首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 403 毫秒
1.
Recent studies have shown that liposuction aspirates from rat, rabbit, mouse, and human sources contain pluripotent adipose tissue-derived stromal cells (ASCs) that can differentiate into various mesodermal cell types, including osteoblasts, myoblasts, chondroblasts, and preadipocytes. To develop a research model for autologous bone tissue engineering, we isolated ASCs from human liposuction aspirates (hASCs) and induced their osteogenic differentiation in three-dimensional poly(dl-lactic-co-glycolic acid) (PLGA) scaffolds. Human liposuction aspirates were proteolytically digested and centrifuged to obtain hASCs. After primary culture in control media and expansion to three passages, the cells were seeded in two-dimensional plates or three-dimensional PLGA scaffolds and cultured in osteogenic media for 4 weeks. In two-dimensional culture, osteogenesis was assessed by RT-PCR analysis of the osteogenic-specific bone sialoprotein mRNA, by alkaline phosphatase staining, and by von Kossa staining. In three-dimensional culture, osteogenesis was assessed by von Kossa and alizarine red S staining at 1, 2, and 4 weeks following osteogenic induction. hASCs incubated in two-dimensional osteogenic media stained positively for alkaline phosphatase and with von Kossa stain after 2 weeks of differentiation. Expression of the osteogenesis-specific bone sialoprotein gene was detected by RT-PCR after 2 weeks of differentiation. PLGA scaffolds seeded with hASCs showed multiple calcified extracellular matrix nodules by von Kossa and alizarine red S staining after 2 weeks of differentiation. In conclusion, the authors identified an osteogenic potential of hASCs and demonstrated osteogenic differentiation of hASCs into an osteogenic lineage in three-dimensional PLGA scaffolds.  相似文献   

2.
Pluripotent stem cells within the adipose stromal compartment, termed adipose-derived stromal cells (ASCs), have the potential to differentiate into a variety of cell lineages both in vitro and in vivo. Imaging with expression of exogenous or endogenous green fluorescent protein (GFP) reporters facilitates the detailed research on ASCs’ physiological behavior during differentiation in vivo. This study was aimed to confirm whether ASCs expressing GFP still could be induced to chondrogenesis, and to compare the expression of exogenous or endogenous GFP in ASCs during chondrogenic differentiation. ASCs were harvested from inguinal fat pads of normal nude mice or GFP transgenic mice. Monolayer cultures of ASCs from normal mice were passaged three times and then infected with replication-incompetent adenoviral vectors carrying GFP genes. Allowed to recover for 5 days, Ad/GFP infected ASCs were transferred to chondrogenic medium as well as the ASCs from transgenic mice cultured in vitro over the same passages. The level of GFP in transgenic ASCs maintained stable till 3 months after chondrogenic induction. Whereas, high level of GFP expression in Ad/GFP infected ASCs could last for only 8 weeks and then declined stepwise. Important cartilaginous molecules such as SOX9, collagen type I, collagen type II, aggrecan, collagen type X were assessed using immunocytochemistry, RT-PCR, and Western Blot. The results indicated that no matter the GFP was exogenous or endogenous, it did not influence the chondrogenic potential of ASCs in comparison with the normal controls. Moreover, chondrogenic lineages from ASCs also underwent phenotypic modulation called dedifferentiation as a result of long-term culture in monolayers similar to normal chondrocytes.  相似文献   

3.
Musculoskeletal tissues regeneration requires rapid expansion of seeding cells both in vitro and in vivo while maintaining their multilineage differentiation ability. Human adipose-derived stem cells (ASCs) are considered to contain multipotent mesenchymal stem cells. Monolayer cultures of human ASCs were isolated from human lipoaspirates and passaged 3 times and then infected with replication-incompetent adenoviral vectors carrying green fluorescent protein (Ad/GFP) genes. Then, Ad/GFP infected human ASCs were transferred to osteogenic, chondrogenic, adipogenic, and myogenic medium. The morphological characterization of induced cells was observed using phase-contrast microscopy and fluorescence microscopy. The expression of marker proteins or genes was measured by immunocytochemical and RT-PCR analysis. Osteopontin (OPN), and osteocalcin (OCN) were positive in osteogenic lineages, aggrecan and SOX9 were positive in chondrogenic ones, peroxisome proliferator-activated receptor (PPAR-γ2) and lipoprotein lipase (LPL) were positive in adipogenic ones, and myogenin and myod1 was positive in myogenic ones. At the same time, the results of fluorescence microscopic imaging proved that the high level of GFP expression during ASCs differentiation maintained stable nearly 2 months. So the exogenous GFP and multilineage potential of human ASCs had no severe influences on each other. Since the human ASCs can be easily obtained and abundant, it is proposed that they may be promising candidate cells for further studies on tissue engineering. Imaging with expression of GFP facilitates the research on ASCs physiological behavior and application in tissue engineering during differentiation both in vitro and in vivo.  相似文献   

