首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rat liver parenchymal cell binding, uptake, and proteolytic degradation of rat 125I-labeled high density lipoprotein (HDL) subfraction, HDL3 (1.10 less than d less than 1.210 g/ml), in which apo-A-I is the major polypeptide, were investigated. Structural and metabolic integrity of the isolated cells was verified by trypan blue exclusion, low lactic dehydrogenase leakage, expected morphology, and gluconeogenesis from lactate and pyruvate. 125I-labeled HDL3 was incubated with 10 X 10(6) cells at 37 degrees and 4 degrees in albumin and Krebs-Henseleit bicarbonate buffer, pH 7.4. Binding and uptake were determined by radioactivity in washed cells. Proteolytic degradation was determined by trichloroacetic acid-soluble radioactivity in the incubation medium. At 37 degrees, maximum HDL3 binding (Bmax) and uptake occurred at 30 min with a Bmax of 31 ng/mg dry weight of cells. The apparent dissociation constant of the HDL3 receptor system (Kd) was 60 X 10(-8) M, based on Mr = 28,000 of apo-A-I, the predominant rat HDL3 protein. Proteolytic degradation showed a 15-min lag and then constant proteolysis. After 2 hours 5.8% of incubated 125I-labeled HDL3 was degraded. Sixty per cent of cell radioactivity at 37 degrees was trypsin-releasable. At 37 degrees, 125I-labeled HDL3 was incubated with cells in the presence of varying concentrations of native (cold) HDL3, very low density lipoproteins, and low density lipoproteins. Incubation with native HDL3 resulted in greatest inhibition of 125I-labeled HDL3 binding, uptake, and proteolytic degradation. When 125I-labeled HDL3 was preincubated with increasing amounts of HDL3 antiserum, binding and uptake by cells were decreased to complete inhibition. Cell binding, uptake, and proteolytic degradation of 125I-labeled HDL3 were markedly diminished at 4 degrees. Less than 1 mM chloroquine enhanced 125I-labeled HDL3 proteolysis but at 5 mM or greater, chloroquine inhibited proteolysis with 125I-labeled HDL3 accumulation in cells. L-[U-14C]Lysine-labeled HDL3 was bound, taken up, and degraded by cells as effectively as 125I-labeled HDL3. These data suggest that liver cell binding, uptake, and proteolytic degradation of rat HDL3 are actively performed and linked in the sequence:binding, then uptake, and finally proteolytic degradation. Furthermore, there may be a specific HDL3 (lipoprotein A) receptor of recognition site(s) on the plasma membrane. Finally, our data further support our previous reports of the important role of liver lysosomes in proteolytic degradation of HDL3.  相似文献   

2.
The binding of human 125I-labeled HDL3 (high-density lipoproteins, rho 1.125-1.210 g/cm3) to a crude membrane fraction prepared from bovine liver closely fit the paradigm expected of a ligand binding to a single class of identical and independent sites, as demonstrated by computer-assisted binding analysis. The dissociation constant (Kd), at both 37 and 4 degrees C, was 2.9 micrograms protein/ml (approx. 2.9 X 10(-8) M); the capacity of the binding sites was 490 ng HDL3 (approx. 4.9 pmol) per mg membrane protein at 37 degrees C and 115 at 4 degrees C. Human low-density lipoproteins (LDL) and very-low-density lipoproteins (VLDL) also bound to these sites (Kd = 41 micrograms protein/ml, approx. 6.7 X 10(-8) M for LDL, and Kd = 5.7 micrograms protein/ml, approx. 7.0 X 10(-9) M for VLDL), but this observation must be considered in light of the fact that the normal circulating concentrations of these lipoproteins are much lower than those of HDL. The binding of 125I-labeled HDL3 to these sites was inhibited only slightly by 1 M NaCl, suggesting the presence of primarily hydrophobic interactions at the recognition site. The binding was not dependent on divalent cations and was not displaceable by heparin; the binding sites were sensitive to both trypsin and pronase. Of exceptional note was the finding that various subclasses of human HDL (including subclasses of immunoaffinity-isolated HDL) displaced 125I-labeled HDL3 from the hepatic HDL binding sites with different apparent affinities, indicating that these sites are capable of recognizing highly specific structural features of ligands. In particular, apolipoprotein A-I-containing lipoproteins with prebeta electrophoretic mobility bound to these sites with a strikingly lower affinity (Kd = 130 micrograms protein/ml) than did the other subclasses of HDL.  相似文献   

