首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rate of tritiated thymidine incorporation into DNA was used to estimate bacterial growth rates in aquatic environments. To be accurate, the calculation of growth rates has to include a factor for the dilution of isotope before incorporation. The validity of an isotope dilution analysis to determine this factor was verified in experiments reported here with cultures of a marine bacterium growing in a chemostat. Growth rates calculated from data on chemostat dilution rates and cell density agreed well with rates calculated by tritiated thymidine incorporation into DNA and isotope dilution analysis. With sufficiently high concentrations of exogenous thymidine, de novo synthesis of deoxythymidine monophosphate was inhibited, thereby preventing the endogenous dilution of isotope. The thymidine technique was also shown to be useful for measuring growth rates of mixed suspensions of bacteria growing anaerobically. Thymidine was incorporated into the DNA of a range of marine pseudomonads that were investigated. Three species did not take up thymidine. The common marine cyanobacterium Synechococcus species did not incorporate thymidine into DNA.  相似文献   

2.
The uptake and incorporation of tritiated thymidine (3H-TdR) by axenic laboratory cultures of marine diatoms and dinoflagellates was measured. 3H-TdR was incorporated into nucleic acids by all four algae examined during a two to six hour period prior to cytokinesis and not during other times of the cell cycle. Between 90-95% of the 3H label incorporated into (cold trichloroacetic acid insoluble) nucleic acids was recovered from DNA. Incorporation of 3H-TdR appears to accurately indicate the timing of DNA synthesis. The incorporation of 3H-TdR by eucaryotic algae during long term (24 h) incubations does not generally preclude using 3H-TdR uptake to estimate bacterial production and growth during short term incubations.  相似文献   

3.
The incorporation of [3H]thymidine into uterine DNA was markedly depressed within 10 to 30 minutes after intraperitoneal administration of 17beta-estradiol to immature mouse. Maximum inhibition occurred about 6 hours after the hormone was administered. Uterine DNA content and the amount of [3H]thymidine incorporated into the acid-soluble fraction was not affected during the period of hormone-induced inhibition. Moreover, the in vitro incorporation of [3H]thymidine by isolated estradiol-treated mouse uterus was blocked. In contrast to the uterus, 17beta-estradiol did not influence the incorporation of thymidine into mouse liver DNA. Evidence is presented to show that the incorporation of thymidine into uterine DNA was blocked initially by 17beta-estradiol.  相似文献   

4.
A direct comparison of [H]thymidine incorporation with DNA synthesis was made by using an exponentially growing estuarine bacterial isolate and the naturally occurring bacterial populations in a eutrophic subtropical estuary and in oligotrophic offshore waters. Simultaneous measurements of [H]thymidine incorporation into DNA, fluorometrically determined DNA content, and direct counts were made over time. DNA synthesis estimated from thymidine incorporation values was compared with fluorometrically determined changes in DNA content. Even after isotope dilution, nonspecific macromolecular labeling, and efficiency of DNA recovery were accounted for, [H]thymidine incorporation consistently underestimated DNA synthesized by six- to eightfold. These results indicate that although the relationship of [H]thymidine incorporation to DNA synthesis appears consistent, there are significant sources of thymine bases incorporated into DNA which cannot be accounted for by standard [H]thymidine incorporation and isotope dilution assays.  相似文献   

5.
Summary The labelling of nucleic acids of growing cells of the blue-green algae Anacystis nidulans and Synechocystis aquatilis by radioactive precursors has been studies. A. nidulans cells most actively incorporate radioactivity from [2-14C]uracil into both RNA and DNA, while S. aquatilis cells incorporate most effectively [2-14C]uracil and [2-14C]thymine.Deoxyadenosine does not affect incorporation of label from [2-14C]thymidine into DNA, but weakly inhibits [2-14C]thymine incorporation into both nucleic acids and significantly suppresses the incorporation of [2-14C]uracil.The radioactivity from [2-14C]uracil and [2-14C]thymine is found in RNA uracil and cytosine and DNA thymine and cytosine. The radioactivity of [2-14C]thymidine is incorporated into DNA thymine and cytosine. These results and data of comparative studies of nucleic acid labelling by [2-14C]thymine and [5-methyl-14C]thymine suggest that the incorporation of thymine and thymidine into nucleic acids of A. nidulans and S. aquatilis is accompanied by demethylation of these precursors. In this respect blue-green algae resemble fungi and certain green algae.  相似文献   

