首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The formation of aqueous pores by the polyene antibiotic amphotericin B (AmB) is at the basis of its fungicidal and leishmanicidal action. However, other types of nonlethal and dose-dependent biphasic effects that have been associated with the AmB action in different cells, including a variety of survival responses, are difficult to reconcile with the formation of a unique type of ion channel by the antibiotic. In this respect, there is increasing evidence indicating that AmB forms nonaqueous (cation-selective) channels at concentrations below the threshold at which aqueous pores are formed. The main foci of this review will be (1) to provide a summary of the evidence supporting the formation of cation-selective ion channels and aqueous pores by AmB in lipid membrane models and in the membranes of eukaryotic cells; (2) to discuss the influence of membrane parameters such as thickness fluctuations, the type of sterol present and the existence of sterol-rich specialized lipid raft microdomains in the formation process of such channels; and (3) to develop a cell model that serves as a framework for understanding how the intracellular K(+) and Na(+) concentration changes induced by the cation-selective AmB channels enhance multiple survival response pathways before they are overcome by the more sustained ion fluxes, Ca(2+)-dependent apoptotic events and cell lysis effects that are associated with the formation of AmB aqueous pores.  相似文献   

2.
Pashazade  T. D.  Kasumov  Kh. M. 《Biophysics》2021,66(3):428-433

It was found that the modification of one side of lipid membranes by amphotericin B and N?methyl derivatives of amphotericin B (methamphocin) resulted in a discrete increase in the membrane conductivity by the channel mechanism. The conditions under which amphotericin B increased the conductivity of membranes upon addition on one side of the membranes were found. The effect of amphotericin B upon addition on one side of the membranes was observed in an acidic medium (pH 3.0) and at a two-fold lower concentration of phospholipids in the membrane-forming solution. A large dispersion of the conductivity from 2 to 20 pS of single channels was revealed. The channels with the conductivity of 10 pS were most likely to occur. The histogram of distribution of the conductivity of metamphocin channels showed that the channels with the conductivity of 5 pS were most likely to occur. The selective permeability of membranes upon addition of methamphocin on one side of the membranes was predominantly anionic and did not depend on the concentration of cholesterol in the membranes. The mechanism of the amphotericin B and methamphocin action from one side of the membranes was due to the formation of semipores in the membranes, which were asymmetric in their structure. It was assumed that the selective permeability of the amphotericin and metamphocin channels was determined by the molecular structure of the hydrophilic chain that lines the inner cavity of the semipore.

  相似文献   

3.
Characteristics of nystatin and amphotericin B action on thin (<100 A) lipid membranes are: (a) micromolar amounts increase membrane conductance from 10-8 to over 10-2 Ω-1 cm-2; (b) such membranes are (non-ideally) anion selective and discriminate among anions on the basis of size; (c) membrane sterol is required for action; (d) antibiotic presence on both sides of membrane strongly favors action; (e) conductance is proportional to a large power of antibiotic concentration; (f) conductance decreases ~104 times for a 10°C temperature rise; (g) kinetics of antibiotic action are also very temperature sensitive; (h) ion selectivity is pH independent between 3 and 10, but (i) activity is reversibly lost at high pH; (j) methyl ester derivatives are fully active; N-acetyl and N-succinyl derivatives are inactive; (k) current-voltage characteristic is nonlinear when membrane separates nonidentical salt solutions. These characteristics are contrasted with those of valinomycin. Observations (a)–(g) suggest that aggregates of polyene and sterol from opposite sides of the membrane interact to create aqueous pores; these pores are not static, but break up (melt) and reform continuously. Mechanism of anion selectivity is obscure. Observations (h)–(j) suggest—NH3+ is important for activity; it is probably not responsible for selectivity, particularly since four polyene antibiotics, each containing two—NH3+ groups, induce ideal cation selectivity. Possibly the many hydroxyl groups in nystatin and amphotericin B are responsible for anion selectivity. The effects of polyene antibiotics on thin lipid membranes are consistent with their action on biological membranes.  相似文献   

