首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
Emission and absorption spectra in the temperature range 4–300 K have been obtained for bacteriochlorophyll light-harvesting complexes (B800–850 complexes) from several mutants of Rhodopseudomonas sphaeroides and a nonphotosynthetic mutant of Rhodopseudomonas capsulata. The energy-transfer properties of these complexes were remarkably similar despite differences in carotenoid composition. Between 300 and 200 K the excitation densities in B800 and B850 are in thermal equilibrium, indicating rapid energy transfer from B800 to B850 and vice versa. The temperature dependence of the ratio of the B800 and B850 emission yields allows the determination of the ratio of the number of B800 and B850 molecules in the complex which is close to 0.5. Below 200 K thermal equilibrium no longer exists. At 4–100 K the B800 emission yield increases with decreasing temperature and becomes dependent on the wavelength of excitation. From the B800 emission yield at 4 K the B800–850 dipole-dipole distance was calculated to be equal to or smaller than 21 Å for all B800–850 complexes. Excitation spectra for B800 and B850 emission show that the overall energy-transfer efficiencies from carotenoid and B800 to B850 are greater than 90% at all temperatures. At 4 K the carotenoid transfers its excitation energy preferentially to B850. Experiments with chromatophores indicated that the energy-transfer properties of the B800–850 complexes were not modified by the isolation procedures.  相似文献   

2.
Linda Yu  Jian-Hua Dong  Chang-An Yu 《BBA》1986,852(2-3):203-211
Cytochrome c1 from a photosynthetic bacterium Rhodobacter sphaeroides R-26 has been purified to homogeneity. The purified protein contains 30 nmol heme per mg protein, has an isoelectric point of 5.7, and is soluble in aqueous solution in the absence of detergents. The apparent molecular weight of this protein is about 150 000, determined by Bio Gel A-0.5 m column chromatography; a minimum molecular weight of 30 000 is obtained by sodium dodecylsulfate polyacrylamide gel electrophoresis. The absorption spectrum of this cytochrome is similar to that of mammalian cytochrome c1, but the amino acid composition and circular dichroism spectral characteristics are different. The heme moiety of cytochrome c1 is more exposed than is that of mammalian cytochrome c1, but less exposed than that of cytochrome c2. Ferricytochrome c1 undergoes photoreduction upon illumination with light under anaerobic conditions. Such photoreduction is completely abolished when p-chloromercuriphenylsulfonate is added to ferricytochrome c1, suggesting that the sulfhydryl groups of cytochrome c1 are the electron donors for photoreduction. Purified cytochrome c1 contains 3 ± 0.1 mol of the p-chloromercuriphenylsulfonate titratable sulfhydryl groups per mol of protein. In contrast to mammalian cytochrome c1, the bacterial protein does not form a stable complex with cytochrome c2 or with mammalian cytochrome c at low ionic strength. Electron transfer between bacterial ferrocytochrome c1 and bacterial ferricytochrome c2, and between bacterial ferrocytochrome c1 and mammalian ferricytochrome c proceeds rapidly with equilibrium constants of 49 and 3.5, respectively. The midpoint potential of purified cytochrome c1 is calculated to be 228 mV, which is identical to that of mammalian cytochrome c1.  相似文献   

3.
Two carotenoids, neurosporene and spheroidene, have been successfully added to chromatophores from the carotenoidless mutant of Rhodopseudomonas sphaeroides R26. Carotenoids reconstituted in this way into the B-850 light-harvesting pigment-protein complex both sensitise bacteriochlorophyll fluorescence and protect the complex from the photodynamic reaction.  相似文献   

4.
Changes in the relative content of pigment-protein complexes, RC-B880 and B800-850, were studied in membranes of Rhodobacter sphaeroides forma sp. denitrificans cultured under various anaerobic conditions. The content of each pigment-protein complex was determined by the decomposition of the absorption spectra of membranes in the near-infrared region into the spectra of RC-B880 and B800-850. The standard spectrum of each complex in the membranes was obtained using two absorption spectra of membranes with different ratios of the complexes by eliminating the spectrum of first one than the other complex. Spectra composed from the two standard spectra were in good agreement with original membrane spectra after subtraction of the contribution of scattering in various membrane samples. Bacteriochlorophyll (BChl) content in the membrane was dependent on the light intensity during growth. The relation between the total BChl content in the membrane and BChl content in the RC-B880 and B800-850 complex was linear above 15 nmol BChl per mg membrane protein, regardless of the culturel conditions, photosynthetic or photo-denitrifying. The linear relationship reached a point where all BChl molecules were contained in RC-B880 at 13 nmol BChl per mg membrane protein. This means that only RC-B880 would be synthesized below the threshold, and above the threshold additional BChl was distributed between RC-B880 and B800-850 in a constant ratio (1:5.7). The results suggest that the syntheses of B800-850 and RC-B880 are not regulated independently.  相似文献   