6.
One assumption made in bacterial production estimates from [3H]thymidine incorporation is that all heterotrophic bacteria can incorporate exogenous thymidine into DNA. Heterotrophic marine bacterium isolates from Tampa Bay, Fla., Chesapeake Bay, Md., and a coral surface microlayer were examined for thymidine uptake (transport), thymidine incorporation, the presence of thymidine kinase genes, and thymidine kinase enzyme activity. Of the 41 isolates tested, 37 were capable of thymidine incorporation into DNA. The four organisms that could not incorporate thymidine also transported thymidine poorly and lacked thymidine kinase activity. Attempts to detect thymidine kinase genes in the marine isolates by molecular probing with gene probes made from Escherichia coli and herpes simplex virus thymidine kinase genes proved unsuccessful. To determine if the inability to incorporate thymidine was due to the lack of thymidine kinase, one organism, Vibrio sp. strain D19, was transformed with a plasmid (pGQ3) that contained an E. coli thymidine kinase gene. Although enzyme assays indicated high levels of thymidine kinase activity in transformants, these cells still failed to incorporate exogenous thymidine into DNA or to transport thymidine into the cells. These results indicate that the inability of certain marine bacteria to incorporate thymidine may not be solely due to the lack of thymidine kinase activity but may also be due to the absence of thymidine transport systems.  相似文献   

7.
One assumption made in bacterial production estimates from [3H]thymidine incorporation is that all heterotrophic bacteria can incorporate exogenous thymidine into DNA. Heterotrophic marine bacterium isolates from Tampa Bay, Fla., Chesapeake Bay, Md., and a coral surface microlayer were examined for thymidine uptake (transport), thymidine incorporation, the presence of thymidine kinase genes, and thymidine kinase enzyme activity. Of the 41 isolates tested, 37 were capable of thymidine incorporation into DNA. The four organisms that could not incorporate thymidine also transported thymidine poorly and lacked thymidine kinase activity. Attempts to detect thymidine kinase genes in the marine isolates by molecular probing with gene probes made from Escherichia coli and herpes simplex virus thymidine kinase genes proved unsuccessful. To determine if the inability to incorporate thymidine was due to the lack of thymidine kinase, one organism, Vibrio sp. strain D19, was transformed with a plasmid (pGQ3) that contained an E. coli thymidine kinase gene. Although enzyme assays indicated high levels of thymidine kinase activity in transformants, these cells still failed to incorporate exogenous thymidine into DNA or to transport thymidine into the cells. These results indicate that the inability of certain marine bacteria to incorporate thymidine may not be solely due to the lack of thymidine kinase activity but may also be due to the absence of thymidine transport systems.  相似文献   

8.
5-Fluoro-2'-deoxyuridine is incorporated into DNA of mouse breast tumour in vivo. The incorporation is inhibited by thymidine. Part of the fluorodeoxyuridine is cleaved to fluorouracil and is incorporated into RNA. This incorporation is enhanced by thymidine. The result suggests that the major mechanism of action of the fluorouracil is due to its incorporation into RNA.  相似文献   