4.
We have previously demonstrated that adipose-derived stromal cells (ASCs) as well as bone marrow-derived stromal cells (BSCs) differentiate into a variety of cell lineages both in vitro and in vivo. Both types are considered to include mesenchymal stem cells. Taking advantage of homogeneously marked cells from green fluorescent protein (GFP) transgenic mice, we have also previously reported the plasticity of BSCs and ASCs. In this study, we focused on adipogenic differentiation in vitro by ASCs harvested from GFP transgenic mice. Moreover, preadipocytes and mature adipocytes were harvested at the same time, and the cells were cultured to compare them with ASCs. Inguinal fat pads from GFP transgenic mice were used for the isolation of ASCs, preadipocytes, and mature adipocytes. After expansion to three passages of ASCs, the cells were incubated in an adipogenic medium for two weeks. Adipogenic differentiation of ASCs was assessed by Oil Red O staining and the expression of the adipocyte specific peroxisome proliferative activated receptor gamma2 (PPAR-gamma2) gene. These ASCs stained positively, and expression of PPAR-gamma2 was detected. Moreover, we also tried to characterize the influence of sex differences on the adipogenic differentiation of ASCs harvested from both male and female mice. This was assessed by the expression levels of the PPAR-gamma2 gene using real-time PCR. The results showed that the expression levels of ASCs harvested from female mice were a maximum of 2.89 times greater than those harvested from male mice. This suggests that the adipogenic differentiation of ASCs is closely related to sex differences.  相似文献   

5.
Background aimsHuman bone marrow mesenchymal stromal cells are useful in regenerative medicine for various diseases, but it remains unclear whether the aging of donors alters the multipotency of these cells. In this study, we examined age-related changes in the chondrogenic, osteogenic and adipogenic potential of mesenchymal stromal cells from 17 donors (25–81 years old), including patients with or without systemic vascular diseases.MethodsAll stem cell lines were expanded with fibroblast growth factor-2 and then exposed to differentiation induction media. The chondrogenic potential was determined from the glycosaminoglycan content and the SOX9, collagen type 2 alpha 1 (COL2A1) and aggrecan (AGG) messenger RNA levels. The osteogenic potential was determined by monitoring the alkaline phosphatase activity and calcium content, and the adipogenic potential was determined from the glycerol-3-phosphate dehydrogenase activity and oil red O staining.ResultsSystemic vascular diseases, including arteriosclerosis obliterans and Buerger disease, did not significantly affect the trilineage differentiation potential of the cells. Under these conditions, all chondrocyte markers examined, including the SOX9 messenger RNA level, showed age-related decline, whereas none of the osteoblast or adipocyte markers showed age-dependent changes.ConclusionsThe aging of donors from young adult to elderly selectively decreased the chondrogenic potential of mesenchymal stromal cells. This information will be useful in stromal cell–based therapy for cartilage-related diseases.  相似文献   

6.
Bone morphogenetic proteins (BMPs) play a dual role as a factor in both bone and cartilage development and correspondingly have the therapeutic potential to regenerate both tissues. Given this dual nature, previous in vitro research using BMPs has relied on distinct media formulations and culture conditions to drive undifferentiated cells to the osteogenic or chondrogenic lineage. To isolate the impact of culture conditions and to explore the effect of BMP-6 on murine adipose-derived mesenchymal cells (ASCs), ASCs were seeded in either monolayer or pellets in an identical medium containing BMP-6. Results indicate that BMP-6 differentially promotes osteogenesis and chondrogenesis in ASCs depending on culture conditions. BMP-6 potently induced alkaline phosphatase activity and mineralization in ASCs cultured in monolayer conditions. In contrast, BMP-6 enhanced proteoglycan accumulation in ASCs seeded in chondrogenic pellet culture. A comparison of gene expression suggests that the differentiating effect of BMP-6 is specific to the particular culture condition. This study highlights the importance of the interactions between chemical signaling and microenvironmental cues in directing cell fate.  相似文献   