5.
Antenna and reaction centre complexes purified from photosynthetically-grown cells of Rhodopseudomonas sphaeroides have been mixed with cytoplasmic membranes prepared from an aerobically-grown bacteriochlorophyll-less mutant of Rp. sphaeroides (designated 01) in the presence of 1% sodium cholate. After removal of the cholate by dialysis, the dialysate was subjected to isopycnic centrifugation. Reconstituted cytochrome c2 photooxidation and cytochrome b photoreduction were demonstrated in a pigmented fraction recovered from the sucrose gradient, suggesting that the pigment-proteins were incorporated into the 01 membrane.

The fluorescence properties of the system were examined. The appearance of a variable component after the initial fast fluorescence rise indicated that energy transfer occurred between the antenna and reaction centre proteins in the presence of 01 membrane. The order in which the system was assembled was important. Reconstituted energy transfer with a pre-dialysed reaction centre-antenna complex was more effective than when all the components were mixed at once. Energy transfer was also reconstituted between added reaction centre protein and the endogenous antenna present in membranes from the pigmented, but aerobically-grown reaction centre-less mutant PM8dp of Rp. sphaeroides.

Preparations of 01 membranes reconstituted with reaction centre exhibited a light intensity dependent cytochrome c2 photooxidation. At low exciting light intensities, preparations containing reconstituted antenna protein in addition to reaction centres showed greater membrane cytochrome c2 photooxidation than preparations with the antenna omitted; this improvement was maximal when a pre-dialysed antenna-reaction centre complex was used.  相似文献   


6.
The changes in carotenoid absorbance induced by illumination or by a diffusion potential were larger in chromatophores from cells cultured under low light intensity than those in chromatophores from high-light culture in a photosynthetic bacterium, Rhodopseudomonas sphaeroides. The carotenoid molecules which are associated with the pigment-protein complex (with the infrared bacteriochlorophyll peaks at 800 and 850 nm) (complex II) probably respond to the electrical field changes in the chromatophore membrane.  相似文献   

7.
Chromatophores and peripheral light-harvesting complexes B800–850 with a trace of carotenoids were isolated from Chromatium minutissimum cells in which carotenoid biosynthesis was inhibited by diphenylamine. Three methods previously used for the reconstitution of carotenoids into either the light-harvesting (LH1) type complexes or reaction centers (RC) of carotenoidless mutants were examined for the possibility of carotenoid reconstitution into the carotenoid depleted chromatophores. All these methods were found to be unsuitable because carotenoid depleted complex B800–850 from Chr. minutissimum is characterized by high lability. We have developed a novel method maintaining the native structure of the complexes and allowing reconstitution of up to 80% of the carotenoids as compared to the control. The reconstituted complex has a similar CD spectrum in the carotenoid region as the control, and its structure restores its stability. These data give direct proof for the structural role of carotenoids in bacterial photosynthesis.  相似文献   

8.
Delayed fluorescence from isolated reaction centers of Rhodopseudomonas sphaeroides was measured to study the energetics of electron transfer from the bacteriochlorophyll complex (P-870, or P) to the primary and secondary quinones (QA and QB). The analysis was based on the assumption that electron transfer between P and Q reaches equilibrium quickly after flash excitation, and stays in equilibrium during the lifetime of the P+Q radical pair. Delayed fluorescence of 1Q reaction centers (reaction centers that contain only QA) has a lifetime of about 0.1 s, which corresponds to the decay of P+QA. 2Q reaction centers (which contain both QA and QB) have a much weaker delayed fluorescence, with a lifetime that corresponds to that of P+QB (about 1 s). In the presence of o-phenanthroline, the delayed fluorescence of 2Q reaction centers becomes similar in intensity and decay kinetics to that of 1Q reaction centers. From comparisons of the intensities of the delayed fluorescence from P+QA and P+QB, the standard free energy difference between P+QA and P+QB is calculated to be 78 ± 8 meV. From a comparison of the intensity of the delayed fluorescence with that of prompt fluorescence, we calculate that P+QA is 0.86 ± 0.02 eV below the excited singlet state of P in free energy, or about 0.52 eV above the ground state PQA. The temperature dependence of the delayed fluorescence indicates that P+QA is about 0.75 eV below the excited singlet state in enthalpy, or about 0.63 eV above the ground state.  相似文献   