3.
Human HDL subfractions (HDL2, HDL3, or HDL separated by heparin affinity chromatography) were labelled either on their apolipoprotein moiety with 125I or on their sterols: unesterified [14C]cholesterol and [3H]cholesteryl linoleyl ether, a non-hydrolysable analog of esterified cholesterol. HDL subfractions were then treated with or without phospholipase A2 from Crotalus adamanteus in presence of albumin leading to a 72-82% phosphatidylcholine degradation. Control and treated HDL were reisolated and then addressed to cultured rat hepatocytes. (A) During incubations, unesterified [14C]cholesterol from HDL3 readily appeared in hepatocytes. The specific uptake of HDL esterified cholesterol calculated from [3H]cholesteryl ether was 2-4-times less important. Uptake of HDL cholesterol tended to saturate at 150-200 micrograms/ml HDL protein. A prior phospholipase treatment of HDL3 stimulated by 2-5-fold the uptake of [3H]cholesteryl ether, whereas the transfer of free [14C]cholesterol was minimally increased. The uptake of 3H/14C-labelled sterols from HDL2 was 2-3-times higher than from HDL3. (B) Parallel experiments were conducted with 125I-labelled HDL subfractions. At 37 degrees C, the specific uptake and degradation of HDL3 125I-apolipoprotein were about 2-fold enhanced following treatment of HDL3 with phospholipase A2. Uptakes of apolipoprotein and of esterified cholesterol were compared, indicating a preferential delivery of the sterol over apoprotein (X5). The dissociation was still more pronounced with phospholipase-treated HDL3. Competition experiments showed that 12-times more unlabelled HDL3 were required to half reduce the uptake of HDL3 [3H]cholesteryl ether than to impede similarly the HDL 125I-apolipoprotein recovered in cells. Uptake of 125I-labelled apolipoprotein from HDL2 was quantitatively comparable to that from HDL3. (C) Binding of 125I-HDL subfractions was followed at 4 degrees C. A specific binding was observed for HDL2 and HDL3, although kinetic parameters were quite different (KD of 9 and 25 micrograms/ml, respectively). Following phospholipolysis, both the specific and non-specific contributions to total binding were increased. Hence, hepatocytes take up more 125I-labelled apolipoprotein and 3H/14C-labelled sterols from lipolysed HDL than from unmodified particles. This is associated to changes in the binding characteristics.  相似文献   

4.
The influence of copper deficiency on the binding and uptake of apolipoprotein E-free high density lipoprotein (apo E-free HDL) in cultured rat hepatic parenchymal cells was examined in this study. Male weanling Sprague-Dawley rats were randomly divided into two treatments, a Cu-adequate (7.33 mg Cu/kg diet) or a Cu-deficient (1.04 mg Cu/kg diet) group. After 7 weeks, plasma apo E-free HDL were isolated by a combination of ultracentrifugation, gel filtration, and heparin-Sepharose affinity chromatography. Parenchymal cells were isolated from collagenase perfused liver of Cu-deficient and adequate rats and cultured for 16 hours at 37 degrees C prior to incubation with iodinated apo E-free HDL from the same treatment group. Cells were incubated with 5 microg/ml(125) I-apo E-free HDL for 2, 6, or 12 hours in the presence or absence of 200 microg/ml (40-fold) excess unlabeled apo E-free HDL. Increases in specific binding at 4 degrees C and specific cell-associated uptake at 37 degrees C as a function of time were observed with cells and HDL from Cu-deficient rats. Cells were also incubated for 6 hours with 8 concentrations of (125)I-apo E-free HDL in the presence or absence of excess unlabeled HDL. Although no significant increase in specific binding was detected at 4 degrees C as a function of ligand concentration, the response tended to be higher at 5 to 15 microg HDL/ml for the Cu-deficient treatment. However, at 37 degrees C the specific cell-associated uptake was increased markedly with cells and HDL from Cu-deficient rats. The observed increases in HDL binding and uptake indicate that these processes may be enhanced in Cu-deficient rats. These data are also consistent with recent in vivo results which indicate that plasma clearance and tissue uptake of HDL are increased in Cu-deficient rats.  相似文献   

