首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper summarizes our work performed with glucocorticoid-binding complexes in molybdate-stabilized cytosol prepared from 32P-labeled L-cells. In our early work, we showed that cytosol prepared from 32P-labeled L-cells contains two phosphoproteins (a 90 and a 98-100 kdalton protein) that elute from an affinity resin of deoxycorticosterone agarose in a manner consistent with the predicted behavior of the glucocorticoid receptor. Both phosphoproteins are immunoadsorbed onto protein-A-Sepharose from molybdate-stabilized cytosol incubated with a monoclonal antibody against the receptor. The 98-100 kdalton phosphoprotein binds steroid and the 90 kdalton phosphoprotein is a structurally different, nonsteroid-binding protein that is bound to the untransformed, molybdate-stabilized glucocorticoid receptor. The 90 kdalton protein reacts on Western blots with a monoclonal antibody raised against a 90 kdalton protein from the water mold Achlya ambisexualis. This antibody recognizes an epitope that is conserved in 90 kdalton phosphoproteins from rodent and human cells, and it reacts with the 90 kdalton phosphoprotein that copurifies with the molybdate-stabilized, untransformed chick oviduct progesterone receptor. The 90 kdalton nonsteroid-binding phosphoprotein is an abundant cytosolic protein that dissociates from the glucocorticoid receptor when it is transformed, and unlike the steroid-binding protein, it does not bind to DNA. The 90 kdalton phosphoprotein determines the acidic behavior of the untransformed glucocorticoid receptor on DEAE-cellulose. This abundant cytosolic 90 kdalton phosphoprotein reacts with rabbit antiserum raised against the gel purified 89 kdalton chicken heat-shock protein (hsp89). This antiserum recognizes 90 kdalton heat-shock proteins in human, rodent, frog and Drosophila cells. Immunoadsorption of molybdate-stabilized cytosol with antibody directed against the 98-100 kdalton steroid receptor results in the immune-specific adsorption of a 90 kdalton phosphoprotein that reacts with anti-hsp89 antibody on Western blots. These observations suggest that, like the transforming proteins from several avian sarcoma viruses, the untransformed glucocorticoid receptor exists in a complex with the 90 kdalton heat-shock protein.  相似文献   

2.
Incubation of molybdate-stabilized L cell cytosol with a monoclonal antibody directed against the 100-kDa glucocorticoid-binding protein causes the immune-specific adsorption to protein A-Sepharose of both the 100-kDa glucocorticoid receptor and the 90-kDa murine heat shock protein (hsp90) (Sanchez, E. R., Toft, D. O., Schlesinger, M. J., and Pratt, W. B. (1985) J. Biol. Chem. 260, 12398-12401). When the glucocorticoid receptor in cytosol is transformed to the DNA-binding state, hsp90 dissociates. In this paper, we show that temperature-mediated dissociation of hsp90 from the receptor is a hormone-dependent event in the same manner as temperature-mediated transformation to the DNA-binding state. In contrast to temperature-mediated transformation, ammonium sulfate causes both dissociation of hsp90 from the receptor and conversion of the receptor to the DNA-binding form in a manner that does not require the presence of steroid. The untransformed form of the glucocorticoid receptor and the strongly negatively charged hsp90 protein behave similarly on DEAE-cellulose chromatography, suggesting that the hsp90 component may contribute significantly to the net negative charge behavior of the non-DNA-binding form of the receptor complex.  相似文献   

