused no greater catecholamine release when Ca(2+)was re-introduced than did prior exposure to Ca(2+)-free medium alone, which caused no elevation of cytosolic free Ca(2+). It is concluded that intracellular Ca(2+)stores can modulate secretion of catecholamines from bovine chromaffin cells by permitting Ca(2+)influx through a store-operated entry pathway. The results do not support the notion that the Ca(2+)released from intracellular stores plays a significant role in the recruitment of vesicles into the ready-release pool under the experimental conditions reported here.  相似文献   

8.
Endothelin-1 (ET-1) increases intracellular Ca(2+) concentration ([Ca(2+)](i)) in pulmonary arterial smooth muscle cells (PASMCs); however, the mechanisms for Ca(2+) mobilization are not clear. We determined the contributions of extracellular influx and intracellular release to the ET-1-induced Ca(2+) response using Indo 1 fluorescence and electrophysiological techniques. Application of ET-1 (10(-10) to 10(-8) M) to transiently (24-48 h) cultured rat PASMCs caused concentration-dependent increases in [Ca(2+)](i). At 10(-8) M, ET-1 caused a large, transient increase in [Ca(2+)](i) (>1 microM) followed by a sustained elevation in [Ca(2+)](i) (<200 nM). The ET-1-induced increase in [Ca(2+)](i) was attenuated (<80%) by extracellular Ca(2+) removal; by verapamil, a voltage-gated Ca(2+)-channel antagonist; and by ryanodine, an inhibitor of Ca(2+) release from caffeine-sensitive stores. Depleting intracellular stores with thapsigargin abolished the peak in [Ca(2+)](i), but the sustained phase was unaffected. Simultaneously measuring membrane potential and [Ca(2+)](i) indicated that depolarization preceded the rise in [Ca(2+)](i). These results suggest that ET-1 initiates depolarization in PASMCs, leading to Ca(2+) influx through voltage-gated Ca(2+) channels and Ca(2+) release from ryanodine- and inositol 1,4,5-trisphosphate-sensitive stores.  相似文献   

9.
The singular effects and interplay of cAMP- and cGMP-dependent protein kinase (PKA and PKG) on Ca(2+) mobilization were examined in dispersed smooth muscle cells. In permeabilized muscle cells, exogenous cAMP and cGMP inhibited inositol 1,4,5-trisphosphate (IP(3))-induced Ca(2+) release and muscle contraction via PKA and PKG, respectively. A combination of cAMP and cGMP caused synergistic inhibition that was exclusively mediated by PKG and attenuated by PKA. In intact muscle cells, low concentrations (10 nM) of isoproterenol and sodium nitroprusside (SNP) inhibited agonist-induced, IP(3)-dependent Ca(2+) release and muscle contraction via PKA and PKG, respectively. A combination of isoproterenol and SNP increased PKA and PKG activities: the increase in PKA activity reflected inhibition of phosphodiesterase 3 activity by cGMP, whereas the increase in PKG activity reflected activation of cGMP-primed PKG by cAMP. Inhibition of Ca(2+) release and muscle contraction by the combination of isoproterenol and SNP was preferentially mediated by PKG. In light of studies showing that PKG phosphorylates the IP(3) receptor in intact and permeabilized muscle cells, whereas PKA phosphorylates the receptor in permeabilized cells only, the results imply that inhibition of IP(3)-induced Ca(2+) release is mediated exclusively by PKG. The effect of PKA on agonist-induced Ca(2+) release probably reflects inhibition of IP(3) formation.  相似文献   

10.
The goal of this study was to determine whether the protein kinase A (PKA) responsiveness of the cardiac L-type Ca(2+) current (ICa) is affected during transient increases in intracellular Ca(2+) concentration. Ventricular myocytes were isolated from 3- to 4-day-old neonatal rats and cultured on aligned collagen thin gels. When measured in 1 or 2 mM Ca(2+) external solution, the aligned myocytes displayed a large ICa that was weakly regulated (20% increase) during stimulation of PKA by 2 microM forskolin. In contrast, application of forskolin caused a 100% increase in ICa when the external Ca(2+) concentration was reduced to 0.5 mM or replaced with Ba(2+). This Ca(2+)-dependent inhibition was also observed when the cells were treated with 1 microM isoproterenol, 100 microM 3-isobutyl-1-methylxanthine, or 500 microM 8-bromo-cAMP. The responsiveness of ICa to PKA was restored during intracellular dialysis with a calmodulin (CaM) inhibitory peptide but not during treatment with inhibitors of protein kinase C, Ca(2+)/CaM-dependent protein kinase, or calcineurin. Adenoviral-mediated expression of a CaM molecule with mutations in all four Ca(2+)-binding sites also increased the PKA sensitivity of ICa. Finally, adult mouse ventricular myocytes displayed a greater response to forskolin and cAMP in external Ba(2+). Thus Ca(2+) entering the myocyte through the voltage-gated Ca(2+) channel regulates the PKA responsiveness of ICa.  相似文献   

