首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S Yokoyama  F Inagaki  T Miyazawa 《Biochemistry》1981,20(10):2981-2988
An advanced method was developed for lanthanide-probe analyses of the conformations of flexible biomolecules such as nucleotides. The new method is to determine structure parameters (such as internal-rotation angles) and population parameters for local conformational equilibria of flexible sites, together with standard deviations of these parameters. As the prominent advantage of this method, the interrelations among local conformations of flexible sites may be quantitatively elucidated from the experimental data of lanthanide-induced shifts and relaxations and vicinal coupling constants. As a structural unit of ribonucleic acids, the molecular conformations and conformational equilibria of uridine 3'-monophosphate in aqueous solution were analyzed. The stable local conformers about the C3'-O3' bond are the G+ (phi' = 281 +/- 11 degrees) and G- (phi' = 211 +/- 8 degrees) forms. The internal rotation about the C3'-O3' bond and the ribose-ring puckering are interrelated; 97 +/- 5% of the C3'-endo ribose ring is associated with the G- form while 70 +/- 22% o the C2'-endo ribose ring is associated with the G+ form. An interdependency also exists between the internal rotation about the C4'-C5' bond and the ribose-ring puckering. These short-range conformational interrelations are probably important in controlling the dynamic aspects of ribonucleic acid structures.  相似文献   

2.
P D Johnston  A G Redfield 《Biochemistry》1981,20(14):3996-4006
Nuclear magnetic resonance (NMR) measurements of proton exchange were performed on yeast tRNAPhe, and in much less detail on Escherichia coli tRNAfMet, over a range of Mg2+ concentrations and temperatures, at neutral pH and 0.1 M NaCl. The resonances studied were those of ring nitrogen protons, resonating between 10 and 15 ppm downfield from sodium 3-(trimethylsilyl)-1-propanesulfonate, which partake in hydrogen bonding between bases of secondary and tertiary pairs. Methods include saturation--recovery, line width, and real-time observation after a change to deuterated solvent. The relevant theory is briefly reviewed. We believe that most of the higher temperature rates reflect major unfolding of the molecule. For E. coli tRNAfMet, the temperature dependence of the rate for the U8--A14 resonance maps well onto previous optical T-jump studies for a transition assigned to tertiary melting. For yeast tRNAPhe, exchange rates of several resolved protons could be studied from 30 to 45 degrees C in zero Mg2+ concentration and had activation energies on the order of 40 kcal/mol. Initially, the tertiary structure melts, followed shortly by the acceptor stem. At high Mg2+ concentration, relatively few exchange rates are measurable below the general cooperative melt at about 60 degrees C; these are attributed to tertiary changes. Real-time observations suggest a change in the exchange mechanism at room temperature with a lower activation energy. The results are compared with those obtained by other methods directed toward assaying ribonucleic acid dynamics.  相似文献   

3.
4.
D R Hare  B R Reid 《Biochemistry》1982,21(8):1835-1842
The NMR resonances from the hydrogen-bonded ring NH protons in the dihydrouridine stem of Escherichia colt tRNA1Val have been assigned by experiments involving the nuclear Overhauser effect (NOE) between adjacent base pairs. Irradiation of the 8-14 tertiary resonance produced a NOE to base pair 13. Irradiation of the CG13 ring NH produced NOEs to base pairs 12 and 14. Similarly, base pair 12 was shown to be dipolar coupled to 11 and 13, and base pair 11 was found to be coupled to 10 and 12. These sequential connectivities led to the assignment of CG13 at -13.05 ppm, UA12 at -13.84 ppm, CG11 at -12.23 ppm, and GC10 at -12.60 ppm. The results are compared with previous, less direct assignments for these four base pairs and with the expected proton positions from the crystal structure coordinates for this helix.  相似文献   

5.
The temperature dependence of the 31P NMR spectra of the ethidium complexes with poly(A) X oligo(U) and the 31P spectra of phenylalanine tRNA (yeast) in various molar ratios of ethidium ion (Et) are presented. In the poly(A) X oligo(U) X Et complex, a new peak about 2.0 ppm downfield from the double-helix peak appears. We have assigned this peak to phosphates perturbed by ethidium. The chemical shift of this peak is consistent with the intercalation mode of binding and provides additional support for our hypothesis that 31P shifts are sensitive probes of phosphate ester conformations. The main effect of ethidium on the 31P spectra of tRNAPhe is the broadening of several of the scattered signals. These scattered signals are associated with phosphates involved in tertiary interactions. We propose that these broadened signals arise from phosphates near the Et binding site.  相似文献   