3.
The glucocorticoid receptor is present in cytosol prepared from cell extracts of nonhormone-treated cells as a large nonactivated (i.e. non-DNA binding) 9 S heteromeric complex which contains the Mr approximately 90,000 heat shock protein, hsp90. hsp90 is expressed under physiological conditions in mammalian cells and is also present in reticulocyte lysate, as assessed by Western immunoblotting using specific anti-hsp90 antibodies. We have translated glucocorticoid receptor mRNA in reticulocyte lysates. The receptor synthesized under cell-free conditions also interacts with hsp90 both in the presence and absence of ligand, as determined by sucrose gradient centrifugation. The in vitro synthesized glucocorticoid receptor does not bind to DNA-cellulose but can be converted to a DNA binding form following labeling with dexamethasone and heat treatment. Thus, the glucocorticoid receptor is synthesized in a nonactivated form under cell-free conditions. These data indicate that the 9 S glucocorticoid receptor complex found in cytosol does not represent an artifact due to cell homogenization and supports the existence in vivo of the glucocorticoid receptor-hsp90 complex.  相似文献   

4.
The glucocorticoid receptor is present in the cytosol of cell extracts as a large nonactivated (i.e. non-DNA-binding) approximately 9 S (Mr 300,000) complex. Experimental evidence indicates that the purified nonactivated glucocorticoid receptor contains a single steroid-binding protein and two approximately 90-kDa nonsteroid-binding subunits identified as heat shock protein (hsp) 90. Translation of the glucocorticoid receptor mRNA in vitro in reticulocyte lysates produces a large nonactivated glucocorticoid receptor complex similar to that found in cytosols. The cell-free synthesized glucocorticoid receptor is able to bind steroid and can be activated further to the DNA-binding form. To test the hypothesis of an active role played by hsp90 in the stabilization of a competent steroid-binding conformation of the glucocorticoid receptor, we have synthesized the receptor in a reticulocyte lysate that has been depleted of hsp90 by immunoadsorption with AC88 anti-hsp90. Although the translation capacity of the reticulocyte system was reduced considerably upon hsp90 removal, the glucocorticoid receptor was synthesized, and a significant number of molecules were found to bind [3H]triamcinolone acetonide. Chromatography on DEAE-cellulose showed that most of the receptor molecules synthesized in hsp90-depleted lysate had lost the capacity to form an oligomeric receptor complex. Addition of purified rat liver hsp90 to the hsp90-depleted lysate before translation did not increase steroid binding nor did it restore formation of the heteromeric receptor complex. Analysis of [35S] methionine-labeled glucocorticoid receptor molecules synthesized in the hsp90-depleted lysate showed the production of polypeptides differing from the expected chromatographic pattern on DEAE-cellulose. Upon addition of purified hsp90 to the hsp90-depleted lysate, before translation, the 35S-labeled synthesized receptor fractionated on DEAE-cellulose as an intermediate peak between activated and nonactivated receptor forms. The data suggest that hsp90 alone may not be sufficient for the formation of the nonactivated steroid receptor complex.  相似文献   

5.
Previous studies have shown that the exposure of molybdate-stabilized nontransformed glucocorticoid receptor (GR) of the chick embryonic neural retina to 0.4 M KCl dissociated the 9.5 S complex to a 5 S GR complex, which is an intermediate state in GR transformation. The present study was designed to characterize the 5 S GR complex. It shows that molybdate-stabilized nontransformed 9.5 S GR complex and 5 S GR interact with monoclonal antibodies (MAb) directed against 90 kDa heat shock protein (hsp90), as evidenced by the increase in the sedimentation velocity of these GR-complexes. Electrofocusing of the partially purified molybdate-stabilized nontransformed GR, prepared from [32P]-labeled neural retinas, and of the 5 S GR (derived from molybdate-stabilized preparation) showed that nontransformed GR complex, which has an apparent pI (pI') value of 5.0 +/- 0.2, and 5 S GR, which was resolved in a major peak with a pI' value of 5.8, are phosphorylated. Partially purified 5 S GR, cleared of molybdate and exposed to 25 degrees C, was resolved by electrofocusing into two phosphorylated fractions, one with a pI' value of 6.5, representing the monomeric GR form and the other with a pI' value of 5.1, apparently representing the acidic hsp90. The dissociation of hsp90 from the molybdate-cleared 5 S heterodimer seems to account for the decrease in the negative net charge of 5 S GR from pI' 6.5. Monomeric GR, derived from a molybdate-cleared, partially purified GR preparation, by the exposure to 25 degrees C, did not retain glucocorticoid-binding activity. Molybdate-stabilized 5 S GR was apparently re-assembled into the oligomeric nontransformed state when the salt concentration was reduced. This phenomenon was evident under the low-salt conditions of electrofocusing, by the shift in pI' value of GR from 5.8 to 5.0; and in glycerol density gradients containing 0.15 M KCl, by the shift in the sedimentation of the GR complex from 5 S to 9.5 S.  相似文献   