9.
R.J. Debus  G.E. Valkirs  M.Y. Okamura  G. Feher 《BBA》1982,682(3):500-503
Inhibition of the electron transfer from QA to QB was measured in the presence of Fab fragments of antibodies directed against the subunits of reaction centers of Rhodopseudomonas sphaeroides R-26. Anti-M Fab inhibited the electron transfer, whereas anti-L Fab and anti-H Fab did not. From these experiments, we conclude that the binding site for QB is located on the M-subunit.  相似文献   

10.
Optical and structural properties of the B875 light-harvesting complex of purple bacteria were examined by measurements of low-temperature circular dichroism (CD) and excitation spectra of fluorescence polarization. In the B875 complex isolated from wild-type Rhodopseudomonas sphaeroides, fluorescence polarization increased steeply across the long-wavelength Qy bacteriochlorophyll a (BChl) absorption band at both 4 and approx. 300 K. With the native complex in the photosynthetic membranes of Rhodospirillum rubrum and Rps. sphaeroides wild-type and R26-carotenoidless strains, this significant increase in polarization from 0.12 to 0.40 was only observed at low temperature. A polarization of ?0.2 was observed upon excitation in the Qx BChl band. The results indicate that about 15% of the BChl molecules in the complex absorb at wavelengths about 12 nm longer than the other BChls. All BChls have approximately the same orientation with their Qy transition dipoles essentially parallel and their Qx transitions perpendicular to the plane of the membrane. At low temperature, energy transfer to the long-wavelength BChls is irreversible, yielding a high degree of polarization upon direct excitation, whereas at room temperature a partial depolarization of fluorescence by energy transfer between different subunits occurs in the membrane, but not in the isolated complex. CD spectra appear to reflect the two spectral forms of B875 BChl in Rps. sphaeroides membranes. They also reveal structural differences between the complexes of Rps. sphaeroides and Rhs. rubrum, in both BChl and carotenoid regions. The CD spectrum of isolated B875 indicates that the interactions between the BChls but not the carotenoids are altered upon isolation.  相似文献   

11.
Rolf Bü  rgi  Franz Suter  Herbert Zuber 《BBA》1987,890(3):346-351
The transverse orientation of the light-harvesting chlorophyll a/b protein complex of Photosystem II (LHC II) in the thylakoid membrane of pea was investigated using surface radioiodination with Iodo-GenTM. The labelling effects on LHC II of four different membrane preparations were compared. One preparation was oriented right-side-out (intact thylakoids); two of them had an inside-out orientation exposing the lumenal surface (inside-out vesicles; PS II particles) and one had both sides of the membrane exposed (mechanically damaged thylakoids). It was found that LHC II could be iodinated only in membrane preparations with an exposed lumenal surface. Isolated apoproteins were chemically cleaved. Fragments analysis revealed a tyrosine residue located eight amino acids from the C-terminus as the single iodination site. It is concluded that the C-terminus of LHC II points towards the lumental side of the thylakoid. Differences in the labelling behaviour of the LHC apoproteins could be assigned to a heterogeneity in the C-terminal region in which the tyrosine residue is replaced by phenylalanine.  相似文献   

