首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A bacterial cell that has a single polar flagellum alternately repeats forward swimming, in which the flagellum pushes the cell body, and backward swimming, in which the flagellum pulls the cell body. We have reported that the backward swimming speeds of Vibrio alginolyticus are on average greater than the forward swimming speeds. In this study, we quantitatively measured the shape of the trajectory as well as the swimming speed. The trajectory shape in the forward mode was almost straight, whereas that in the backward mode was curved. The same parameters were measured at different distances from a surface. The difference in the motion characteristics between swimming modes was significant when a cell swam near a surface. In contrast, the difference was indistinguishable when a cell swam >60 microm away from any surfaces. In addition, a cell in backward mode tended to stay near the surface longer than a cell in forward mode. This wall effect on the bacterial motion was independent of chemical modification of the glass surface. The macroscopic behavior is numerically simulated on the basis of experimental results and the significance of the phenomenon reported here is discussed.  相似文献   

2.
The singly flagellated bacterium, Vibrio alginolyticus, moves forward and backward by alternating the rotational direction of its flagellum. The bacterium has been observed retracing a previous path almost exactly and swimming in a zigzag pattern. In the presence of a boundary, however, the motion changes significantly, to something closer to a circular trajectory. Additionally, when the cell swims close to a wall, the forward and backward speeds differ noticeably. This study details a boundary element model for the motion of a bacterium swimming near a rigid boundary and the results of numerical analyses conducted using this model. The results reveal that bacterium motion is apparently influenced by pitch angle, i.e., the angle between the boundary and the swimming direction, and that forward motion is more stable than backward motion with respect to pitching of the bacterium. From these results, a set of diagrammatic representations have been created that explain the observed asymmetry in trajectory and speed between the forward and backward motions. For forward motion, a cell moving parallel to the boundary will maintain this trajectory. However, for backward motion, the resulting trajectory depends upon whether the bacterium is approaching or departing the boundary. Fluid-dynamic interactions between the flagellum and the boundary vary with cell orientation and cause peculiarities in the resulting trajectories.  相似文献   

3.
Summary The role of tubular mastigonemes in the reversal of thrust of the anterior flagellum ofPhytophthora cinnamomi was analysed using mastigoneme-specific monoclonal antibodies and immunoflu-orescence and video microscopy. Exposure of live zoospores ofP. cinnamomi to the mastigoneme-specific Zg antibodies caused alterations in the arrangement of mastigonemes on the flagellar surface and at Zg concentrations above 0.3 /ml, mastigonemes became detached from the flagellum. As a consequence of antibody binding to the mastigonemes there were concentration-dependent perturbations in zoospore swimming behaviour and anterior flagellum beat pattern. With increasing antibody concentration zoospores swam more slowly and other parameters of their swimming pattern, such as the wavelength of the swimming helix and the frequency of rotation, were also reduced. The effects of Zg antibodies were specific at two levels: control immunoglobulins or antibodies that bound to other flagellar surface components did not have an effect on motility, and Zg antibodies did not interfere with the motility of zoospores of oomycete species to which they did not bind. The effects of antibody-induced disruption of mastigoneme arrangement strongly support previous hypotheses that tubular mastigonemes are responsible for thrust reversal by the anterior flagellum, enabling it to pull the cell through the surrounding medium.  相似文献   

4.
We make a thorough kinematic comparison of forward and backward swimming and maneuvering on a self-propelled robot platform that uses sub-carangifbrm swimming as the primary propulsor. An improved Central Pattern Generator (CPG) model allowing free adjustment of phase relationship and directional bias is employed to achieve flexible swimming and smooth transition. Considering the characteristics of forward swimming in carangiform fish and backward swimming in anguilliform fish, various backward swimming patterns for the sub-carangiform robotic fish are suitably created by reversing the direction of propagating propulsive waves. Through a combined use of the CPG control and closed-loop swimming direction control strategy, flexible and precise turning maneuvers in both forward and backward swimming are implemented and compared. By contrast with forward swimming, backward swimming requires a higher frequency or an increased lateral displacement to reach the same relative swimming speed. Noticeably, the phase difference shows a greater impact on forward swimming than on backward swimming. Our observations also indicate that the robotic fish achieves a larger turning rate in forward maneuvering than in backward maneuvering, yet these two maneuvers display comparable turning precision.  相似文献   