7.
The objective of this research was to study osteogenic properties of cultured rabbit bone marrow stromal cells, newborn rat cranium bone cells and rat osteocarcoma ROS 17-2/8 cells. For this purpose cytochemical reaction for alkaline phosphatase was performed by the Lowry method, mineral deposition was assessed by staining of the cultures after von Kossa. Cranium bone cells were shown to synthesize alkaline phosphatase (34 +/- 7 nmol/min/10(6) cells), the matrix mineralization being found. Bone marrow stromal cells displayed a lower activity alkaline phosphatase level than did cranium bone cells (4 +/- 0.6 nmol/min/10(6) cells). However, cell cultivation in the presence of dexamethasone in the medium (10(-8) M) induced a higher activity of alkaline phosphatase (9 +/- 1 nmol/min/10(6) cells), mineralization of the extracellular matrix being the case. The highest level of alkaline phosphatase activity was found for ROS 17-2/8 cells (60 +/- 12 nmol/min/10(6) cells) but no matrix mineralization was determined. According to these data, matrix calcification and formation of bone-like nodules are the most important properties of osteoblastic differentiation in vitro.  相似文献   

8.
9.
Adipose tissue is composed of lipid‐filled mature adipocytes and a heterogeneous stromal vascular fraction (SVF) population of cells. Similarly, the bone marrow (BM) is composed of multiple cell types including adipocytes, hematopoietic, osteoprogenitor, and stromal cells necessary to support hematopoiesis. Both adipose and BM contain a population of mesenchymal stromal/stem cells with the potential to differentiate into multiple lineages, including adipogenic, chondrogenic, and osteogenic cells, depending on the culture conditions. In this study we have shown that human adipose‐derived stem cells (ASCs) and bone marrow mesenchymal stem cells (BMSCs) populations display a common expression profile for many surface antigens, including CD29, CD49c, CD147, CD166, and HLA‐abc. Nevertheless, significant differences were noted in the expression of CD34 and its related protein, PODXL, CD36, CD 49f, CD106, and CD146. Furthermore, ASCs displayed more pronounced adipogenic differentiation capability relative to BMSC based on Oil Red staining (7‐fold vs. 2.85‐fold induction). In contrast, no difference between the stem cell types was detected for osteogenic differentiation based on Alizarin Red staining. Analysis by RT‐PCR demonstrated that both the ASC and BMSC differentiated adipocytes and osteoblast displayed a significant upregulation of lineage‐specific mRNAs relative to the undifferentiated cell populations; no significant differences in fold mRNA induction was noted between ASCs and BMSCs. In conclusion, these results demonstrate human ASCs and BMSCs display distinct immunophenotypes based on surface positivity and expression intensity as well as differences in adipogenic differentiation. The findings support the use of both human ASCs and BMSCs for clinical regenerative medicine. J. Cell. Physiol. 226: 843–851, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Huang JI  Beanes SR  Zhu M  Lorenz HP  Hedrick MH  Benhaim P 《Plastic and reconstructive surgery》2002,109(3):1033-41; discussion 1042-3
Human liposuction aspirates contain pluripotent adipose-derived mesodermal stem cells that have previously been shown to differentiate into various mesodermal cell types, including osteoblasts and chondrocytes. To develop an autologous research model of bone and cartilage tissue engineering, the authors sought to determine whether rat inguinal fat pads contain a similar population of osteochondrogenic precursor cells. It was hypothesized that the rat inguinal fat pad contains adipose-derived multipotential cells that resemble human adipose-derived mesodermal stem cells in their osteochondrogenic capacity. To test this, the authors assessed the ability of cells isolated from the rat inguinal fat pad to differentiate into osteoblasts and chondrocytes by a variety of lineage-specific histologic stains.Rat inguinal fat pads were isolated and processed from Sprague-Dawley rats into a fibroblast-like cell population. Cell cultures were placed in pro-osteogenic media containing dexamethasone, ascorbic acid, and beta-glycerol phosphate. Osteogenic differentiation was assessed at 2, 4, and 6 weeks. Alkaline phosphatase activity and von Kossa staining were performed to assess osteoblastic differentiation and the production of a calcified extracellular matrix. Cell cultures were also placed in prochondrogenic conditions and media supplemented with transforming growth factor-beta1, insulin, transferrin, and ascorbic acid. Chondrogenic differentiation was assessed at 2, 7, and 14 days by the presence of positive Alcian blue staining and type II collagen immunohistochemistry. Cells placed in osteogenic conditions changed in structure to a more cuboidal shape, formed bone nodules, stained positively for alkaline phosphatase activity, and secreted calcified extracellular matrix by 2 weeks. Cells placed in chondrogenic conditions formed cartilaginous nodules within 48 hours that stained positively for Alcian blue and type II collagen. The authors identified the rat inguinal fat pad as a source of osteochondrogenic precursors and developed a straightforward technique to isolate osteochondrogenic precursors from a small animal source. This relatively easily obtained source of osteochondrogenic cells from the rat may be useful for study of tissue engineering strategies and the basic science of stem cell biology.  相似文献   