6.
Non-transformed steroid receptors have an approximately 8S sedimentation coefficient that corresponds to an oligomeric structure of 250-300 kd which includes a non-hormone binding 90-kd protein. A monoclonal antibody BF4 raised against the purified, molybdate-stabilized, 8S progesterone receptor (8S-PR) from chick oviduct, recognizes 8S forms of all steroid hormone receptors. BF4 was found specific for a 90-kd protein present in great abundance in all chicken tissues, including that present in 8S-forms of steroid receptors. Here, using immunological and biochemical techniques, we demonstrate that this ubiquitous BF4-positive 90-kd protein is in fact the chicken 90 kd heat-shock protein (hsp 90): it increased in heat-shocked chick embryo fibroblasts, and displayed identical migration in two-dimensional gel electrophoresis and the same V8 peptide map as the already described hsp 90. We discuss the possibility that the interaction between hsp 90 and steroid hormone-binding subunits may play a role in keeping the receptor in an inactive form.  相似文献   

7.
8.
It has been established that the 90-kilodalton murine heat shock protein, hsp90, is associated with the untransformed, non-DNA-binding form of the glucocorticoid receptor in L cell cytosol. In this work, we show that incubation of L cell cytosol with Affi-Gel-coupled monoclonal antibodies directed against either alpha-tubulin alone or both alpha- and beta-tubulin results in the immune-specific adsorption of hsp90 identified by Western blotting with the AC88 monoclonal antibody. Similarly, the AC88 antibody, which is specific for hsp90, causes the immune-specific isolation of both alpha- and beta-tubulin from hypotonic cytosol. The distribution of hsp90 in cultured Potorous tridactylis kidney cells was examined by indirect immunofluorescence using the AC88 monoclonal as primary antibody. In interphase cells, AC88-dependent fluorescence was distributed like antitubulin antibody-dependent fluorescence in a fibrillar array located in the cytoplasm and around the periphery of the nucleus. In cells undergoing mitosis, AC88 fluorescence was located in the mitotic spindle. These observations suggest that a significant portion of hsp90 is associated with a tubulin-containing complex both in a hypotonic cytosol preparation from mouse fibroblasts and in intact marsupial kidney epithelial cells. The distribution of AC88 fluorescence in interphase Potorous tridactylis kidney cells is similar to the distribution of glucocorticoid receptor demonstrated by Wikstrom, A. C., Bakke, O., Okret, S., Bronnegard, M., and Gustafsson, J. A in rat hepatoma and human uterine cells.  相似文献   