6.
7.
The chemical shifts of the isoleucine and histidine protons of angiotensin I were assigned and the chemical shifts of the protons of the other amino acids in the peptide were confirmed at a field strength of 400 MHz. These chemical shift assignments were used to determine the amino acid composition of angiotensin I. These data were then compared to the amino acid composition which was determined by chromatographic analysis of the peptide hydrolysate. The results obtained by the chromatographic method were similar to those obtained by the NMR method. The standard deviations of the results were similar, indicating that these methods are equally precise. The major advantages of the NMR method are that it permits the recovery of the peptide after completion of the analysis and improves the quantitation of amino acids which are either partially destroyed by the hydrolysis procedure or require special derivatization methods for detection and quantitation.  相似文献   

8.
Spin-echo NMR spectroscopy was shown to be a reliable technique for the monitoring of the in situ cleavage of gamma-Glu-Ala by gamma-glutamyl-amino acid cyclotransferase in whole erythrocytes and hemolysates. Of particular importance was the difference in chemical shifts between peptide resonances and those of the constituent amino acids. Using lysates of varying dilution, it was shown that the specific activity of the enzyme was not concentration-dependent, thus suggesting a lack of cytosolic low-molecular-weight-effectors or enzyme dissociation. Furthermore, the initial velocities of the reaction as a function of substrate concentration obeyed Michaelis-Menten kinetics with a Km = 2.0 +/- 0.3 mmol/l and Vmax = 137 +/- 7 mmol/h/l of cell water in 1H2O medium. Similar analysis in 2H2O medium revealed a solvent kinetic isotope effect of 1.9 +/- 0.4 at low substrate concentrations. The implications of this observation for the mechanism of the reaction are discussed. Cleavage of the peptide by a suspension of intact erythrocytes was at a rate 300 times less than the corresponding lysate flux, thus indicating the rate limitation by transport in the coupled system.  相似文献   

9.
G Viggiano  N T Ho  C Ho 《Biochemistry》1979,18(23):5238-5247
The proton nuclear magnetic resonance spectrum of human adult deoxyhemoglobin in D2O in the region from 6 to 20 ppm downfield from the proton resonance of residual water shows a number of hyperfine shifted proton resonances that are due to groups on or near the alpha and beta hemes. The sensitivity of these resonances to the ligation of the heme groups and the assignment of these resonances to the alpha and beta chains provide an opportunity to investigate the cooperative oxygenation of an intact hemoglobin molecule in solution. By use of the nuclear magnetic resonance correlation spectroscopy technique, at least two resonances, one at approximately 18 ppm downfield from HDO due to the beta chain and the other at approximately 12 ppm due to the alpha chain, can be used to study the binding of oxygen to the alpha and beta chains of hemoglobin. The present results using approximately 12% hemoglobin concentration in 0.1 M Bistris buffer at pD 7 and 27 degrees C with and without organic phosphate show that there is no significant line broadening on oxygenation (from 0 to 50% saturation) to affect the determination of the intensities or areas of these resonances. It is found that the ratio of the intensity of the alpha-heme resonance at 12 ppm to that of the beta-heme resonance at 18 ppm is constant on oxygenation in the absence of organic phosphate but decreases in the presence of 2,3-diphosphoglycerate or inositol hexaphosphate, with the effect of the latter being the stronger. On oxygenation, the intensities of the alpha-heme resonance at 12 ppm and of the beta-heme resonance at 18 ppm decreases more than the total number of deoxy chains available as measured by the degree of O2 saturation of hemoglobin. This shows the sensitivity of these resonances to structural changes which are believed to occur in the unligated subunits upon the ligation of their neighbors in an intact tetrameric hemoglobin molecule. A comparison of the nuclear magnetic resonance data with the populations of the partially saturated hemoglobin tetramers (i.e., hemoglobin with one, two, or three oxygen molecules bound) leads to the conclusion that in the presence of organic phosphate the hemoglobin molecule with one oxygen bound maintains the beta-heme resonance at 18 ppm but not the alpha-heme resonance at 12 ppm. These resluts suggest that some cooperativity must exist in the deoxy quaternary structure of the hemoglobin molecule during the oxygenation process. Hence, these results are not consistent with the requirements of two-state concerted models for the oxygenation of hemoglobin. In addition, we have investigated the effect of D2O on the oxygenation of hemoglobin by measuring the oxygen dissociation curves of normal adult hemoglobin as a function of pH in D2O andH2O media. We have found that (1) the pH dependence of the oxygen equilibrium of hemoglobin (the Bohr effect) in higher pH in comparison to that in H2O medium and (2) the Hill coefficients are essentially the same in D2O and H2O media over the pH range from 6.0 to 8.2...  相似文献   