5.
Human high-density lipoprotein class-3 (HDL3) was incubated with freshly isolated blood polymorphonuclear leukocytes (PMN) at 37 and 4 degrees C. At both temperatures the release of proteolytic activity (PA) causing the specific hydrolysis of apo-A-II was dependent on the concentration of HDL3 in the medium. At 37 degrees C, the efflux of PA was linear and no saturation was reached up to an HDL3 protein concentration in the medium of 800 micrograms/ml. In turn, at 4 degrees C, maximal PA release was reached at a concentration below 600 micrograms/ml of HDL3 protein/ml in the medium. Canine HDL, which contains apo-A-I, but not apo-A-II, was as effective as human HDL3 in promoting the release of PA from PMN. This property was also exhibited by egg lecithin/cholesterol vesicles containing apo-A-I. At 4 degrees C, there was no strict correlation between efflux of PA affected by HDL3 and specific binding of 125I-apo-A-I (HDL3). In competitive binding experiments, a 50-fold excess of unlabeled HDL3 prevented more than 90% of the binding of 125I-apo-A-I (HDL3) to PMN, whereas an excess of unlabeled low-density lipoprotein exhibited no effect. When human HDL3 was incubated with PMN at 4 or 37 degrees C and then subjected to ultracentrifugation at d 1.21 g/ml, most of the PA that was initially associated with this lipoprotein was recovered in the bottom of the tube. By gel filtration, both PA and HDL3 were in the same peak in a low ionic strength buffer, but were dissociated from each other by a high-salt solution (d 1.21 g/ml). We conclude that both naturally occurring HDLs and apo-A-I-stabilized lipid vesicles favor the release from PMN of an enzymatic activity which cleaves human apo-A-II. This release appears to be dependent both on the interaction of the cells with the lipoprotein ligand and on the lipoprotein surface area acting as the acceptor for the enzyme, probably through electrostatic forces.  相似文献   

6.
High-density lipoprotein (HDL) cholesteryl esters are taken up by fibroblasts via HDL particle uptake and via selective uptake, i.e., cholesteryl ester uptake independent of HDL particle uptake. In the present study we investigated HDL selective uptake and HDL particle uptake by J774 macrophages. HDL3 (d = 1.125-1.21 g/ml) was labeled with intracellularly trapped tracers: 125I-labeled N-methyltyramine-cellobiose-apo A-I (125I-NMTC-apo A-I) to trace apolipoprotein A-I (apo A-I) and [3H]cholesteryl oleyl ether to trace cholesteryl esters. J774 macrophages, incubated at 37 degrees C in medium containing doubly labeled HDL3, took up 125I-NMTC-apo A-I, indicating HDL3 particle uptake (102.7 ng HDL3 protein/mg cell protein per 4 h at 20 micrograms/ml HDL3 protein). Apparent HDL3 uptake according to the uptake of [3H]cholesteryl oleyl ether (470.4 ng HDL3 protein/mg cell protein per 4 h at 20 micrograms/ml HDL3 protein) was in significant excess on 125I-NMTC-apo A-I uptake, i.e., J774 macrophages demonstrated selective uptake of HDL3 cholesteryl esters. To investigate regulation of HDL3 uptake, cell cholesterol was modified by preincubation with low-density lipoprotein (LDL) or acetylated LDL (acetyl-LDL). Afterwards, uptake of doubly labeled HDL3, LDL (apo B,E) receptor activity or cholesterol mass were determined. Preincubation with LDL or acetyl-LDL increased cell cholesterol up to approx. 3.5-fold over basal levels. Increased cell cholesterol had no effect on HDL3 particle uptake. In contrast, LDL- and acetyl-LDL-loading decreased selective uptake (apparent uptake 606 vs. 366 ng HDL3 protein/mg cell protein per 4 h in unloaded versus acetyl-LDL-loaded cells at 20 micrograms HDL3 protein/ml). In parallel with decreased selective uptake, specific 125I-LDL degradation was down-regulated. Using heparin as well as excess unlabeled LDL, it was shown that HDL3 uptake is independent of LDL (apo B,E) receptors. In summary, J774 macrophages take up HDL3 particles. In addition, J774 cells also selectively take up HDL3-associated cholesteryl esters. HDL3 selective uptake, but not HDL3 particle uptake, can be regulated.  相似文献   