11.
This study investigated whether inflammation modulates the mobilization of Ca(2+) in canine colonic circular muscle cells. The contractile response of single cells from the inflamed colon was significantly suppressed in response to ACh, KCl, and BAY K8644. Methoxyverapamil and reduction in extracellular Ca(2+) concentration dose-dependently blocked the response in both normal and inflamed cells. The increase in intracellular Ca(2+) concentration in response to ACh and KCl was significantly reduced in the inflamed cells. However, Ca(2+) efflux from the ryanodine- and inositol 1,4, 5-trisphosphate (IP(3))-sensitive stores, as well as the decrease of cell length in response to ryanodine and IP(3), were not affected. Heparin significantly blocked Ca(2+) efflux and contraction in response to ACh in both conditions. ACh-stimulated accumulation of IP(3) and the binding of [(3)H]ryanodine to its receptors were not altered by inflammation. Ruthenium red partially inhibited the response to ACh in normal and inflamed states. We conclude that the canine colonic circular muscle cells utilize Ca(2+) influx through L-type channels as well as Ca(2+) release from the ryanodine- and IP(3)-sensitive stores to contract. Inflammation impairs Ca(2+) influx through L-type channels, but it may not affect intracellular Ca(2+) release. The impairment of Ca(2+) influx may contribute to the suppression of circular muscle contractility in the inflamed state.  相似文献   

12.
BACKGROUND: The effect of bradykinin on intracellular free Ca(2+) levels ([Ca(2+)](i)) in MG63 human osteosarcoma cells was explored using fura-2 as a Ca(2+) dye. METHODS/RESULTS: Bradykinin (0.1 nM-1 microM) increased [Ca(2+)](i) in a concentration-dependent manner with an EC(50) value of 0.5 nM. The [Ca(2+)](i) signal comprised an initial peak and a fast decay which returned to baseline in 2 min. Extracellular Ca(2+) removal inhibited the peak [Ca(2+)](i )signals by 35 +/- 3%. Bradykinin (1 nM) failed to increase [Ca(2+)](i) in the absence of extracellular Ca(2+ )after cells were pretreated with thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor; 1 microM). Bradykinin (1 nM)-induced intracellular Ca(2+) release was nearly abolished by inhibiting phospholipase C with 2 microM 1-(6-((17 beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122). The [Ca(2+)](i )increase induced by 1 nM bradykinin in Ca(2+)- free medium was abolished by 1 nM HOE 140 (a B2 bradykinin receptor antagonist) but was not altered by 100 nM Des-Arg-HOE 140 (a B1 bradykinin receptor antagonist). Pretreatment with 1 pM pertussis toxin for 5 h in Ca(2+) medium inhibited 30 +/- 3% of 1 nM bradykinin-induced peak [Ca(2+)](i) increase. CONCLUSIONS: Together, this study shows that bradykinin induced [Ca(2+)](i) increases in a concentration-dependent manner, by stimulating B2 bradykinin receptors leading to mobilization of Ca(2+) from the thapsigargin-sensitive stores in a manner dependent on inositol-1,4,5-trisphosphate, and also by inducing extracellular Ca(2+) influx. The bradykinin response was partly coupled to a pertussis toxin-sensitive G protein pathway.  相似文献   