9.
The adhesin NadA favors cell adhesion/invasion by hypervirulent Neisseria meningitidis B (MenB). Its recombinant form NadA(Δ351-405,) devoid of the outer membrane domain, is an immunogenic candidate for an anti-MenB vaccine able to stimulate monocytes, macrophages and dendritic cells. In this study we investigated the molecular mechanism of NadA(Δ351-405) cellular effects in monocytes. We show that NadA(Δ351-405) (against which we obtained polyclonal antibodies in rabbits), binds to hsp90, but not to other extracellular homologous heat shock proteins grp94 and hsp70, in vitro and on the surface of monocytes, in a temperature dependent way. Pre-incubation of monocytes with the MenB soluble adhesin interfered with the binding of anti-hsp90 and anti-hsp70 antibodies to hsp90 and hsp70 at 37°C, a condition in which specific cell-binding occurs, but not at 0°C, a condition in which specific cell-binding is very diminished. Conversely, pre-incubation of monocytes with anti-hsp90 and anti-hsp70 antibodies did not affected NadA(Δ351-405) cell binding in any temperature condition, indicating that it associates to another receptor on their plasma membrane and then laterally diffuses to encounter hsp90. Consistently, polymixin B interfered with NadA(Δ351-405) /hsp90 association, abrogated the decrease of anti-hsp90 antibodies binding to the cell surface due to NadA(Δ351-405) and inhibited adhesin-induced cytokine/chemokine secretion without affecting monocyte-adhesin binding. Co-stimulation of monocytes with anti-hsp90 antibodies and NadA(Δ351-405) determined a stronger but polymixin B insensitive cell activation. This indicated that the formation of a recombinant NadA/hsp90/hsp70 complex, although essential for full monocyte stimulation, can be replaced by anti-hsp90 antibody/hsp90 binding. Finally, the activation of monocytes by NadA(Δ351-405) alone or in the presence of anti-hsp90 antibodies were both inhibited by neutralizing anti-TLR4 antibodies, but not by anti-TLR2 antibodies. We propose that hsp90-dependent recruitment into an hsp90/hsp70/TLR4 transducing signal complex is necessary for the immune-stimulating activity of NadA(Δ351-405) anti-MenB vaccine candidate.  相似文献   

10.
11.
A monoclonal antibody (BF4) has been used to characterize and purify the heat-shock protein of Mr approximately 90,000 (hsp 90) present in the chick oviduct. In low salt cytosol, the sedimentation coefficient of hsp 90 is approximately 6.8 S, the Stokes radius approximately 7.1 nm, and the calculated Mr approximately 204,000, thus suggesting a dimeric structure. In 0.4 M KCl cytosol, only slightly smaller values were determined (approximately 6.5 S, approximately 6.8 nm, and approximately 187,000). Following purification by ion exchange and immunoaffinity chromatography, hsp 90 migrated as a single silver-stained band at Mr approximately 90,000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, while the sedimentation coefficient 6.2 S, the Stokes radius approximately 6.8 nm, and the Mr approximately 178,000 confirmed the dimeric structure. However, in both antigen or antibody excess conditions, only one molecule of monoclonal antibody could be bound to the hsp 90 dimer. Whether steric hindrance in a homodimer or the presence of two different 90-kDa proteins in a heterodimer explains this result cannot yet be decided. The dimer is not dissociated by high salt (1 M KCl) or the chaotropic agent (0.5 M NaSCN), but is disrupted by 4 M urea, suggesting a stabilization of the structure by hydrogen bonds. The molybdate-stabilized progesterone receptor hetero-oligomer form of approximately 8 S sedimentation coefficient was purified, and its hsp 90 component was then released by salt treatment. It was found to sediment at approximately 5.8 S and have a Stokes radius approximately 7.1 nm, giving Mr approximately 174,000. This observation is consistent with a previous report suggesting from specific activity determination, scanning of polyacrylamide gels, and cross-linking experiments that each purified nontransformed progesterone receptor molecule includes one progesterone binding unit per two 90-kDa protein molecules (Renoir, J. M., Buchou, T., Mester, J., Radanyi, C., and Baulieu, E. E. (1984) Biochemistry 23, 6016-6023). This work brings direct evidence that both free hsp 90 and the non-hormone binding hsp 90 component released from the nontransformed steroid receptor in the cytosol are in a dimeric form.  相似文献   