7.
Preparative isotachophoresis (ITP) was used for the fractionation of fasting and postprandial high density lipoproteins (HDL) according to their net charge in the absence of molecular sieve effects. Three major HDL subpopulations with fast, intermediate, and slow mobility have been recognized. Particle size analysis by gradient gel electrophoresis has shown that in the fast-migrating subpopulation particles dominate with a size of HDL3a and HDL2b. The subpopulation with intermediate mobility contains particles with a size between HDL2a and HDL3b, while in the slow migrating subpopulation particles dominate with a size of HDL2b, HDL3a, and HDL3c. The fast-migrating subpopulation is rich in apoA-I and phosphatidylcholine. The particles of this fraction bind at 4 degrees C to HDL receptors on macrophages with high affinity (KD = 7.71 micrograms/ml; Bmax = 245.6 ng). The subpopulations with intermediate mobility is rich in apoA-II, apoE, C apolipoproteins, cholesteryl esters, and sphingomyelin. Its affinity to HDL receptors (KD = 17.7 micrograms/ml; Bmax = 198.4 ng) is lower than that of the HDL particles in the fast-migrating subfraction. The slow-migrating subpopulation consists of particles rich in apoA-IV and is associated with a high LCAT activity. This fraction expresses the highest nonspecific binding to mouse peritoneal macrophages compared to the other HDL fractions and contains only a small amount of particles that interact with HDL receptors by high affinity binding (KD = 7.3 micrograms/ml; Bmax = 95.9 ng). In 37 degrees C binding experiments the fast-migrating subfraction reveals the highest total cell-associated activity. 72% of which is trypsin-resistant. The other subfractions express a lower total cell-associated activity and 45% of the activity of the intermediate- and 43% of the activity of the slow-migrating fraction is trypsin-sensitive. When the HDL fractions are isolated from postprandial sera of the same donor, the fast-migrating particles bind at 4 degrees C with a higher affinity (KD = 4.6 micrograms/ml) while no significant changes are observed in the intermediate- and slow-migrating subpopulations. The slow- and the fast-migrating HDL subpopulations isolated from fasting serum have a high capacity to promote cholesterol removal from macrophages. We hypothesize that the HDL subpopulations rich in apoA-I promote cholesterol removal predominantly via the interaction with HDL receptors, while apoA-IV-rich HDL particles receive their driving force for cholesterol efflux from the concomitant action of LCAT via a predominantly nonspecific interaction of the particles with the cell surface.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The bidirectional flux of unesterified cholesterol between cells and high density lipoprotein (HDL) was studied in relationship to the binding of HDL to cells. At 100 micrograms at HDL protein/ml, the rate constant for cholesterol efflux from rat Fu5AH hepatoma cells is 3 X 10(-3)/min (t1/2 for efflux of 3.9 h), whereas efflux from GM3468 human fibroblasts is 0.075/4 h (equivalent to a t1/2 for efflux of 37 h). The relatively slow efflux of cholesterol from fibroblasts in comparison to rat hepatoma cells was observed previously with micellar and vesicular phospholipid-containing acceptors, which promote efflux by a mechanism involving the diffusion of cholesterol in the aqueous phase between the plasma membrane and the acceptor particles. When plotted against the logarithm of HDL concentration, the isotherms for efflux are centered at 300 and 100 micrograms of HDL protein/ml with the hepatoma cells and fibroblasts, respectively. These concentrations are 8-150 times greater than the corresponding values for Kd of specific HDL binding (2 and 12 micrograms of protein/ml, for hepatoma cells and fibroblasts, respectively). The treatment of HDL with tetranitromethane reduces the lipoprotein's affinity for specific cell-surface binding sites by 80-90%. However, at HDL concentrations of 5-60 micrograms of protein/ml, this treatment does not significantly inhibit cholesterol efflux from hepatoma cells, and inhibits efflux from fibroblasts an average of about 15%. Over the same range of concentrations, nitration alters influx by amounts less than 30% in the two cell types. These effects on flux do not parallel the reduced affinity of nitrated HDL for specific cell-surface binding sites. In summary, the present results do not support the concept that cholesterol transfer is facilitated by the specific cell-surface binding of HDL, but are consistent with the aqueous diffusion model of cholesterol transfer between cells and lipoproteins.  相似文献   