13.
Aldosterone production in zona glomerulosa (ZG) cells of adrenal glands is regulated by various extracellular stimuli (K(+), ANG II, ACTH) that all converge on two major intracellular signaling pathways: an increase in cAMP production and calcium (Ca(2+)) mobilization. However, molecular events downstream of the increase in intracellular cAMP and Ca(2+) content are controversial and far from being completely resolved. Here, we found that Ca(2+)/calmodulin-dependent protein kinases (CaMKs) play a predominant role in the regulation of aldosterone production stimulated by ANG II, ACTH, and cAMP. The specific CaMK inhibitor KN93 strongly reduced ANG II-, ACTH-, and cAMP-stimulated aldosterone production. In in vitro kinase assays and intact cells, we could show that cAMP-induced activation of CaMK, using the adenylate cyclase activator forskolin or the cAMP-analog Sp-5,6-DCI-cBIMPS (cBIMPS), was not mediated by PKA. Activation of the recently identified cAMP target protein Epac (exchange protein directly activated by cAMP) by 8-pCPT-2'-O-Me-cAMP had no effect on CaMK activity and aldosterone production. Furthermore, we provide evidence that cAMP effects in ZG cells do not involve Ca(2+) or MAPK signaling. Our results suggest that ZG cells, in addition to PKA and Epac/Rap proteins, contain other as yet unidentified cAMP mediator(s) involved in regulating CaMK activity and aldosterone secretion.  相似文献   

14.
Earlier studies established that adenylyl cyclase in NCB-20 cell plasma membranes is inhibited by concentrations of Ca2+ that are achieved in intact cells. The present studies were undertaken to prove that agents such as bradykinin and ATP, which elevate the cytosolic Ca2+ concentration ([Ca2+]i) from internal stores in NCB-20 cells, could inhibit cyclic AMP (cAMP) accumulation as a result of their mobilization of [Ca2+]i and not by other mechanisms. Both bradykinin and ATP transiently inhibited [3H]cAMP accumulation in parallel with their transient mobilization of [Ca2+]i. The [Ca2+]i rise stimulated by bradykinin could be blocked by treatment with thapsigargin; this thapsigargin treatment precluded the inhibition of cAMP accumulation mediated by bradykinin (and ATP). A rapid rise in [Ca2+]i, as elicited by bradykinin, rather than the slow rise evoked by thapsigargin was required for inhibition of [3H]cAMP accumulation. Desensitization of protein kinase C did not modify the inhibitory action of bradykinin on [3H]cAMP. Effects of Ca2+ on phosphodiesterase were also excluded in the present studies. The accumulated data are consistent with the hypothesis that hormonal mobilization of [Ca2+]i leads directly to the inhibition of cAMP accumulation in these cells and presumably in other cells that express the Ca(2+)-inhibitable form of adenylyl cyclase.  相似文献   

15.
Ulcerative colitis (UC) affects colonic motor function, but the mechanism responsible for this motor dysfunction is not well understood. We have shown that neurokinin A (NKA) may be an endogenous neurotransmitter mediating contraction of human sigmoid colonic circular muscle (HSCCM). To elucidate factors responsible for UC motor dysfunction, we examined the role of hydrogen peroxide (H(2)O(2)) in the decrease of NKA-induced response of HSCCM. As previously demonstrated, NKA-induced contraction or Ca(2+) increase of normal muscle cells is mediated by release of Ca(2+) from intracellular stores, because it was not affected by incubation in Ca(2+)-free medium (CFM) containing 200 microM BAPTA. In UC, however, CFM reduced both cell contraction and NKA-induced Ca(2+) increase, suggesting reduced Ca(2+) release from intracellular stores. In normal Ca(2+) medium, NKA and KCl caused normal Ca(2+) signal in UC cells but reduced cell shortening. The decreased Ca(2+) signal and contraction in response to NKA or thapsigargin were partly recovered in the presence of H(2)O(2) scavenger catalase, suggesting involvement of H(2)O(2) in UC-induced dysmotility. H(2)O(2) levels were higher in UC than in normal HSCCM, and enzymatically isolated UC muscle cells contained much higher levels of H(2)O(2) than normal cells, which were significantly reduced by catalase. H(2)O(2) treatment of normal cells in CFM reproduced the reduction of NKA-induced Ca(2+) release observed in UC cells. In addition, H(2)O(2) caused a measurable, direct release of Ca(2+) from intracellular stores. We conclude that H(2)O(2) may contribute to reduction of NKA-induced Ca(2+) release from intracellular Ca(2+) stores in UC and contribute to the observed colonic motor dysfunction.  相似文献   