10.
The kinetics of Ca2+-induced fusion of phosphatidylcholine-phosphatidic acid vesicles has been studied using the dependence of proton nuclear magnetic resonance linewidths on vesicle size. The linewidth of the lipid acyl chain methylene resonance been shown to be sensitive to changes in vesicle size but insensitive to vesicle aggregation. For vesicle systems with the same lipid composition, the linewidth increases in a linear fashion with vesicle radius over the range 125–300 Å. This dependence has been used to determine quantitatively fusion rates and the dependence of such rates on Ca2+ as well as an vesicle concentration. For vesicle concentrations in the range of 3 · 10?6–10?5 M and Ca2+ concentration at a level approaching 1 : 1 with respect to phosphatidic acid, the initial fusion rates have been found to be fast, with half-times of 1–10 min. An order of reaction of 2.7 with respect to vesicle concentration has been observed. Mechanisms of vesicle fusion are discussed in view of these observations.  相似文献   

11.
J B Wooten  J S Cohen 《Biochemistry》1979,18(19):4188-4191
Hen egg white lysozyme has been prepared in which the C epsilon position of the single histidine residue is substituted by a deuterium atom as a nondisturbing stable isotope probe. The deuterium nuclear magnetic resonance (2H NMR) spectrum in H2O shows a broad resonance (500--1000 Hz) due to the histidine deuteron and a sharp signal from residual HOD. The line width of the deuterium signal increases with pH, reflecting the self-association of lysozyme which is known to involve this histidine [shindo, H., Cohen, J.S., & Rupley, J. A. (1977) Biochemistry 16, 3879]. Correlation times calculated from spin-spin relaxation times (T2) derived from the 2H widths indicate that His-15 is restricted in motion and that lysozyme is predominantly dimerized at pH 7.5. Controls carried out with [epsilon-2H]imidazole showed a small pH dependence of the spin-lattice relaxation time (T1), which parallels the 2H chemical shift change upon ionization of the imidazole. Similar results cannot generally be observed by proton nuclear magnetic resonance (1H NMR) because of paramagnetic relaxation due to trace metal ion impurities. The pH dependence of the 2H T1 values indicates a change in the 2H quadrupole coupling constant upon protonation of the imidazole ring.  相似文献   

12.
Oxygen-17 and deuterium NMR studies of lysozyme hydration are reported for a wide range of lysozyme concentrations, and the relationship between water "activity" and water mobility in the lysozyme-water system as determined by high-field NMR is examined. In a first approximation, the effect of lysozyme activity on hydration is considered to be small because of the relatively low charge on lysozyme at pH 7 and the absence of salt in the lysozyme solutions. Correlation times are determined for tightly bound water, weakly bound water, and "multilayer" or trapped water in lysozyme at 20 degrees C. Hydration numbers are also determined for these three different water populations interacting with lysozyme. Good agreement is found between the hydration numbers determined by 17O NMR and the calculations based on the D'Arcy and Watt analysis of water sorption isotherms for proteins that considered three major water populations in hydrated lysozyme. A molecular interpretation for the three components in the D'Arcy and Watt theory of sorption isotherms is also proposed on the basis of our NMR results. Previous proton NMR spin-echo results are shown to be consistent with our findings by 17O NMR and support the view that there are at least four regions of distinct hydration behavior of lysozyme which span the whole range from solutions to solid powders.  相似文献   

13.
14.
High-resolution 1H nuclear magnetic resonance (NMR) spectroscopy at 300 MHz has been used to study the behavior of human gastrin in aqueous solution. A large number of resonances have been assigned by analysis of one- and two-dimensional NMR spectra and the effects of pH and by comparison with the spectrum of des-less than Glu1-gastrin. In gastrin, the ratio of cis to trans conformations around the Gly-2 to Pro-3 peptide bond is 3:7. This is reflected in splitting of the resonances of several neighboring residues and of a residue distant in the sequence, Tyr-12. The pKa of Tyr-12 is 10.7. Sulfation of this residue perturbs the resonances of Tyr-12 and Gly-13 but has very little effect on the rest of the spectrum. A study of the temperature dependence shows that several perturbed resonances move toward their expected positions as the temperature is raised but with a linear dependence on temperature, consistent with a redistribution of populations among accessible local conformations rather than a cooperative conformational change. Addition of Na+ or Ca2+ causes only minor changes in the spectrum. The paramagnetic metal ion Co2+ produces a number of spectral changes, reflecting strong binding to at least one site involving the Glu residues and weaker binding to Asp-16.  相似文献   