9.
Previous studies indicate that free cholesterol moves passively between high density lipoprotein (HDL) and cell plasma membranes by uncatalyzed diffusion of cholesterol molecules in the extracellular aqueous phase. By this mechanism, the rate constants for free cholesterol influx (Cli) and efflux (ke) should not be very sensitive to the free cholesterol content of cells or HDL. Thus, at a given HDL concentration, the unidirectional influx and efflux of cholesterol mass (Fi, Fe) should be proportional to the cholesterol content of HDL and cells, respectively, and net efflux of cholesterol mass (Fe-Fi greater than 0) should occur when either cells are enriched with cholesterol or HDL is depleted of cholesterol. We have examined the influence of cell and HDL free cholesterol contents on the bidirectional flux of free cholesterol between HDL and human fibroblasts and also attempted to detect some dependence of flux on the binding of HDL to the cells. In the range of HDL concentrations from 1 to 1000 micrograms of protein/ml, ke for cell free cholesterol approximately doubled for every 10-fold increase in HDL concentration, reaching 0.04 h-1 at 1000 micrograms of HDL/ml. ke and Cli were not influenced by the doubling of fibroblast free cholesterol content (from 31 +/- 5 to 62 +/- 13 micrograms of cholesterol/mg of protein). There was an approximate exchange of cholesterol between HDL and the unenriched fibroblasts (e.g. at [HDL] = 100 micrograms/ml, Fe and Fi = 3.2 and 3.0 micrograms of cholesterol/[4 h.mg of cell protein], respectively). In contrast, there was substantial net efflux from the enriched cells (at [HDL] = 100 micrograms/ml, Fe and Fi = 5.5 and 3.1 micrograms of cholesterol/[4 h.mg of cell protein], respectively). The rate constants for cholesterol flux were not influenced by changing the free cholesterol content of HDL, so that there was net efflux of cell cholesterol in the presence of cholesterol-depleted HDL and net influx from cholesterol-rich HDL. The Kd of HDL binding to fibroblasts was reduced from 1.7 to 0.9 micrograms/ml by the enrichment of the cells with free cholesterol; this increase in affinity for HDL was not reflected in enhanced rate constants for cholesterol flux. The inhibition of specific HDL binding by treatment of the lipoprotein with dimethyl suberimidate did not affect cholesterol flux using either control or cholesterol-rich cells at any HDL concentration in the range 1-1000 micrograms/ml. The above results are consistent with the concept that net movement of free cholesterol between cells and HDL occurs by passive, mass-action effects.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The lipid-free apolipoproteins of human high density lipoprotein (HDL) have been assayed for their ability to substitute for native HDL in promoting the growth of a SV40-transformed REF52 cell line in serum-free medium. Total HDL-apolipoproteins (apoHDL) were found to mimic almost exactly the growth promoting effects of whole HDL. The apoHDL-associated growth promoting activity eluted from a Sephacryl S-200 column in two separate fractions coinciding with the protein peaks of apolipoprotein A-I and the C group of apolipoproteins. These two fractions, designated S-II and S-IV, respectively, acted additively in promoting WT1A cell growth when tested at saturating concentrations. The active component in the S-II fraction maximally stimulated WT1A cell growth at 40-60 micrograms/ml and was identified as apolipoprotein A-1 by NaDodSO4 polyacrylamide gel electrophoresis and affinity chromatography on anti-(apoA-I). The active component in the S-IV fraction was maximally active at 1-2 micrograms/ml and was identified as apolipoprotein C-III by DEAE ion exchange high pressure liquid chromatography and polyacrylamide gel electrophoresis (at pH 8.3) in 6 M urea. These results indicate that the growth promoting effect of HDL on WT1A cells is mediated via the HDL-apolipoproteins, A-I and C-III, and that the mechanism responsible does not necessarily involve their participation in the uptake (or utilization) of HDL-associated lipids.  相似文献   

11.
Freshly prepared plasma membranes from rat corpora lutea were examined for the presence of low density lipoprotein (LDL) and high density lipoprotein (HDL) receptors by determining the specific binding of 125I-LDL and 125I-HDL. These membranes have two types of binding site for 125I-LDL, one with high affinity (Kd = 7.7 micrograms of LDL protein/ml), the other with low affinity (Kd = 213 micrograms of LDL protein/ml) and one type of binding site for 125I-HDL with Kd = 17.8 micrograms of HDL protein/ml. LDL receptor is sensitive to pronase and trypsin; HDL receptor, however, is resistant. The binding reaction was further characterized with respect to effect of time and temperature of incubation, requirement of divalent metal ion, influence of ionic strength, and binding specificity. In vivo pretreatment of rats with human choriogonadotropin (hCG) resulted in induction of both LDL and HDL receptors in a dose- and time-dependent manner when compared with saline-injected controls. The induction of lipoprotein receptors by hCG treatment is target organ-specific since the increase was seen only in the ovarian tissue. Membranes prepared from liver, kidney, and heart did not show an increase in lipoprotein receptors after hCG injection. An examination of the equilibrium dissociation constants for 125I-LDL and 125I-HDL binding after hCG administration revealed that the increase in binding activity was due to an increase in the number of binding sites rather than to a change in the binding affinity. In conclusion, rat corpus luteum possesses specific receptors for both LDL and HDL and these receptors are regulated by gonadotropins.  相似文献   