16.
Peptides with the Arg-Gly-Asp (RGD) motif induce vasoconstriction in rat afferent arterioles by increasing the intracellular Ca(2+) concentration ([Ca(2+)](i)) in vascular smooth muscle cells (VSMC). This finding suggests that occupancy of integrins on the plasma membrane of VSMC might affect vascular tone. The purpose of this study was to determine whether occupancy of integrins by exogenous RGD peptides initiates intracellular Ca(2+) signaling in cultured renal VSMC. When smooth muscle cells were exposed to 0.1 mM hexapeptide GRGDSP, [Ca(2+)](i) rapidly increased from 91 +/- 4 to 287 +/- 37 nM and then returned to the baseline within 20 s (P < 0.05, 34 cells/5 coverslips). In controls, the hexapeptide GRGESP did not trigger Ca(2+) mobilization. Local application of the GRGDSP induced a regional increase of cytoplasmic [Ca(2+)](i), which propagated as Ca(2+) waves traveling across the cell and induced a rapid elevation of nuclear [Ca(2+)](i). Spontaneous recurrence of smaller-amplitude Ca(2+) waves were found in 20% of cells examined after the initial response to RGD-containing peptides. Blocking dihydropyridine-sensitive Ca(2+) channels with nifedipine or removal of extracellular Ca(2+) did not inhibit the RGD-induced Ca(2+) mobilization. However, pretreatment of 20 microM ryanodine completely eliminated the RGD-induced Ca(2+) mobilization. Anti-beta(1) and anti-beta(3)-integrin antibodies with functional blocking capability simulate the effects of GRGDSP in [Ca(2+)](i). Incubation with anti-beta(1)- or beta(3)-integrin antibodies inhibited the increase in [Ca(2+)](i) induced by GRGDSP. We conclude that exogenous RGD-containing peptides induce release of Ca(2+) from ryanodine-sensitive Ca(2+) stores in renal VSMC via integrins, which can trigger cytoplasmic Ca(2+) waves propagating throughout the cell.  相似文献   

17.
Microfluorimetric measurements of intracellular calcium ion concentration [Ca(2+)](i) were employed to examine the effects of chronic hypoxia (2.5% O(2), 24 h) on Ca(2+) stores and capacitative Ca(2+) entry in human neuroblastoma (SH-SY5Y) cells. Activation of muscarinic receptors evoked rises in [Ca(2+)](i) which were enhanced in chronically hypoxic cells. Transient rises of [Ca(2+)](i) evoked in Ca(2+)-free solutions were greater and decayed more slowly following exposure to chronic hypoxia. In control cells, these transient rises of [Ca(2+)](i) were also enhanced and slowed by removal of external Na(+), whereas the same manoeuvre did not affect responses in chronically hypoxic cells. Capacitative Ca(2+) entry, observed when re-applying Ca(2+) following depletion of intracellular stores, was suppressed in chronically hypoxic cells. Western blots revealed that presenilin-1 levels were unaffected by chronic hypoxia. Exposure of cells to amyloid beta peptide (1-40) also increased transient [Ca(2+)](i) rises, but did not mimic any other effects of chronic hypoxia. Our results indicate that chronic hypoxia causes increased filling of intracellular Ca(2+) stores, suppressed expression or activity of Na(+)/Ca(2+) exchange and reduced capacitative Ca(2+) entry. These effects are not attributable to increased amyloid beta peptide or presenilin-1 levels, but are likely to be important in adaptive cellular remodelling in response to prolonged hypoxic or ischemic episodes.  相似文献   

18.
Substance P (SP) plays an important role in pain transmission through the stimulation of the neurokinin (NK) receptors expressed in neurons of the spinal cord, and the subsequent increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) as a result of this stimulation. Recent studies suggest that spinal astrocytes also contribute to SP-related pain transmission through the activation of NK receptors. However, the mechanisms involved in the SP-stimulated [Ca(2+)](i) increase by spinal astrocytes are unclear. We therefore examined whether (and how) the activation of NK receptors evoked increase in [Ca(2+)](i) in rat cultured spinal astrocytes using a Ca(2+) imaging assay. Both SP and GR73632 (a selective agonist of the NK1 receptor) induced both transient and sustained increases in [Ca(2+)](i) in a dose-dependent manner. The SP-induced increase in [Ca(2+)](i) was significantly attenuated by CP-96345 (an NK1 receptor antagonist). The GR73632-induced increase in [Ca(2+)](i) was completely inhibited by pretreatment with U73122 (a phospholipase C inhibitor) or xestospongin C (an inositol 1,4,5-triphosphate (IP(3)) receptor inhibitor). In the absence of extracellular Ca(2+), GR73632 induced only a transient increase in [Ca(2+)](i). In addition, H89, an inhibitor of protein kinase A (PKA), decreased the GR73632-mediated Ca(2+) release from intracellular Ca(2+) stores, while bisindolylmaleimide I, an inhibitor of protein kinase C (PKC), enhanced the GR73632-induced influx of extracellular Ca(2+). RT-PCR assays revealed that canonical transient receptor potential (TRPC) 1, 2, 3, 4 and 6 mRNA were expressed in spinal astrocytes. Moreover, BTP2 (a general TRPC channel inhibitor) or Pyr3 (a TRPC3 inhibitor) markedly blocked the GR73632-induced sustained increase in [Ca(2+)](i). These findings suggest that the stimulation of the NK-1 receptor in spinal astrocytes induces Ca(2+) release from IP(3-)sensitive intracellular Ca(2+) stores, which is positively modulated by PKA, and subsequent Ca(2+) influx through TRPC3, which is negatively regulated by PKC.  相似文献   