4.
Amphotericin B (AmB) is a widely used antifungal antibiotic with high specificity for fungi. We previously synthesized several covalently conjugated AmB dimers to clarify the AmB channel structure. Among these dimers, that with an aminoalkyl linker was found to exhibit potent hemolytic activity. We continue this work by investigating the channel activity of the dimer, finding that all channels comprised of AmB dimers show rectification. The direction of the dimer channel in the membrane depended on the electric potential at which the dimer channel was formed. On the other hand, only about half the monomer channels showed rectification. In addition, these channels were easily switched from a rectified to a nonrectified state following voltage stimulation, indicating instability. We propose a model to describe the AmB channel structure that explains why AmB dimer channels necessarily show rectification.  相似文献   

5.
Implications of Two Different Types of Diffusion for Biological Membranes   总被引:1,自引:0,他引:1  
AS it is not widely appreciated that diffusion within complex media can be strikingly and often qualitatively different from that in simple liquids such as water, there is confusion concerning transport processes across biological membranes1,2. We would like to draw attention to some fundamental differences between the diffusion process in simple liquids and that in more complex media-non-porous networks of hydrophobic polymers and biological membranes.  相似文献   

6.
The action of antifungal drug, amphotericin B (AmB), on solvent-containing planar lipid bilayers made of sterols (cholesterol, ergosterol) and synthetic C14–C18 tail phospholipids (PCs) or egg PC has been investigated in a voltage-clamp mode. Within the range of PCs tested, a similar increase was achieved in the lifetime of one-sided AmB channels in cholesterol- and ergosterol-containing membranes with the C16 tail PC, DPhPC at sterol/DPhPC molar ratio ≤1. The AmB channel lifetimes decreased only at sterol/DPhPC molar ratio >1 that occurred with sterol/PC molar ratio of target cell membranes at a pathological state. These data obtained on bilayer membranes two times thicker than one-sided AmB channel length are consistent with the accepted AmB pore-forming mechanism, which is associated with membrane thinning around AmB–sterol complex in the lipid rafts. Our results show that AmB can create cytotoxic (long open) channels in cholesterol membrane with C14–C16 tail PCs and nontoxic (short open) channels with C17–C18 tail PCs as the lifetime of one-sided AmB channel depends on ~2–5 Å difference in the thickness of sterol-containing C16 and C18 tail PC membranes. The reduction in toxic AmB channels efficacy can be required at the drug administration because C16 tails in native membrane PCs occur almost as often as C18 tails. The comparative analysis of AmB channel blocking by tetraethylammonium chloride, tetramethylammonium chloride and thiazole derivative of vitamin B1, 3-decyloxycarbonylmethyl-4-methyl-5-(2-hydroxyethyl) thiazole chloride (DMHT), has proved that DMHT is a comparable substitute for both tetraalkylammonia that exhibits a much higher affinity.  相似文献   

7.
8.
Deformability while remaining viable is an important mechanical property of cells. Red blood cells (RBCs) deform considerably while flowing through small capillaries. The RBC membrane can withstand a finite strain, beyond which it ruptures. The classical yield areal strain of 2–4% for RBCs is generally accepted for a quasi-static strain. It has been noted previously that this threshold strain may be much larger with shorter exposure duration. Here we employ an impulse-like forcing to quantify this yield strain of RBC membranes. In the experiments, RBCs are stretched within tens of microseconds by a strong shear flow generated from a laser-induced cavitation bubble. The deformation of the cells in the strongly confined geometry is captured with a high-speed camera and viability is successively monitored with fluorescence microscopy. We find that the probability of cell survival is strongly dependent on the maximum strain. Above a critical areal strain of ∼40%, permanent membrane damage is observed for 50% of the cells. Interestingly, many of the cells do not rupture immediately and exhibit ghosting, but slowly obtain a round shape before they burst. This observation is explained with structural membrane damage leading to subnanometer-sized pores. The cells finally lyse from the colloidal osmotic pressure imbalance.  相似文献   