12.
Binding of heat shock proteins to the avian progesterone receptor.   总被引:13,自引:4,他引:9       下载免费PDF全文
The protein composition of the avian progesterone receptor was analyzed by immune isolation of receptor complexes and gel electrophoresis of the isolated proteins. Nonactivated cytosol receptor was isolated in association with the 90-kilodalton (kDa) heat shock protein, hsp90, as has been described previously. A 70-kDa protein was also observed and was shown by Western immunoblotting to react with an antibody specific to the 70-kDa heat shock protein. Thus, two progesterone receptor-associated proteins are identical, or closely related, to heat shock proteins. When the two progesterone receptor species, A and B, were isolated separately in the absence of hormone, both were obtained in association with hsp90 and the 70-kDa protein. However, activated receptor isolated from oviduct nuclear extracts was associated with the 70-kDa protein, but not with hsp90. A hormone-dependent dissociation of hsp90 from the cytosolic form of the receptor complex was observed within the first hour of in vivo progesterone treatment, which could explain the lack of hsp90 in nuclear receptor complexes. In a cell-free system, hsp90 binding to receptor was stabilized by molybdate but disrupted by high salt. These treatments, however, did not alter the binding of the 70-kDa protein to receptor. Association of the 70-kDa protein with the receptor could be disrupted by the addition of ATP at elevated temperatures (23 degrees C). The receptor-associated 70-kDa protein is an ATP-binding protein, as demonstrated by its affinity labeling with azido[32P]ATP. These results indicate that the two receptor-associated proteins interact with the progesterone receptor by different mechanisms and that they are likely to affect the structure or function of the receptor in different ways.  相似文献   

13.
The structure of the calf uterus nontransformed molybdate-stabilized estradiol receptor (ER) has been investigated using affinity labeling with tamoxifen aziridine and several monoclonal antibodies directed either against the steroid binding protein (Mr approximately 65,000) or against the heat shock protein of Mr approximately 90,000 (hsp 90). The purification was performed using affinity chromatography and a DEAE-Sephacel column. The [3H] estradiol-ER complex was obtained as a well-defined radioactive peak, the specific activity varying between 1,600 and 3,400 pmol/mg of protein. The purified ER sediments in glycerol gradients at 9.4 S +/- 0.2 (n = 5) and at 8.1 S +/- 0.2 (n = 15) in a 0.15 M KCl containing gradient ("8-9 S" ER). From a measured Stokes radius of 7.4 +/- 0.2 nm (n = 12), an Mr of approximately 300,000 has been calculated. Studies of the purified 8-9 S ER by glycerol gradient centrifugation and by "twin antibody" assay with the JS34/32 anti-ER monoclonal antibody suggest the presence of two binding subunits in the nontransformed molecular complex. Results of immunological analysis with polyclonal and several monoclonal antibodies against hsp 90 suggest the association of two molecules of this protein to the two steroid binding subunits. In high salt medium (0.4 M KCl), the purified ER sediments at 5.2 +/- 0.3 (n = 8), has a Stokes radius of 5.7 nm +/- 0.1 (n = 2) and the Mr is approximately 129,000, values expected for a homodimer consisting of two hormone-binding subunits (Mr approximately 65,000), a result confirmed by glycerol gradient centrifugation experiments, using the monoclonal antibody JS34/32. The relationship between the nontransformed 8-9 S ER and the transformed 5 S-ER forms are discussed, the simplest possibility being the release of the already formed homodimeric ER from 8-9 S ER during transformation.  相似文献   

14.
Monospecific, polyclonal rabbit antibody raised against the 90-kd non-hormone binding component of molybdate-stabilized steroid hormone receptor specifically recognises the 90-kd molecular weight heat shock protein (hsp 90) in mink cell extracts. Partial proteolytic digestion experiments indicate that this protein is identical to the 90-kd phosphoprotein found in a highly stable complex with the protein products of at least three members of the tyrosine kinase family of oncogenes (src, fes, fgr).  相似文献   