11.
hASCs [human ASCs (adipose derived stromal cells)] proliferate more rapidly in the presence of basic FGF-2 (fibroblast growth factor-2) and Dex (dexamethasone). We have examined the effects of expanding hASCs in media containing these two factors on their chondrogenic differentiation potential. Results show that the addition of FGF-2 and Dex to the expansion medium does not remarkably alter the chondrogenic potential of the cells induced by BMP-6 (bone morphogenetic protein-6), based on chondrogenic gene expression, sGAG (sulfated glycosaminoglycan) accumulation and immunohistochemical observation. This is in direct contrast to previously reported promotion of the osteogenic and adipogenic potential of hASCs by these two factors. Therefore, an expansion medium containing FGF-2, with or without Dex, is appropriate for the fast expansion of hASCs without compromising chondrogenic potential.  相似文献   

12.
Recently, extracted teeth have been identified as a viable source of stem cells for tissue regenerative approaches. Current expansion of these cells requires incorporation of animal sera; yet, a fundamental issue underlying cell cultivation methods for cell therapy regards concerns in using animal sera. In this study, we investigated the development of a chemically defined, serum‐free media (K‐M) for the expansion of human periodontal ligament stem cells (PDLSCs) and human stem cells from exfoliated deciduous teeth (SHEDs). Proliferation assays were performed comparing cells in serum‐containing media (FBS‐M) with cells cultured in four different serum‐free medium and these demonstrated that in these medium, the cell proliferation of both cell types was significantly less than the proliferation of cells in FBS‐M. Additional proliferation assays were performed using pre‐coated fibronectin (FN) tissue culture plates and of the four serum‐free medium, only K‐M enabled PDLSCs and SHEDs to proliferate at higher rates than cells cultured in FBS‐M. Next, alkaline phosphatase activity showed that PDLSCs and SHEDs exhibited similar osteogenic potential whether cultured in K‐M or FBS‐M, and, additionally, cells retained their multipotency in K‐M as seen by expression of chondrogenic and adipogenic genes, and positive Von Kossa, Alcian blue, and Oil Red O staining. Finally, differential expression of 84 stem cell associated genes revealed that for most genes, PDLSCs and SHEDs did not differ in their expression regardless of whether cultured in K‐M or FBS‐M. Taken together, the data suggest that K‐M can support the expansion of PDLSCs and SHEDs and maintenance of their multipotency. J. Cell. Physiol. 226: 66–73, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
14.
目的探讨甲状旁腺素(PTH)对小鼠软骨细胞成软骨性的促进作用和终末期分化的抑制作用。方法分离和培养新生小鼠胸骨软骨细胞,经PTH处理,倒置显微镜观察细胞形态的变化;Alcian蓝染色和碱性磷酸酶(ALP)染色方法检测软骨细胞蛋白多糖和ALP的分泌;RT-PCT法和Western blot方法检测细胞内成软骨因子和病理性肥大分化因子基因和蛋白的表达。结果新生小鼠胸骨软骨细胞具有自发成熟分化的特征,与对照组相比,经PTH处理的细胞更接近于软骨细胞形态;PTH明显提高软骨细胞Alcian蓝染色的强度,降低ALP染色的强度;PTH显著提高细胞内Sox9和Aggrecan基因和蛋白的表达,明显降低ALP和Runx2基因和蛋白的表达。结论 PTH具有促进小鼠软骨细胞成软骨和抑制其终末期分化的作用。  相似文献   