9.
Deformability while remaining viable is an important mechanical property of cells. Red blood cells (RBCs) deform considerably while flowing through small capillaries. The RBC membrane can withstand a finite strain, beyond which it ruptures. The classical yield areal strain of 2–4% for RBCs is generally accepted for a quasi-static strain. It has been noted previously that this threshold strain may be much larger with shorter exposure duration. Here we employ an impulse-like forcing to quantify this yield strain of RBC membranes. In the experiments, RBCs are stretched within tens of microseconds by a strong shear flow generated from a laser-induced cavitation bubble. The deformation of the cells in the strongly confined geometry is captured with a high-speed camera and viability is successively monitored with fluorescence microscopy. We find that the probability of cell survival is strongly dependent on the maximum strain. Above a critical areal strain of ∼40%, permanent membrane damage is observed for 50% of the cells. Interestingly, many of the cells do not rupture immediately and exhibit ghosting, but slowly obtain a round shape before they burst. This observation is explained with structural membrane damage leading to subnanometer-sized pores. The cells finally lyse from the colloidal osmotic pressure imbalance.  相似文献   

10.
11.
Ion channels in tonoplast of leaf cells of a Crassulacean acid metabolism plant, Graptopetalum paraguayense, using the patch clamp technique were investigated. Results showed the existence of two types of channels involved in the malate ion transport across the tonoplast. One type corresponded to the slow-activating vacuolar-type (R Hedrich, E Neher [1987] Nature 329: 833-836), probably taking part in the malate efflux from vacuoles. Another showed the membrane potential-dependent channel current of malate flux over a wide range of cytoplasmic free Ca2+ concentration (10−8-10−5 molar), a property favoring the malate uptake. This type seems to be different from the fast-activating vacuolar-type.  相似文献   

12.
The THP-1 human monocytic leukemia cell line is a useful model of macrophage differentiation. Patch clamp methods were used to identify five types of ion channels in undifferentiated THP-1 monocytes. (i) Delayed rectifier K+ current, I DR, was activated by depolarization to potentials positive to −50 mV, inactivated with a time constant of several hundred msec, and recovered from inactivation with a time constant ∼21 sec. I DR was inhibited by 4-aminopyridine (4-AP), tetraethylammonium (TEA+), and potently by charybdotoxin (ChTX). (ii) Ca-activated K+ current (I SK) dominated whole-cell currents in cells studied with 3–10 μm [Ca2+] i . I SK was at most weakly voltage-dependent, with reduced conductance at large positive potentials, and was inhibited by ChTX and weakly by TEA+, Cs+, and Ba2+, but not 4-AP or apamin. Block by Cs+ and Ba2+ was enhanced by hyperpolarization. (iii) Nonselective cation current, I cat, appeared at voltages above +20 mV. Little time-dependence was observed, and a panel of channel blockers was without effect. (iv) Chloride current, I Cl, was present early in experiments, but disappeared with time. (v) Voltage-activated H+ selective current is described in detail in a companion paper (DeCoursey & Cherny, 1996. J. Membrane Biol. 152:2). The ion channels in THP-1 cells are compared with channels described in other macrophage-related cells. Profound changes in ion channel expression that occur during differentiation of THP-1 cells are described in a companion paper (DeCoursey et al., 1996. J. Membrane Biol. 152:2). Received: 19 September 1995/Revised: 14 March 1996  相似文献   

13.
Two different methods were used to determine the relative permeability and the voltage-dependent conductance of several different cations in excitability-inducing material (EIM)-doped lipid bilayers. In one method, the conductances of individual channels were measured for Li, Na, K, Cs, NH4, and Ca, and in the other method biionic potentials of a membrane with many channels were measured for Li, Na, K, Cs, and Rb. The experimental results for the two methods are in agreement. The relative permeabilities are proportional to the ionic mobilities in free aqueous solution. The voltage dependence of the conductance is the same for all cations measured.  相似文献   