15.
Protein components of the nonactivated glucocorticoid receptor.   总被引:5,自引:0,他引:5  
The nonactivated glucocorticoid receptor (Mr approximately 350,000) of WEHI-7 mouse lymphoma cells was investigated with respect to the stoichiometry of protein subunits. Cross-linking patterns obtained by affinity labeling and denaturing gel electrophoresis revealed a heterotetramer consisting of one receptor polypeptide in association with two 90- and one approximately 50-kDa subunits. The receptor stabilized by molybdate, disulfide bond formation, or chemical cross-linking was purified roughly 6000-fold by immunoaffinity chromatography and analyzed by gel electrophoresis and immunoblotting. The 90-kDa component was consistently detected in a 2:1 ratio with respect to the receptor polypeptide and was identified as the 90-kDa heat shock protein, hsp90. A 70-kDa heat shock protein was found in both stabilized and nonstabilized receptors and bound to the immunomatrix independent of receptor. The additional receptor subunit was unequivocally identified as the 59-kDa protein previously described (Tai, P.-K. K., Maeda, Y., Nakao, K., Wakim, N. G., Duhring, J. L., and Faber, L. E. (1986) Biochemistry 25, 5269-5275). This component was found only in complexes cross-linked via amino groups. It was removed from the molybdate-stabilized receptor under our purification conditions, thus leaving behind a trimer composed of the receptor polypeptide and two molecules of hsp90. In the absence of hormone, the receptor had the same subunit composition as in its presence.  相似文献   

16.
17.
Reconstitution of the 9 S estrogen receptor with heat shock protein 90   总被引:2,自引:0,他引:2  
As a first step in the investigation of the reconstitution of steroid hormone receptor systems, we studied the reconstitution of 9 S estrogen receptor (ER) from purified vero ER, which is the estradiol binding subunit, and heat shock protein 90 (hsp 90). By using a phosphate buffer containing molybdate, thiocyanate, dimethylformamide, glycerol, etc., vero ER could be converted to 9 S ER with hsp 90, but not with the control protein, ovalbumin. Inactivation of ER during the reconstitution was suppressed partially by hsp 90, but not by ovalbumin. Like native 8 S ER, the reconstituted ER was sedimented at about 8.9 S and 4.6 S on glycerol gradient centrifugation in low and high salt buffers, respectively.  相似文献   

18.
19.
Heat shock protein hsp27 is a molecular chaperone and identification of hsp27-binding proteins might help to elucidate its functional role in keratinocyte biology. In the present investigation we used a human epidermal cell carcinoma cell line (A431) transfected with hsp27 (A431/16) to study interference between hsp27 protein and other proteins. Immunoprecipitation experiments with anti-hsp27 antibody revealed a multicomponent complex when analysed by silver staining. By immunoblotting analysis we could demonstrate that hsp27 associates with actin, the mutant form of p53, hsp70 and hsp90. Immunofluorescence analysis showed a co-localization between hsp27 and p53, hsp70 and hsp90. To control for the specificity of the observed interactions, immuno-precipitations with antibodies to actin, p53, hsp70 and hsp90 respectively, were performed. All of the tested proteins demonstrated a coimmunoprecipitation with hsp27. We conclude that hsp27, like the other heat shock proteins, is part of a complex system of molecular chaperones in epidermal keratinocytes.  相似文献   

20.
To gain insight on the possible functions of heat shock proteins (hsp's) in Drosophila, we have purified the 83-kilodalton hsp (hsp 83) from cultured cells and studied its intracellular localization by immunofluorescence in normal, heat-shocked, and recovering cells. The specificity of the antibody was assessed by one- and two-dimensional gel immunoblotting and by partial proteolytic digestion. The anti-hsp 83 antibody does not show any significant cross-reactivity with hsp's of different avian or mammalian cell lines, but cross-reacts with hsp's of similar molecular masses in other dipteran insects. The partial proteolytic peptide maps of Drosophila hsp 83 differ from those of mouse hsp 89 and chicken hsp 84. Immunoblotting of Drosophila Kc cells heat shocked at different temperatures indicates a maximal expression of hsp 83 at 33 degrees C. By immunofluorescence, hsp 83 is shown to have a strictly cytoplasmic localization. In unstressed cells, it is distributed in the entire cytoplasm with a slight enrichment in the perinuclear region. After heat shock, it seems to concentrate at the cell periphery close to the plasma membrane and it gradually redistributes to the whole cytoplasm during cellular recovery at normal temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号