9.
The effects of N-trifluoroacetyladriamycin-14-valerate on the uptake of [3H]thymidine and its incorporation into DNA of human P3HR-1 lymphoma cells were studied. In the absence of the drug, at 0 degrees C, [3H]thymidine was transported into the cells but not incorporated into DNA, as determined by both the trichloroacetic acid-soluble and -precipitable counts obtained with the cells. At 37 degrees C, [3H]thymidine was readily transported into the cells and incorporated into DNA. In the presence of the drug, both [3H]thymidine uptake (as shown by acid-soluble counts) and the amount of its incorporation into acid-precipitable materials were markedly reduced. However, the uptake of [3H]thymidine at 0 degrees C was found to be equally sensitive to drug inhibition as at 37 degrees C. The incorporation at 37 degrees C of [3H]thymidine into acid-precipitable materials of the cells, which had been prelabeled at 0 degrees C with [3H]thymidine, was found to be insensitive to inhibition by the drug. The in vitro activities of DNA polymerases alpha and beta purified from human P3HR-1 cells were also found not to be susceptible to inhibition. Nuclei purified from cells pretreated with the drug continued to synthesize DNA. The cytofluorograms of the cells treated with the drug indicated that the treated cells accumulated at the G2/M phase, whereas the S phase of the cells was not arrested. These results suggest that N-trifluoroacetyladriamycin-14-valerate inhibits [3H]thymidine uptake but not cellular DNA synthesis in human P3HR-1 lymphoma cells.  相似文献   

10.
A direct comparison of [3H]thymidine incorporation with DNA synthesis was made by using an exponentially growing estuarine bacterial isolate and the naturally occurring bacterial populations in a eutrophic subtropical estuary and in oligotrophic offshore waters. Simultaneous measurements of [3H]thymidine incorporation into DNA, fluorometrically determined DNA content, and direct counts were made over time. DNA synthesis estimated from thymidine incorporation values was compared with fluorometrically determined changes in DNA content. Even after isotope dilution, nonspecific macromolecular labeling, and efficiency of DNA recovery were accounted for, [3H]thymidine incorporation consistently underestimated DNA synthesized by six- to eightfold. These results indicate that although the relationship of [3H]thymidine incorporation to DNA synthesis appears consistent, there are significant sources of thymine bases incorporated into DNA which cannot be accounted for by standard [3H]thymidine incorporation and isotope dilution assays.  相似文献   

11.
Labeling the deoxyribonucleic acid of Anacystis nidulans.   总被引:2,自引:0,他引:2       下载免费PDF全文
Analysis of cell-free extracts of Anacystis nidulans disclosed the absence of both thymidine phosphorylase (EC 2.4.2.4) and thymidine kinase (EC 2.7.1.21) activities. Thymine and thymidine were incorporated inefficiently by intact cells of A. nidulans either in the presence or absence of deoxyguanosine (250 mug/ml). Deoxythymidine monophosphate incorporation was also inefficient. Radioactive deoxyadenosine, at a minimally toxic level (3 mug/ml), was incorporated effectively into the deoxyribonucleic acid (DNA). A cesium chloride-ethidium bromide gradient analysis of the DNA revealed that both the plasmid DNA and the principal DNA of the A. nidulans genome were labeled effectively in cells exposed to [8-14C]deoxyadenosine.  相似文献   

12.
J Morin  S Johann  B O'Hara    Y Gluzman 《Journal of virology》1996,70(9):6402-6404
The effect of human cytomegalovirus infection on cellular DNA synthesis in human fibroblasts was measured by fluorometry and by incorporation of radiolabeled thymidine. The results show that although HCMV infection stimulates cellular DNA synthesis in both quiescent and serum-stimulated cells, radiolabeled thymidine is almost exclusively incorporated into viral DNA.  相似文献   