14.
The influenza B virus protein, NB, was expressed in Escherichia coli, either with a C-terminal polyhistidine tag or with NB fused to the C-terminus of glutathione S-transferase (GST), and purified by affinity chromatography. NB produced ion channel activity when added to artificial lipid bilayers separating NaCl solutions with unequal concentrations (150–500 mm cis, 50 mm trans). An antibody to a peptide mimicking the 25 residues at the C-terminal end of NB, and amantadine at high concentration (2–3 mm), both depressed ion channel activity. Ion channels had a variable conductance, the lowest conductance observed being approximately 10 picosiemens. At a pH of 5.5 to 6.5, currents reversed at positive potentials indicating that the channel was more permeable to sodium than to chloride ions (PNa/PCl∼ 9). In asymmetrical NaCl solutions at a pH of 2.5, currents reversed closer to the chloride than to the sodium equilibrium potential indicating that the channel had become more permeable to chloride than to sodium ions (PCl/PNa∼ 4). It was concluded that, at normal pHs, NB forms cation-selective channels. Received: 6 March 1995/Revised: 17 November 1995  相似文献   

15.
Ion channels are a class of membrane proteins that attracts a significant amount of basic research, also being potential drug targets. High-throughput identification of these channels is hampered by the low levels of availability of their structures and an observation that use of sequence similarity offers limited predictive quality. Consequently, several machine learning predictors of ion channels from protein sequences that do not rely on high sequence similarity were developed. However, only one of these methods offers a wide scope by predicting ion channels, their types and four major subtypes of the voltage-gated channels. Moreover, this and other existing predictors utilize relatively simple predictive models that limit their accuracy. We propose a novel and accurate predictor of ion channels, their types and the four subtypes of the voltage-gated channels called PSIONplus. Our method combines a support vector machine model and a sequence similarity search with BLAST. The originality of PSIONplus stems from the use of a more sophisticated machine learning model that for the first time in this area utilizes evolutionary profiles and predicted secondary structure, solvent accessibility and intrinsic disorder. We empirically demonstrate that the evolutionary profiles provide the strongest predictive input among new and previously used input types. We also show that all new types of inputs contribute to the prediction. Results on an independent test dataset reveal that PSIONplus obtains relatively good predictive performance and outperforms existing methods. It secures accuracies of 85.4% and 68.3% for the prediction of ion channels and their types, respectively, and the average accuracy of 96.4% for the discrimination of the four ion channel subtypes. Standalone version of PSIONplus is freely available from https://sourceforge.net/projects/psion/  相似文献   

16.

Background

Although fibroblast-to-myocyte electrical coupling is experimentally suggested, electrophysiology of cardiac fibroblasts is not as well established as contractile cardiac myocytes. The present study was therefore designed to characterize ion channels in cultured human cardiac fibroblasts.

Methods and Findings

A whole-cell patch voltage clamp technique and RT-PCR were employed to determine ion channels expression and their molecular identities. We found that multiple ion channels were heterogeneously expressed in human cardiac fibroblasts. These include a big conductance Ca2+-activated K+ current (BKCa) in most (88%) human cardiac fibroblasts, a delayed rectifier K+ current (IKDR) and a transient outward K+ current (Ito) in a small population (15 and 14%, respectively) of cells, an inwardly-rectifying K+ current (IKir) in 24% of cells, and a chloride current (ICl) in 7% of cells under isotonic conditions. In addition, two types of voltage-gated Na+ currents (INa) with distinct properties were present in most (61%) human cardiac fibroblasts. One was a slowly inactivated current with a persistent component, sensitive to tetrodotoxin (TTX) inhibition (INa.TTX, IC50 = 7.8 nM), the other was a rapidly inactivated current, relatively resistant to TTX (INa.TTXR, IC50 = 1.8 µM). RT-PCR revealed the molecular identities (mRNAs) of these ion channels in human cardiac fibroblasts, including KCa.1.1 (responsible for BKCa), Kv1.5, Kv1.6 (responsible for IKDR), Kv4.2, Kv4.3 (responsible for Ito), Kir2.1, Kir2.3 (for IKir), Clnc3 (for ICl), NaV1.2, NaV1.3, NaV1.6, NaV1.7 (for INa.TTX), and NaV1.5 (for INa.TTXR).