15.
A proton nuclear magnetic resonance study of sulfmyoglobin cyanide   总被引:1,自引:0,他引:1  
The proton nuclear magnetic resonance spectrum of sulfmyoglobin cyanide was studied at 400 MHz. The position of a methyl-group resonance at low field is consistent with a chlorin-like structure for the prosthetic group. The proton NMR spectrum of the cyanide derivative of the purified prosthetic group which decomposes upon extraction from the protein was found to be the same as that of the cyanide derivative of the prosthetic group extracted from myoglobin and a sample prepared from hemin-Cl.  相似文献   

16.
The first high resolution proton nuclear magnetic resonance spectra are reported for the native ferric and ferric cyano complexes of bovine lactoperoxidase. The spectrum of the native species exhibits broad heme signals in a far downfield region characteristic of the high-spin ferric state. The low-spin cyano complex yields a proton nuclear magnetic resonance spectrum with signals as far as 68.5 ppm downfield and as far as -28 ppm upfield of the tetramethylsilane reference. These peak positions are anomalous with respect to those seen only as far as 35 ppm downfield in other cyano hemoprotein complexes. An extreme asymmetry in the unpaired spin delocalization pattern of the iron porphyrin is suggested. The unusual proton nuclear magnetic resonance properties parallel distinctive optical spectral properties and the exceptional resistance to heme displacement from the enzyme. Lactoperoxidase utilized in these studies was isolated from raw milk and purified by an improved, rapid chromatographic procedure.  相似文献   

17.
The 17 base pair duplex d(TATCACCGCAAGGGATAp) . d(TATCCCTTGCGGTGATAp) corresponding to the OR3 operator site of lambda phage has been synthesized and studied by 1H nuclear magnetic resonance spectroscopy at 470 MHz. The 13 imino proton resonances observed at 20 degrees C have been assigned to specific base pairs at positions 3-15 on the basis of nuclear Overhauser effect measurements and studies of the temperature dependence of peak intensities. Resonances from the A-T base pairs at positions 1, 2, 16, and 17 are assumed to be absent from the spectrum because of terminal fraying. Resonance from many of the base pairs suggested by Ohlendorf et al. [Ohlendorf, D. H., Anderson, W. F., Fisher, R. G., Takeda, Y., & Matthews, B. W. (1982) Nature (London) 298, 718-723] to be involved in specific binding of the lambda phage cro repressor are well resolved.  相似文献   

18.
One-dimensional Fourier-transform proton nuclear magnetic resonance (1H-NMR) spectroscopy can be used to study biotransformations in situ, in vivo and in aqua (1H2O). Although an insensitive method, it rapidly provides solution-structural information of mixtures of diverse compounds that are used and formed during enzymic reactions and culture fermentations; the samples do not require any physical or chemical processing for analysis. The absolute stereochemistry of some reactions can also be determined, and assessments of metabolic fluxes made. This technique, with appropriate modifications, is of obvious value for on-line assessments of industrial fermentation processes.  相似文献   

19.
Mobile domains in ribosomes revealed by proton nuclear magnetic resonance   总被引:4,自引:0,他引:4  
Ribosomes and subunits from eukaryotic and prokaryotic sources were studied by high-resolution proton magnetic-resonance spectroscopy. If all ribosomal components are firmly bound within the particle, then only broad spectra would be expected. However, relatively sharp resonances were found both in ribosomal subunits and in 70 or 80 S ribosomes. The regions of these mobile protein domains have been partially assigned in Escherichia coli ribosomes. Large and small ribosomal subunits were treated to remove selectively proteins L7/12 and S1, respectively. Sharp proton magnetic resonance spectra were not observed for the stripped large subunit showing that proteins L7/12 comprise the flexible protein region and that there is little other flexibility in the stripped subunit. Complete removal of S1 from the small subunit greatly reduced but did not abolish the sharp protein resonance peaks, indicating that protein S1 contains a substantial flexible component but that other flexible components remain in the stripped small subunit. Evidence for generality of these features of ribosome organization is provided by similar studies on ribosomes from eukaryotic sources.  相似文献   

20.
The low-field hydrogen-bond ring NH proton nuclear magnetic resonance (NMR) spectra of several transfer ribonucleic acids (tRNAs) related to yeast tRNAPhe have been examined in detail. Several resonances are sensitive to magnesium ion and temperature, suggesting that they are derived from tertiary base pairs. These same resonances cannot be attributed to cloverleaf base pairs as shown by experimental assignment and ring current shift calculation of the secondary base pair resonances. The crystal structure of yeast tRNAPhe reveals at least six tertiary base pairs involving ring NH hydrogen bonds, which we conclude are responsible for the extra resonances observed in the low-field NMR spectrum. In several tRNAs with the same tertiary folding potential and dihydrouridine helix sequence as yeast tRNAPhe, the extra resonances from tertiary base pairs are observed at the same position in the spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号