13.
tritiated thymidine is incorporated into DNA of spermatogonia type B as proved by autohistoradiography when injected in vivo three hours before the sacrifice. Maximum binding and specific activity (labelled thymidine expressed in DPM per mg DNA) are obtained in pubertal rats aged 42 days and weighting 150 g. Inhibin preparation extracted from rete testis fluid (RTF3) specifically inhibits tritiated thymidine into testicular DNA. Thus, no modification of incorporation into hepatic DNA is observed and the preparation loses its inhibitory effect when denatured by heating and trypsin digestion. Tritiated thymidine incorporation into testicular DNA is poor in normal adult rats and in pubertal hypophysectomized animals, RTF3 does not modify the thymidine incorporation in both conditions. The reasons for this lack of effect are discussed. An experimental condition of spermatogonial regeneration is obtained by testicular irradiation. Inhibin preparation inhibits the regenerative DNA synthesis.  相似文献   

14.
Incorporation of the nucleic acid precursors, orotic acid, adenosine, thymidine, and uridine, was studied in various stages of intraerythrocytic Plasmodium knowlesi from infected rhesus monkeys. Incubation of the parasitized erythrocytes with the precursors was for 3 hr periods using a plasma-free culture medium. The samples containing primarily rings, early trophozoites, or late trophozoites incorporated orotic acid, adenosine, and uridine into RNA; however, these stages exhibited negligible or very low levels of incorporation of any of the precursors into DNA. The sample containing late trophozoite and schizont stages incorporated orotic acid, adenosine, and uridine into RNA, and orotic acid, adenosine, and very low levels of thymidine into DNA. These results indicate that DNA synthesis (the S phase of the cell cycle) occurs very close to the time of nuclear division, and that either the G1 or G2 phase is very short in P. knowlesi. It was also observed that adenosine and orotic acid, 2 precursors which are incorporated into both DNA and RNA, are utilized differently by the intraerythrocytic parasites. Incorporation of orotic acid into RNA and DNA and adenosine incorporation into DNA were continuous for the entire incubation period, whereas incorporation of adenosine into RNA was very low during the last 2 hr of each period. It was further demonstrated that the parasites utilized exogenous uridine for synthesis of RNA, and that the older parasite stages incorporated thymidine into DNA.  相似文献   

15.
Commercial [methyl-3H]thymidine preparations tested here contain about a 0.2% contaminant which is rapidly incorporated into Chlamydomonas DNA. This contaminant obscures the measurement of the rate of chloroplast DNA synthesis when methyl-labeled preparations are used. Such contaminants are not present in ring-labeled (either 3H or 14C) thymidine preparations. In ring-labeled thymidine preparations, a slower incorporation rate commensurate with cell density is observed. These slower, long-term incorporation kinetics would be expected for the utilization of bona fide thymidine into chloroplast DNA.  相似文献   

16.
During routine [3H]thymidine incorporation measurements of environmental samples, significant amounts of radioactivity are often incorporated into macromolecules other than DNA. Although the percentage of nonspecific labeling varies both temporally and spatially, the cause(s) of these variations remain unknown. Correlations between the percent incorporated radioactivity in DNA and a variety of experimental and environmental parameters measured in the Alfia River, Crystal River, Medard Reservoir, and Bayboro Harbor were examined. The amount of radioactivity incorporated into DNA ranged from 6 to 95% ( ; n=121). Nonspecific labeling began immediately upon the addition of [3H]thymidine and was linear over time. Labeling patterns were independent of both the amount of thymidine added and cell-size fraction. A two year study of Bayboro Harbor indicated no conclusive relationship between nonspecific labeling and seasonality. The amount of radioactivity incorporated into DNA was inversely correlated with total rates of thymidine incorporation and a strong diurnal pattern was observed in the Crystal River. No consistent relationship was observed between labeling patterns and primary productivity, chlorophylla, particulate DNA, dissolved DNA, bacterial cell numbers, temperature, salinity, and dissolved organic carbon. The only relationship with dissolved inorganic nutrients (N and P) occurred in the Crystal River. In this phosphate limited river, the percent of radioactivity incorporated into DNA was positively correlated with phosphate concentrations. These results indicate that nonspecific labeling is not dependent on any one parameter but may be a function of many interacting environmental factors or a function of the specific ambient bacterial population.  相似文献   