Conclusions

These results provide the first information that multiple ion channels are present in cultured human cardiac fibroblasts, and suggest the potential contribution of these ion channels to fibroblast-myocytes electrical coupling.  相似文献   

17.
18.
The aim of this study was to determine amphotericin B (AmB) permeation across lipid bilayer membranes mounted on Transwell® and to observe the phagocytosis of the AmB and the AmB-lipid formulations by alveolar macrophage (AM) cell lines using a fluorescence microscope. The lipid bilayer membranes were prepared from phospholipid and ergosterol as well as phospholipid and cholesterol in a ratio (67:33 mol%). AmB-lipid formulations were prepared from AmB incorporated with four lipid derivatives during a lyophilization process. In vitro cytotoxicity studies were carried out on kidney cells by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The levels of nitric oxide production by AMs exposed to these AmB-lipid formulations were determined by the Griess reaction. Phagocytosis of the AmB-lipid formulations was carried out using AM cells. The lipid bilayer membranes and AmB-lipid formulations were successfully prepared. In vitro cytotoxicity results showed less toxicity to kidney cells than pure AmB, and a 1,000-fold less production of nitric oxide by NR8383 cell lines was obtained when compared to lipopolysaccharide. Permeation results were two- to fivefold higher than for pure AmB in the ergosterol containing lipid bilayer and two- to fourfold higher than AmB in the cholesterol containing compositions, both of which were enough to kill the fungi according to their MICs and MFCs. AM phagocytosed the AmB-lipid formulations. We suggest that these products especially the AmB-sodium deoxycholate sulfate are potential candidates for targeting AM cells for the treatment of invasive pulmonary aspergillosis.  相似文献   

19.
Nystatin and amphotericin B increase the permeability of thin (<100 A) lipid membranes to ions, water, and nonelectrolytes. Water and nonelectrolyte permeability increase linearly with membrane conductance (i.e., ion permeability). In the unmodified membrane, the osmotic permeability coefficient, Pf, is equal to the tagged water permeability coefficient, (Pd)w; in the nystatin- or amphotericin B-treated membrane, Pf/(Pd)w ≈ 3. The unmodified membrane is virtually impermeable to small hydrophilic solutes, such as urea, ethylene glycol, and glycerol; the nystatin- or amphotericin B-treated membrane displays a graded permeability to these solutes on the basis of size. This graded permeability is manifest both in the tracer permeabilities, Pd, and in the reflection coefficients, σ (Table I). The "cutoff" in permeability occurs with molecules about the size of glucose (Stokes-Einstein radius 4 A). We conclude that nystatin and amphotericin B create aqueous pores in thin lipid membranes; the effective radius of these pores is approximately 4 A. There is a marked similarity between the permeability of a nystatin- or amphotericin B-treated membrane to water and small hydrophilic solutes and the permeability of the human red cell membrane to these same molecules.  相似文献   

20.
《Molecular membrane biology》2013,30(3-4):239-267
The irreversible inhibition of glucose transport by 1-fluoro-2,4-dinitrobenzene (FDNB) has been used to identify membrane proteins possibly associated with glucose transport in human crythrocytes. D-Glucose was shown to enhance significantly the rate of FDNB inhibition of transport when present during the reaction, whereas cytochalasin B (CB) and D-maltose retarded this FDNB inhibition of transport. This modulation of the inhibition reaction formed the basis for a double isotopic differential labeling technique using [14C]- and [3H]FDNB followed by SDS-polyacrylamide gel electrophoresis to distinguish transport-associated polypeptides from bulk membrane dinitrophenylated proteins.

Reactions in the presence of CB or maltose revealed the presence of a differentially labeled polypeptide(s), with a molecular weight of approximately 60,000-65,000 daltons. This effect could in part be reversed in the presence of D-glucose but not L-glucose. Reactions in the presence of D-glucose resulted in two regions of differential labeling. One region was around 200,000 daltons and the other corresponded to a 90,000-dalton band.

Extraction of membrane proteins with p-chloromercuribenzene sulfonate resulted in no loss of the 60,000-dalton peak, indicating that this labeled polypeptide(s) was firmly anchored in the hydrophobic core of the membrane.

These results indicate that as many as three membrane polypeptides are differentially labeled by FDNB under conditions strongly associated with the inhibition of the glucose transport system and may be involved in the regulation of glucose transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号