15.
The mouse cell line L-929 was established in protein-free Eagle's Minimal Essential Medium. The cells have been 'adapted' to continuous growth in the medium using stepwise reductions in the concentration of fetal bovine serum. The cells designated L-929-WS have now been propagated in protein-free Eagle's Minimal Essential Medium for two years. The population-doubling time was about 37 h. The addition of serum stimulated cell growth only slightly, but the saturation density was significantly increased. Morphological examination, a study of the secretion of colony stimulating activity and cytochemical investigations for acid phosphatase and alkaline phosphatase showed that L-929-WS cells, grown in protein-free Eagle's Minimal Essential Medium, did not differ markedly from cells propagated in medium containing serum. The cells provided a simple model for the study of cell growth in the absence of serum or the other macromolecular substances usually added to cell cultures. The general application of the cells for purposes in which the addition of serum or growth factors might interfere, is suggested.  相似文献   

16.
Taking advantage of homogeneously marked cells from green fluorescent protein (GFP) transgenic mice, we have recently reported that adipose-derived stromal cells (ASCs) could differentiate into mesenchymal lineages in vitro. In this study, we performed neural induction using ASCs from GFP transgenic mice and were able to induce these ASCs into neuronal and glial cell lineages. Most of the neurally induced cells showed bipolar or multipolar appearance morphologically and expressed neuronal markers. Electron microscopy revealed their neuronal morphology. Some cells also showed glial phenotypes, as shown immunocytochemically. The present study clearly shows that ASCs derived from GFP transgenic mice differentiate into neural lineages in vitro, suggesting that these cells might provide an ideal source for further neural stem cell research with possible therapeutic application for neurological disorders.  相似文献   

17.
Mesenchymal stem-like cells identified in different tissues reside in a perivascular niche. In the present study, we investigated the putative niche of adipose-derived stromal/stem cells (ASCs) using markers, associated with mesenchymal and perivascular cells, including STRO-1, CD146, and 3G5. Immunofluorescence staining of human adipose tissue sections, revealed that STRO-1 and 3G5 co-localized with CD146 to the perivascular regions of blood vessels. FACS was used to determine the capacity of the CD146, 3G5, and STRO-1 specific monoclonal antibodies to isolate clonogenic ASCs from disassociated human adipose tissue. Clonogenic fibroblastic colonies (CFU-F) were found to be enriched in those cell fractions selected with either STRO-1, CD146, or 3G5. Flow cytometric analysis revealed that cultured ASCs exhibited similar phenotypic profiles in relation to their expression of cell surface markers associated with stromal cells (CD44, CD90, CD105, CD106, CD146, CD166, STRO-1, alkaline phosphatase), endothelial cells (CD31, CD105, CD106, CD146, CD166), haematopoietic cells (CD14, CD31, CD45), and perivascular cells (3G5, STRO-1, CD146). The immunoselected ASCs populations maintained their characteristic multipotential properties as shown by their capacity to form Alizarin Red positive mineralized deposits, Oil Red O positive lipid droplets, and Alcian Blue positive proteoglycan-rich matrix in vitro. Furthermore, ASCs cultures established from either STRO-1, 3G5, or CD146 selected cell populations, were all capable of forming ectopic bone when transplanted subcutaneously into NOD/SCID mice. The findings presented here, describe a multipotential stem cell population within adult human adipose tissue, which appear to be intimately associated with perivascular cells surrounding the blood vessels.  相似文献   