5.
Swimming speed (v) and flagellar-bundle rotation rate (f) of Salmonella typhimurium, which has peritrichous flagella, were simultaneously measured by laser dark-field microscopy (LDM). Clear periodic changes in the LDM signals from a rotating bundle indicated in-phase rotation of the flagella in the bundle. A roughly linear relation between v and f was observed, though the data points were widely distributed. The ratio of v to f (v-f ratio), which indicates the propulsive distance during one flagellar rotation, was 0.27 microm (11% of the flagellar pitch) on average. The experimental v-f ratio was twice as large as the calculated one on the assumption that a cell had a single flagellum. A flagellar bundle was considered to propel a cell more efficiently than a single flagellum.  相似文献   

6.
We introduce a 3D model for a motile rod-shaped bacterial cell with a single polar flagellum which is based on the configuration of a monotrichous type of bacteria such as Pseudomonas aeruginosa. The structure of the model bacterial cell consists of a cylindrical body together with the flagellar forces produced by the rotation of a helical flagellum. The rod-shaped cell body is composed of a set of immersed boundary points and elastic links. The helical flagellum is assumed to be rigid and modeled as a set of discrete points along the helical flagellum and flagellar hook. A set of flagellar forces are applied along this helical curve as the flagellum rotates. An additional set of torque balance forces are applied on the cell body to induce counter-rotation of the body and provide torque balance. The three-dimensional Navier–Stokes equations for incompressible fluid are used to describe the fluid dynamics of the coupled fluid–microorganism system using Peskin’s immersed boundary method. A study of numerical convergence is presented along with simulations of a single swimming cell, the hydrodynamic interaction of two cells, and the interaction of a small cluster of cells.  相似文献   

7.
We found recently that polar flagellated marine bacterium Vibrio alginolyticus is capable of exhibiting taxis toward a chemical source in both forward and backward swimming directions. How the microorganism coordinates these two swimming intervals, however, is not known. The work presented herein is aimed at determining the response functions of the bacterium by applying a stepwise chemoattractant stimulus while it is swimming forward or backward. The important finding of our experiment is that the bacterium responds to an identical chemical signal similarly during the two swimming intervals. For weak stimuli, the difference is mainly in the amplitudes of the response functions while the reaction and adaptation times remain unchanged. In this linear-response regime, the amplitude in the forward swimming interval is approximately a factor of two greater than in the backward direction. Our observation suggests that the cell processes chemical signals identically in both swimming intervals, but the responses of the flagellar motor to the output of the chemotaxis network, the regulator CheY-P concentration, are different. The biological significance of this asymmetrical response in polar flagellated marine bacteria is discussed.  相似文献   

8.
The role of the flagellum and chemotactic motility of Vibrio anguillarum for phagocytosis by and intracellular survival in fish macrophages was determined using a wild-type strain, a mutant without the flagellum, a mutant with a truncated flagellum and a non-chemotactic mutant. For all strains, the numbers of intracellular bacteria were relatively low and fell steadily during the observation period. The presence of a flagellum did not influence the uptake by the macrophages, but the smooth swimming phenotype of a non-chemotactic mutant increased its intracellular presence. We suggest that this is due to an increased collision between the mutant and the macrophage, due to a higher average speed of the non-chemotactic mutant.  相似文献   

9.
The movement of the 2 flagella of Oxyrrhis marina was examined with respect to their individual waveforms and the swimming behavior of the organism. The longitudinal flagella propagated helicoidal waves whose amplitude decreased toward the tip of th flagellum. Their beat frequencies were 50-60 Hz. The transverse flagella beat helicoidally within a furrow. Sudden changes in the direction of the cell trajectories were generated by transient arrests of the longitudinal flagellum beat, which were accompanied by a switch from the backward orientation to a forward one. This sweeping motion generated the rotation of the cell body. Ca2+ ions highly stimulated the frequencies of this arrest response, which compared to the "walking-stick" behavior of sea urchin spermatozoa. Isolated flagella were ATA-reactivated after detergent treatment. They exhibited 2 types of motion within the same experimental conditions. A progressive helicoidal motion was generated upon longitudinal flagellum reactivation, whereas a rolling motion with little progression characterized transverse flagellum reactivation. The differences in motile behavior reflect regulations of flagellar movement which were not destroyed by the isolation procedure and may be indicative of regulation by accessory structures.  相似文献   