12.
The importance of plasma HDL apolipoprotein concentration as a predictor of atherosclerotic risk is well recognized, yet the processes of HDL modification and degradation in various cells are not clearly understood. We examined the characteristics of HDL1 apolipoprotein degradation and cellular uptake by rat adipocytes and determined the effects of fasting on these processes. Epididymal and perirenal adipocytes were isolated from male Wistar rats (310 +/- 4 g) fed ad libidum and incubated with 5 micrograms of rat 125I-labeled HDL1 (d: 1.07-1.10 g/mL) mL-1 for 2 h at 37 degrees C. Cellular uptake of HDL1 was calculated as the trichloroacetic acid precipitable radioactivity associated with adipocytes following incubation. Intracellular and medium degradation of HDL1 were determined as trichloroacetic acid soluble 125I counts associated with cells and measured in the postincubation medium, respectively. Fifty to sixty percent of cellular uptake and degradation of HDL1 was inhibited by the addition of 25-fold excess unlabeled HDL. HDL1 degradation measured in the medium was 10- to 12-fold greater than cellular uptake of HDL1 apolipoproteins. Intracellular degradation of HDL1 was negligible. The presence of EDTA in the incubation medium reduced HDL1 degradation measured in the medium, but enhanced HDL1 cellular uptake. Conditioned medium separated from cells after 2 h of incubation at 37 degrees C in the absence of HDL and subsequently incubated with 125I-labeled HDL1 for an additional 2 h at 37 degrees C, degraded less than 5% of HDL compared with degradation in the presence of cells. These results suggest that rat adipocytes degrade, or modify, HDL1 particles, possibly by interactions with cell surface proteases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Rat adrenocortical cells take up high density lipoprotein cholesterol for use as steroidogenic substrate. To better understand this unique uptake process, we have first characterized HDL binding. Infusion of human 125I-labeled HDL into rats pretreated with 4-APP demonstrated that the adrenal and ovary accumulate HDL in a saturable fashion in vivo. Subsequent studies using isolated rat adrenocortical cells demonstrated that cellular uptake of HDL is comprised of two events. One event is characterized by reversible membrane binding and is complete by 60 min (t1/2 = 20 min). The second event is marked by irreversible apoprotein accumulation which continues for at least 3 hr. Reversibly bound material exhibits the same apoprotein distribution as unincubated HDL. Irreversible accumulation could not be attributed to internalization or lysosomal accumulation inasmuch as it also occurred with partially purified plasma membranes and was not enhanced by addition of chloroquine. Reversible binding of human HDL3 exhibited a saturable dependence on concentration (Kd = 27 micrograms protein/ml; N = 3.0 X 10(6) sites/cell) similar to that previously reported for rat liver, ovary, and testis. Cell accumulation of HDL decreased by over 80% at 4 degrees C compared to 37 degrees C, did not require calcium, and was not diminished by prior cell treatment with trypsin or pronase. These results indicate that rat adrenocortical cells possess plasma membrane recognition sites for HDL with different properties than those of the LDL receptor. Moreover, adrenal accumulation of HDL apoproteins does not lead to secondary lysosome formation.  相似文献   

14.
Cultured extrahepatic cells possess a specific high affinity receptor for high density lipoprotein (HDL) that is induced by cholesterol delivery to cells. Current results suggest that HDL receptors on cultured human fibroblasts and mouse peritoneal macrophages promote reversible binding of HDL to the cell surface without internalization of lipoprotein particles. When 125I-HDL3 was bound to cultured cells at 0 degrees C and then warmed to 37 degrees C after removal of unbound lipoprotein, most of the cell surface-bound HDL was released rapidly (t1/2 = 3 min) into the medium without entering a cellular pool that was inaccessible to digestion by trypsin at 0 degrees C. This lack of internalization of HDL was evident under conditions where internalization of 125I-low density lipoprotein and 125I-transferrin were readily detected. When cells were exposed to 125I-HDL3 at 37 degrees C, only a trace amount of iodinated apoprotein remained associated with cells after treatment of cells with trypsin. Fibroblasts treated with medium containing increasing concentrations of cholesterol exhibited a dose-dependent increase in reversible, trypsin-sensitive binding of 125I-HDL3 at 37 degrees C without an attendant increase in trypsin-resistant binding. These results suggest that reversible binding of HDL to its cell-surface receptor without subsequent endocytosis of receptor-HDL complexes is the mechanism by which HDL receptors facilitate cholesterol transport from cells.  相似文献   

15.
The plasma distribution and cellular uptake of [3H]vitamin D3 was studied in vitro using cultured human fibroblasts. Incubation of [3H]vitamin D3 (cholecalciferol) with plasma followed by sequential ultracentrifugal fractionation of the lipoproteins indicated that 2-4% of the radioactivity associated with the very low density lipoprotein (VLDL), 12% with low density lipoprotein (LDL), and approximately 60% with the high density lipoprotein (HDL). The remaining radioactivity, 25%, was associated with the sedimented plasma fractions. By comparison, an average of 86% of the radioactivity from [3H]1,25-dihydroxycholecalciferol associated with the sedimented plasma fractions. The uptake of [3H]vitamin D3 from plasma, LDL, or HDL was studied in cultured human cells; uptake by normal fibroblasts was greatest from LDL and least from plasma. The cellular association of vitamin D3 was time, concentration, and temperature dependent. At a concentration of 50 micrograms LDL/ml of medium, the uptake of [3H]vitamin D3 from LDL at 37 degrees C was rapid and reached a maximum at approximately 4 hr; it was slower from HDL but continued to increase slowly up to 24 hr. The significance of these in vitro findings is uncertain since much of the vitamin D3 absorbed from the intestine reportedly associates with chylomicrons and is rapidly taken up by the liver.  相似文献   