18.
Mesenchymal stem cells (MSCs) reside in the bone marrow and have the potential for multilineage differentiation, into bone, cartilage, and fat, for example. In this study, bovine and porcine MSCs were isolated, cultured to determine their replication ability, and differentiated with osteogenic medium and 5-azacytine. Both bovine and porcine undifferentiated MSCs were electroporated and virally transduced to test the efficiency of genetic modification and the maintainance of differentiation ability thereafter. Nuclear transfer experiments were carried out with bovine and porcine MSCs, both at the undifferentiated state and following differentiation. Our results indicate that bovine and porcine MSCs have limited lifespans in vitro--approximately 50 population doublings. They can be efficiently differentiated and characterized along the osteogenic lineage by morphology, alkaline phosphatase, Von Kossa, oil red stainings, and RT-PCR. Electroporation and selection induce high levels of EGFP expression in porcine but not in bovine MSCs. Following genetic modification, MSCs retain their pluridifferentiation ability as parental cells. Cloned embryos derived from bovine and porcine undifferentiated MSCs and their derivatives along the osteogenic lineage give rise to consistently high preimplantation development comparable to adult fibroblasts.  相似文献   

19.
Adipose-derived stem cells (ASCs) are an abundant, readily available population of multipotent progenitor cells that reside in adipose tissue. Isolated ASCs are typically expanded in monolayer on standard tissue culture plastic with a basal medium containing 10% fetal bovine serum. However, recent data suggest that altering the monolayer expansion conditions by using suspension culture plastic, adding growth factors to the medium, or adjusting the seeding density may affect the self-renewal rate, multipotency, and lineage-specific differentiation potential of the ASCs. We hypothesized that variation in any of these expansion conditions would influence the chondrogenic potential of ASCs. ASCs were isolated from human liposuction waste tissue and expanded through two passages with different tissue culture plastic, feed medium, and cell seeding densities. Once expanded, the cells were cast in an agarose gel and subjected to identical chondrogenic culture conditions for 7 days, at which point cell viability, radiolabel incorporation, and gene expression were measured. High rates of matrix synthesis upon chondrogenic induction were mostly associated with smaller cells, as indicated by cell width and area on tissue culture plastic, and it appears that expansion in a growth factor supplemented medium is important in maintaining this morphology. All end-point measures were highly dependent on the specific monolayer culture conditions. These results support the hypothesis that monolayer culture conditions may "prime" the cells or predispose them towards a specific phenotype and thus underscore the importance of early culture conditions in determining the growth and differentiation potential of ASCs.  相似文献   

20.
Tissue engineering (TE) has emerged as a promising new therapy for the treatment of damaged tissues and organs. Adult stem cells are considered as an attractive candidate cell type for cell-based TE. Mesenchymal stem cells (MSC) have been isolated from a variety of tissues and tested for differentiation into different cell lineages. While clinical trials still await the use of human MSC, horse tendon injuries are already being treated with autologous bone marrow-derived MSC. Given that the bone marrow is not an optimal source for MSC due to the painful and risk-containing sampling procedure, isolation of stem cells from peripheral blood would bring an attractive alternative. Adherent fibroblast-like cells have been previously isolated from equine peripheral blood. However, their responses to the differentiation conditions, established for human bone marrow MSC, were insufficient to fully confirm their multilineage potential. In this study, differentiation conditions were optimized to better evaluate the multilineage capacities of equine peripheral blood-derived fibroblast-like cells (ePB-FLC) into adipogenic, osteogenic, and chondrogenic pathways. Adipogenic differentiation using rabbit serum resulted in a high number of large-size lipid droplets three days upon induction. Cells' expression of alkaline phosphatase and calcium deposition upon osteogenic induction confirmed their osteogenic differentiation capacities. Moreover, an increase of dexamethasone concentration resulted in faster osteogenic differentiation and matrix mineralization. Finally, induction of chondrogenesis in pellet cultures resulted in an increase in cartilage-specific gene expression, namely collagen II and aggrecan, followed by protein deposition after a longer induction period. This study therefore demonstrates that ePB-FLC have the potential to differentiate into adipogenic, osteogenic, and chondrogenic mesenchymal lineages. The presence of cells with confirmed multilineage capacities in peripheral blood has important clinical implications for cell-based TE therapies in horses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号