10.
In artificial fluid, the spermatozoa move as linear cells or round up and rotate, propelled by spontaneous bending of their tails. Both linear and rounded cells can move forward and backward, but usually they move forward. The tails of all cells display, simultaneously, small primary bends and fewer, much larger secondary bends. Rounded cells form single secondary bends that remain unchanged as the cells rotate. They also form “node-like” primary bends that travel posteriorly or anteriorly as the cells rotate forward or backward, respectively. Linear cells move their anterior regions into and out of focus in a cyclic fashion. They form rather prominent primary bends, as well as two to four secondary bends that travel posteriorly as the cells move forward. Secondary bends change in shape continuously and are not sinusoidal. The cells follow approximately linear trajectories, but the distances traveled per cycle, speeds, and secondary bending patterns are variable. When methyl cellulose is added to artificial fluid, linear movement is improved, and forward speeds are approximately tripled. The movement of spermatozoa in natural fluid of the female reproductive tract is remarkably less stereotyped than that of cells in artificial fluid. The cells, usually resembling straight lines or arcs, are very flexible and active. They lack obvious cyclic activity and double bending patterns. They are capable of moving both forward and backward and of adjusting their bending activity and speed within rather wide limits. Their average forward speed is about nine times faster than that of cells in artificial fluid.  相似文献   

11.
Marine bacterium Vibrio alginolyticus uses a single polar flagellum to navigate in an aqueous environment. Similar to Escherichia coli cells, the polar flagellar motor has two states; when the motor is counter-clockwise, the cell swims forward and when the motor is clockwise, the cell swims backward. V. alginolyticus also incorporates a direction randomization step at the start of the forward swimming interval by flicking its flagellum. To gain an understanding on how the polar flagellar motor switch is regulated, distributions of the forward Δf and backward Δb intervals are investigated herein. We found that the steady-state probability density functions, Pf) and Pb), of freely swimming bacteria are strongly peaked at a finite time, suggesting that the motor switch is not Poissonian. The short-time inhibition is sufficiently strong and long lasting, i.e., several hundred milliseconds for both intervals, which is readily observed and characterized. Treating motor reversal dynamics as a first-passage problem, which results from conformation fluctuations of the motor switch, we calculated Pf) and Pb) and found good agreement with the measurements.  相似文献   

12.
The attachment of Vibrio alginolyticus to glass surfaces was investigated with special reference to the swimming speed due to the polar flagellum. This bacterium has two types of flagella, i.e., one polar flagellum and numerous lateral flagella. The mutant YM4, which possesses only the polar flagellum, showed much faster attachment than the mutant YM18, which does not possess flagella, indicating that the polar flagellum plays an important role. The attachment of YM4 was dependent on Na+ concentration and was specifically inhibited by amiloride, an inhibitor of polar flagellum rotation. These results are quite similar to those for swimming speed obtained under the same conditions. Observations with other mutants showed that chemotaxis is not critical and that the flagellum does not act as an appendage for attachment. From these results, it is concluded that the attachment of V. alginolyticus to glass surfaces is dependent on swimming speed.  相似文献   

13.
Saithe Pollachius virens , tracked diurnally with a split-beam echosounder, showed no relationship between size and swimming speed. The average and the median swimming speeds were 1·05 m s−1(±0·09 m s−1) and 0·93 m s−1, respectively. However, ping-to-ping speeds up to 3·34 m s−1 were measured for 25–29 cm fish, whose swimming speeds were significantly higher at night (1·08 m s−1) than during the day (0·72 m s−1). The high average swimming speed could be related to the foraging or streaming part of the population and not to potential weakness of the methodology. However, the uncertainty of target location increased with depth and resulted in calculated average swimming speeds of 0·15 m s−1 even for a stationary target. With increasing swimming speed the average error decreased to 0 m s−1 for speeds >0·34 m s−1. Species identity was verified by trawling in a pelagic layer and on the bottom.  相似文献   