16.
There is little dispute that high density lipoprotein (HDL) binds to cells, however, the nature of the interaction is not fully understood. We now present evidence for a new binding site of higher affinity but lower capacity than the sites previously described in the literature. This new site is characterized by high affinity/low capacity for HDL binding (Kd = 0.94 microgram/ml, Bmax = 36 ng/mg), while the low affinity site (Kd = 36 micrograms/ml, Bmax approximately 700 ng/mg) appears to be consistent with the literature values for the interaction of HDL with cells and isolated membranes. Proteolysis of HDL with trypsin abolished its interaction with the high affinity site, suggesting an apolipoprotein requirement, while having no effect on binding to the lower affinity site. Kinetic rates of association/dissociation were determined in order to further characterize the high affinity site. At a concentration which favored the binding of HDL with the high affinity site (1 microgram/ml, 37 degrees C), the time course of association of HDL with rat liver plasma membranes, displayed a biphasic pattern, requiring 6-8 h to reach the level of binding predicted from the saturation studies. The second phase was highly sensitive to temperature, being considerably slower at 24 degrees C and totally abolished at 0 degrees C. A kinetic Kd, derived from the measured association and dissociation rate constants (Kd = 0.31 microgram/ml), was found to be of a similar magnitude to the Kd calculated for the high affinity site by Scatchard analysis (Kd = 0.94 microgram/ml). In summary, the high affinity site on rat liver plasma membranes displays an apoprotein requirement and kinetic parameters, consistent with a ligand-receptor interaction.  相似文献   

17.
Mouse plasma from strains C57BL/6J and C3H/HeJ includes a high density lipoprotein (HDL) fraction containing apolipoprotein A-I which migrates in the prebeta region upon agarose gel electrophoresis, similar to the prebeta HDL previously reported in humans. This prebeta A-I lipoprotein species has a buoyant density of 1.080-1.210 g/ml and has two molecular weight species, 65,000 and 71,000. It is lipid-poor and deficient in apolipoprotein E. When mice are fed a high fat and high cholesterol diet, the quantity of prebeta A-I increases in both strains as determined by quantitative densitometry of agarose gel immunoblots. Prebeta A-I species are highly unstable in plasma at 37 degrees C. Initially (0-1 h) levels decreased and with further incubation (1-8 h) levels increased. Nondenaturing polyacrylamide gel electrophoresis (PAGE) demonstrated that the prebeta HDL formed during prolonged incubation (1-8 h) was identical in size to HDL in unincubated samples. The initial decrease of prebeta HDL observed during the first hour of incubation, phase I, was inhibited by DTNB, suggesting that phase I is dependent on lecithin:cholesterol acyltransferase (LCAT); however, the subsequent increase, phase II, was unaffected by DTNB and appears LCAT-independent. The prebeta A-I species formed in plasma containing DTNB after a 4-h incubation resulted in a polydisperse particle size distribution. The two strains, the atherosclerosis-susceptible C57BL/6 and -resistant C3H, displayed a similar elevation and induction of prebeta HDL during a dietary switch from laboratory chow to an atherogenic diet with a transient peak occurring at 7 days even when total HDL in the susceptible strain was greatly reduced.  相似文献   

18.
The binding of human intermediate density lipoproteins (IDL) to HepG2 cells was studied. We found that human 125I-IDL interact with a binding site of high-affinity (Kd 0.74 micrograms/ml, Bmax 0.049 micrograms/mg cell protein) and a binding site of lower affinity (Kd 86.8 micrograms/ml; Bmax 0.53 micrograms/mg cell protein). The high-affinity binding sites show characteristics of LDL-receptors since they interact with IDL and low-density lipoproteins (LDL) and are calcium dependent. The low-affinity binding sites are calcium-independent and interact with IDL, LDL, high density lipoproteins-3 (HDL3), apolipoprotein (apo) E-liposomes, apoCs-liposomes, apoA-I-liposomes but not with liposomes containing albumin or erythrocyte membrane proteins. Therefore, HepG2 cells have on their surface a binding site that resembles or is identical to the lipoprotein binding site (LBS) that we found on rat liver membranes (Brissette and No?l (1986) J. Biol. Chem. 261, 6847-6852). Internalization, degradation and cholesterol ester selective uptake were determined in the presence or in the absence of a sufficient amount of human HDL3 to abolish the interaction of IDL to the LBS in order to obtain information on the function of this site. Our results suggest that the LBS participates in the internalization of IDL but not in their degradation and that it is responsible for the selective uptake of cholesterol esters of IDL.  相似文献   