17.
An Unusual Pattern of Tritiated Thymidine Incorporation in Euglena   总被引:7,自引:0,他引:7  
SYNOPSIS. Thymidine-methyl-H2 is incorporated into the cytoplasm of Euglena . The label is non-nuclear and not in DNA; evidence for its presence in RNA and protein is presented. Only Euglena which maintain the potentiality to develop chloroplasts show this incorporation; it was not observed in streptomycin. uv, benadryl, O-methyl threonine or heat "bleached" Euglena , nor in Astasia longa.
Preliminary incorporation experiments show that exogenous pyrimidines are not utilized as nucleic acid precursors in Euglena in general. However, the tritiated purines are incorporated into DNA and RNA. The use of thymidine to localize DNA autoradiographically in Euglena is completely excluded.  相似文献   

18.
Nitsan J  Lang A 《Plant physiology》1966,41(6):965-970
Two-day-old lentil seedlings, (Lens culinaris Med.) were incubated for a 48-hour period with and without gibberellin (GA) in the presence and absence of 5-fluorodeoxyuridine (FUDR). The number of cells per epicotyl did not increase during this period. Growth of the epicotyl was thus due to cell elongation alone.

The elongating cells of this tissue synthesized DNA. GA promoted and FUDR inhibited cell elongation, DNA synthesis, and RNA synthesis in the tissue.

FUDR promoted uptake of thymidine and thymidine incorporation into cellular DNA, presumably by inhibiting synthesis of endogenous thymidine. Presence of GA promoted thymidine incorporation into cellular DNA and uridine incorporation into cellular RNA. In either case, there was no effect on the uptake of the precursor into the tissue.

Fractionation of thymidine-labeled nucleic acids on a MAK column showed that thymidine was exclusively incorporated into the DNA fraction. Presence of GA promoted thymidine incorporation into this fraction and also increased the amount of ribosomal RNA.

The data provide direct evidence for the conclusion that DNA synthesis is necessary for elongation of certain plant cells.

  相似文献   

19.
Abstract Incorporation of [3H]methyl thymidine into bacterial DNA was measured using samples of bacterioplankton from Lake Constance and pure cultures of CO, H2 and CH4-oxidizing bacteria. Thymidine was incorporated by Pseudomonas carboxydovorans, Paracoccus denitrificans, Methylosinus trichosporium, Methylomonas agile , and by various chemolithotropic or methylotrophic isolates from Lake Constance. Thymidine incorporation by bacterial cultures was stimulated by increasing concentrations of CO or H2. Increased CH4 concentrations stimulated thymidine incorporation by Ms. trichosporium only if the cells had been starved. In contrast to bacterial cultures, thymidine incorporation by bacterioplankton samples was not stimulated by increasing  相似文献   

20.
The incorporation of exogenous thymidine and thymine into acid-insoluble material of Thermoactinomyces vulgaris has been studied during germination and subsequent growth. Thymine is not incorporated. The incorporation of thymidine stops after a short time due to the rapid breakdown of thymidine to thymine and deoxyribose-1-phosphate by the inducible thymidine phosphorylase. Deoxyadenosine enhances the incorporation of thymidine as well as of thymine and prolongs the tine of uptake. Uridine stimulates only the incorporation of thymidine but not of thymine. These effects can be explained by the function of these substances within the salvage pathway. Deoxyadenosine acts as donor of deoxyribosyl groups being necessary for the conversion of thymine to thymidine by thymidine phosphorylase and uridine inhibits thymidine phosphorylase, and thereby it prevents the degradation of thymidine to thymine. Thymidine is incorporated into alkali-, RNase-and protease-stable, hot TCA-soluble and DNase-sensitive material. That means that the cellular DNA of T. vulgaris can be specifically labelled by radioactive thymidine in the presence of deoxyadenosine and uridine, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号