19.
The role of Ca(2+) mobilization from intracellular stores and Ca(2+)-activated Cl(-) channels in caffeine- and histamine-induced depolarization and contraction of the rabbit middle cerebral artery has been studied by recording membrane potential and isometric force. Caffeine induced a transient contraction and a transient followed by sustained depolarization. The transient depolarization was abolished by ryanodine, DIDS, and niflumic acid, suggesting involvement of Ca(2+)-activated Cl(-) channels. Histamine-evoked transient contraction in Ca(2+)-free solution was abolished by ryanodine or by caffeine-induced depletion of Ca(2+) stores. Ryanodine slowed the development of depolarization induced by histamine in Ca(2+)-containing solution but did not affect its magnitude. In arteries treated with 1 mM Co(2+), histamine elicited a transient depolarization and contraction, which was abolished by ryanodine. DIDS and niflumic acid reduced histamine-evoked depolarization and contraction. Histamine caused a sustained depolarization and contraction in low-Cl(-) solution. These results suggest that Ca(2+) mobilization from ryanodine-sensitive stores is involved in histamine-induced initial, but not sustained, depolarization and contraction. Ca(2+)-activated Cl(-) channels contribute mainly to histamine-induced initial depolarization and less importantly to sustained depolarization, which is most likely dependent on activation of nonselective cation channels.  相似文献   

20.
Studies have shown diabetes to be associated with alterations in composition of extracellular matrix and that such proteins modulate signal transduction. The present studies examined if non-enzymatic glycation of fibronectin or a mixed matrix preparation (EHS) alters endothelial cell Ca(2+) signaling following agonist stimulation. Endothelial cells were cultured from bovine aorta and rat heart. To glycate proteins, fibronectin (10 microg/ml), or EHS (2.5 mg/ml) were incubated (37 degrees C, 30 days) with 0.5 M glucose-6-phosphate. Matrix proteins were coated onto cover slips after which cells (10(5) cells/ml) were plated and allowed to adhere for 16 h. For measurement of intracellular Ca(2+), cells were loaded with fura 2 (2 microM) and fluorescence intensity monitored. Bovine cells on glycated EHS showed decreased ability for either ATP (10(-6) M) or bradykinin (10(-7) M) to increase Ca(2+) (i). In contrast, glycated fibronectin did not impair agonist-induced increases in Ca(2+) (i). In the absence of extracellular Ca(2+), ATP elicited a transient increase in Ca(2+) (i) consistent with intracellular release. Re-addition of Ca(2+) resulted in a secondary rise in Ca(2+) (i) indicative of store depletion-mediated Ca(2+) entry. Both phases of Ca(2+) mobilization were reduced in cells on glycated mixed matrix; however, as the ratio of the two components was similar in all cells, glycation appeared to selectively impair Ca(2+) release from intracellular stores. Thapsigargin treatment demonstrated an impaired ability of cells on glycated EHS to increase cytoplasmic Ca(2+) consistent with decreased endoplasmic reticulum Ca(2+) stores. Further support for Ca(2+) mobilization was provided by increased baseline IP(3) levels in cells plated on glycated EHS. Impaired ATP-induced Ca(2+) release could be induced by treating native EHS with laminin antibody or exposing cells to H(2)O(2) (20-200 microM). Glycated EHS impaired Ca(2+) signaling was attenuated by treatment with aminoguanidine or the antioxidant alpha-lipoic acid. The results demonstrate that matrix glycation impairs agonist-induced Ca(2+) (i) increases which may impact on regulatory functions of the endothelium and implicate possible involvement of oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号