19.
Primary cultures of rabbit hepatocytes which were preincubated for 20 h in a medium containing lipoprotein-deficient serum subsequently bound, internalized and degraded 125I-labeled high-density lipoproteins2 (HDL2). The rate of degradation of HDL2 was constant in incubations from 3 to 25 h. As the concentration of HDL2 in the incubation medium was increased, binding reached saturation. At 37 degrees C, half-maximal binding (Km) was achieved at a concentration of 7.3 micrograms of HDL2 protein/ml (4.06 X 10(-8)M) and the maximum amount bound was 476 ng of HDL2 protein/mg of cell protein. At 4 degrees C, HDL2 had a Km of 18.6 micrograms protein/ml (1.03 X 10(-7)M). Unlabeled low-density lipoproteins (LDL) inhibited only at low concentrations of 125I-labeled HDL2. Quantification of 125I-labeled HDL2 binding to a specific receptor (based on incubation of cells at 4 degrees C with and without a 50-fold excess of unlabeled HDL) yielded a dissociation constant of 1.45 X 10(-7)M. Excess HDL2 inhibited the binding of both 125I-labeled HDL2 and 125I-labeled HDL3, but excess HDL3 did not affect the binding of 125I-labeled HDL3. Preincubation of hepatocytes in the presence of HDL resulted in only a 40% reduction in specific HDL2 receptors, whereas preincubation with LDL largely suppressed LDL receptors. HDL2 and LDL from control and hypercholesterolemic rabbits inhibited the degradation of 125I-labeled HDL2, but HDL3 did not. Treatment of HDL2 and LDL with cyclohexanedione eliminated their capacity to inhibit 125I-labeled HDL2 degradation, suggesting that apolipoprotein E plays a critical role in triggering the degradative process. The effect of incubation with HDL on subsequent 125I-labeled LDL binding was time-dependent: a 20 h preincubation with HDL reduced the amount of 125I-labeled LDL binding by 40%; there was a similar effect on LDL bound in 6 h but not on LDL bound in 3 h. The binding of 125I-labeled LDL to isolated liver cellular membranes demonstrated saturation kinetics at 4 degrees C and was inhibited by EDTA or excess LDL. The binding of 125I-labeled HDL2 was much lower than that of 125I-labeled LDL and was less inhibited by unlabeled lipoproteins. The binding of 125I-labeled HDL3 was not inhibited by any unlabeled lipoproteins. EDTA did not affect the binding of either HDL2 or HDL3 to isolated liver membranes. Hepatocytes incubated with [2-14C]acetate in the absence of lipoproteins incorporated more label into cellular cholesterol, nonsaponifiable lipids and total cellular lipid than hepatocytes incubated with [2-14C]acetate in the presence of any lipoprotein fraction. However, the level of 14C-labeled lipids released into the medium was higher in the presence of medium lipoproteins, indicating that the effect of those lipoproteins was on the rate of release of cellular lipids rather than on the rate of synthesis.  相似文献   

20.
High-density lipoprotein 3 (HDL3) binds to capillary endothelial cells when their lumen surfaces are exposed to 125I-HDL3 by post-mortem perfusion of whole brain. Kinetic studies of binding of HDL3 to isolated membranes show that HDL3 binds only to endothelial membranes with high affinity (Kd = 7 micrograms/ml). Trypsin treatment of membranes abolishes HDL3 binding. High-affinity binding sites for HDL3 were recovered when endothelial cells from bovine brain capillaries were maintained in culture (Kd = 13 micrograms/ml HDL3 protein). The characteristics of the binding were preserved up to the 6th passage. Competition experiments using isolated luminal membranes or cultured endothelial cells indicate that only HDL3 and not LDL or methylated LDL, are able to compete binding of 125I-HDL3. Furthermore, the inhibition of 125I-HDL3 binding by lipoprotein A-I and lipoprotein A-I:A-II strongly suggests that apolipoprotein A-I is implicated in the formation of HDL3-receptor complexes. The binding is increased by loading cells with free cholesterol or LDL cholesterol. In addition, surface-bound 125I-HDL3 remains sensitive to mild trypsin treatment after subsequent incubation of BBCE at 37 degrees C. HDL3 bound to the cell surface is not endocytosed, but rather rapidly released into the medium after binding (t1/2 = 5 min).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号