14.
For a comparative study between swimming in swimwear (control-sw) and swimming in clothes (clothes-sw), oxygen uptake (VO2) and ratings of perceived exertion (RPE) were measured. The subjects were six male members of a university swimming team. Three swimming strokes--the breaststroke, the front crawl stroke and the elementary backstroke--were applied. With regards to clothes-sw, swimmers wore T-shirts, sportswear (shirt and pants) over swimwear and running shoes. In both cases of control-sw and clothes-sw, the VO2 was increased exponentially with increased swimming speed. The VO2 of the subjects during the clothed tests did not exceed 1.4 times of that in the case of control-sw at swimming speeds below 0.3 m/s. As swimming speeds increased, VO2 difference in both cases increased. Consequently, VO2 in the clothed tests was equal to 1.5-1.6 times and 1.5-1.8 times of that in the swimwear tests at speeds of 0.5 and 0.7 m/s, respectively. At speeds below 0.6 m/s in clothes-sw, the breaststroke showed lower VO2 than the front crawl stroke, and the elementary backstroke showed higher VO2 than the other two swimming strokes. RPE increased linearly with %peak VO2. In addition, any RPE differences among the three swimming strokes were not shown in the control-sw tests. At an exercise intensity above 60 %peak VO2, clothed swimmers showed slightly higher RPE in the front crawl stroke compared to that in the two other swimming strokes.  相似文献   

15.
Torque generated by the flagellar motor of Escherichia coli.   总被引:10,自引:7,他引:3       下载免费PDF全文
Cells of the bacterium Escherichia coli were tethered and spun in a high-frequency rotating electric field at a series of discrete field strengths. This was done first at low field strengths, then at field strengths generating speeds high enough to disrupt motor function, and finally at low field strengths. Comparison of the initial and final speed versus applied-torque plots yielded relative motor torque. For backward rotation, motor torque rose steeply at speeds close to zero, peaking, on average, at about 2.2 times the stall torque. For forward rotation, motor torque remained approximately constant up to speeds of about 60% of the zero-torque speed. Then the torque dropped linearly with speed, crossed zero, and reached a minimum, on average, at about -1.7 times the stall torque. The zero-torque speed increased with temperature (about 90 Hz at 11 degrees C, 140 Hz at 16 degrees C, and 290 Hz at 23 degrees C), while other parameters remained approximately constant. Sometimes the motor slipped at either extreme (delivered constant torque over a range of speeds), but eventually it broke. Similar results were obtained whether motors broke catastrophically (suddenly and completely) or progressively or were de-energized by brief treatment with an uncoupler. These results are consistent with a tightly coupled ratchet mechanism, provided that elastic deformation of force-generating elements is limited by a stop and that mechanical components yield at high applied torques.  相似文献   

16.
In addition to forward undulatory swimming, Gymnarchus niloticus can swim via undulations of the dorsal fin while the body axis remains straight; furthermore, it swims forward and backward in a similar way, which indicates that the undulation of the dorsal fin can simultaneously provide bidirectional propulsive and maneuvering forces with the help of the tail fin. A high-resolution Charge-Coupled Device (CCD) imaging camera system is used to record kinematics of steady swimming as well as maneuvering in G. niloticus. Based on experimental data, this paper discusses the kinematics (cruising speed, wave speed, cycle frequency, amplitude, lateral displacement) of forward as well as backward swimming and maneuvering. During forward swimming, the propulsive force is generated mainly by undulations of the dorsal fin while the body axis remains straight. The kinematic parameters (wave speed, wavelength, cycle frequency, amplitude) have statistically significant correlations with cruising speed. In addition, the yaw at the head is minimal during steady swimming. From experimental data, the maximal lateral displacement of head is not more than 1% of the body length, while the maximal lateral displacement of the whole body is not more than 5% of the body length. Another important feature is that G. niloticus swims backwards using an undulatory mechanism that resembles the forward undulatory swimming mechanism. In backward swimming, the increase of lateral displacement of the head is comparatively significant; the amplitude profiles of the propulsive wave along the dorsal fin are significantly different from those in forward swimming. When G. niloticus does fast maneuvering, its body is first bent into either a C shape or an S shape, then it is rapidly unwound in a travelling wave fashion. It rarely maneuvers without the help of the tail fin and body bending.  相似文献   

17.
The swimming pattern of bacteria with single polar flagella has usually been described as "run and reverse". We observed the swimming traces of monotrichously flagellated Vibrio alginolyticus cells and examined the relationship between the swimming pattern and the sense of progress. Swimming in regions other than a solid surface was confirmed to be linear run and reverse. Near a solid surface, the traces consisted of "run and arc"; the cells were found to curve sharply during backward swimming, while they progressed linearly during forward swimming. The "run and arc" swimming pattern may play an important role in the chemotaxis strategy of marine bacteria at solid surfaces.  相似文献   

18.
The hydrodynamics and energetics of helical swimming by the bacterium Spirillum sp. is analysed using observations from medium speed cine photomicrography and theory. The photographic records show that the swimming organism's flagellar bundles beat in a helical fashion just as other bacterial flagella do. The data are analysed according to the rotational resistive theory of Chwang & Wu (1971) in a simple-to-use parametric form with the viscous coefficients Cs and Cn calculated according to the method of Lighthill (1975). Results of the analysis show that Spirillum dissipated biochemical energy in performing work against fluid resistance to motion at an average rate of about 6 X 10(-8) dyne cm s-1 with some 62-72% of the power dissipation due to the non-contractile body. These relationships yield a relatively low hydromechanical efficiency which is reflected in swimming speeds much smaller than a representative eukaryote. In addition the Cn/Cs ratio for the body is shown to lie in the range 0-86-1-51 and that for the flagellar bundle in the range 1-46-1-63. The implications of the power calculations for the Berg & Anderson (1973) rotating shaft model are discussed and it is shown that a rotational resistive theory analysis predicts a 5-cross bridge M ring for each flagellum of Spirillum.  相似文献   

19.
流速对红鳍银鲫幼鱼游泳状态的影响   总被引:7,自引:0,他引:7  
在28℃水温下,采用特制的鱼类游泳行为测定装置,研究体重(125.94±13.87)g的红鳍银鲫(Barbodes schwanenfeldi)幼鱼在0.0m/s(对照组)和0.1m/s、0.3m/s、0.5m/s3种流速下的游泳行为。结果表明,从0.0~0.3m/s,红鳍银鲫幼鱼平均趋流率和摆尾频率均随着流速的增加而增大,而0.5m/s组在90min内随时间延长而下降。红鳍银鲫游泳状态明显受到所处流速的影响,在静水对照组以"逆流前进"和"顺流而下"为主,两者共占总观察时间的98%以上;各流速组均以逆流静止为主,且随着流速的增大,逆流静止所占时间比例从45.8%增加至81.3%,而逆流前进所占时间比例由24.1%减至5%以下;逆流后退所占时间比例以0.1m/s组最大,为16.4%;顺流而下的比例随着流速增大先减小后增大,3个流速组依次为13.7%、2.1%和10.9%。红鳍银鲫幼鱼的游泳速度(V)和摆尾频率(TBF)在逆流前进及逆流静止两种游泳状态下呈线性正相关,而在逆流后退和顺流而下两种状态下两者没有显著相关。  相似文献   

20.
Abstract The rotation of the flagellum of male and female Aedes aegypti (L.) was measured in a wind tunnel at wind speeds between 0 and 116cms-1. Although the surface area of the female flagellum is only 10% of the male, it rotates through double the angle of the male flagellum for the same increase in wind speed. The larger rotation of the female flagellum could result from: a reduced resistive torque in the flagellar-pedicellar suspension; a larger antennal-positioning reflex; a smaller initial angle of attack. The resistive torque in the flagellar-pedicellar suspension was measured in both male and female Aedes aegypti. In ten adult females the average torque at 8o rotation was 2.70 ± 1.33 times 10-10Nm and in ten males it was 6.46 ± 3.46 times 10-10Nm. The significance of these results is discussed with reference to the sexual dimorphism in the sensory tasks required of Johnston's organ in the two sexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号