12.
The mutant pg 113, derived from Chlamydomonas reinhardii, arg2 mt+ (parent strain), completely lacks chlorophyll (Chl) b but is still able to grow under autotrophic conditions. The light-harvesting Chl a/b-protein complex (LHCP) is absent. This is shown (a) by the lack of the corresponding signal in the CD spectrum of thylakoids and (b) by the absence of the band of the LHCP after electrophoresis of partially solubilized thylakoid membranes on lithium dodecyl sulfate polyacrylamide gels. All the other chlorophyll-protein complexes are present. In spite of the absence of the LHCP, all the polypeptide components of this complex are present in the mutant in the same ratios as in the parent strain, although in slightly reduced amounts. The LHC apoproteins are synthesized, processed and transported into the thylakoid membrane of the mutant. Moreover, the phosphorylation of thylakoid membrane polypeptides, which is related to the regulation of the energy distribution between Photosystem I and II, is the same in the mutant and in the parent strain, indicating that phosphorylation is not dependent on the presence of Chl b. Electron micrographs of thin sections of whole cells show that there are stacked regions of thylakoids in both the mutant and the parent strain chloroplasts. However, in the mutant, stacks are located near the chloroplast envelope, while long stretches or sometimes circles of unstacked membranes are found in the interior, mostly around the pyrenoid.  相似文献   

13.
Absorption and fluorescence emission spectra of Rhodopseudomonas capsulata, strains 37b4 (wild type), A1a+ (blue-green mutant strain), Y5 (phototroph negative, having only B-800–850 bacteriochlorophyll-carotenoid-protein complex) at 4 K, 77 K and 300 K were measured. The fluorescence emission at 890 nm of the B-870 bacteriochlorophyll band dominates the emission of other spectral forms of the strains 37b4 and A1a+, while in strain Y5 a fluorescence emission band at 865 nm of the B-850 bacteriochlorophyll dominates. Very little fluorescence was observed at 805 nm. A linear relation between relative fluorescence intensity and the exciting light intensity was observed. The integrated fluorescence yield increased as the temperature was lowered from 300 K to 4 K. The results are discussed in the light of the arrangement of pigment molecules in the membrane and the process of energy migration within the photosynthetic apparatus.  相似文献   

14.
The mutant pg 113, derived from Chlamydomonas reinhardii, arg2 mt+ (parent strain), completely lacks chlorophyll (Chl) b but is still able to grow under autotrophic conditions. The light-harvesting Chl complex (LHCP) is absent. This is shown (a) by the lack of the corresponding signal in the CD spectrum of thylakoids and (b) by the absence of the band of the LHCP after electrophoresis of partially solubilized thylakoid membranes on lithium dodecyl sulfate polyacrylamide gels. All the other chlorophyll-protein complexes are present. In spite of the absence of the LHCP, all the polypeptide components of this complex are present in the mutant in the same ratios as in the parent strain, although in slightly reduced amounts. The LHC apoproteins are synthesized, processed and transported into the thylakoid membrane of the mutant. Moreover, the phosphorylation of thylakoid membrane polypeptides, which is related to the regulation of the energy distribution between Photosystem I and II, is the same in the mutant and in the parent strain, indicating that phosphorylation is not dependent on the presence of Chl b. Electron micrographs of thin sections of whole cells show that there are stacked regions of thylakoids in both the mutant and the parent strain chloroplasts. However, in the mutant, stacks are located near the chloroplast envelope, while long stretches or sometimes circles of unstacked membranes are found in the interior, mostly around the pyrenoid.  相似文献   

15.
The temperature dependences of the P870+Q?A → P870QA and P870+Q?B → P870QB recombination reactions were measured in reaction centers from Rhodopseudomonas sphaeroides. The data indicate that the P870+Q?B state decays by thermal repopulation of the P870+Q?A state, followed by recombination. ΔG° for the P870+Q?A → P870+Q?B reaction is ?6.89 kJ · mol?1, while ΔH° = ?14.45 kJ · mol?1 and ?TΔS° = + 7.53 kJ · mol?1. The activation ethalpy, H3, for the P870+Q?A Δ P870+Q?B reaction is +56.9 kJ · mol?1, while the activation entropy is near zero. The results permit an estimate of the shape of the potential energy curve for the P870+Q?A → P870+Q?B electron transfer reaction.  相似文献   

16.
The magnetic field effects on bacteriochlorophyll fluorescence in six strains of Rhodopseudomonas capsulata were investigated. All strains exhibit an increase in fluorescence upon application of a magnetic field. Large magnetic field effects are shown to arise in mutants which contain the B800–850 complex as the only bacteriochlorophyll-containing protein. These fluorescence increases are observed only with carotenoid excitation and are best described by a carotenoid singlet heterofission mechanism. Variations in the magnitudes of the magnetic field effects for the Rps. capsulata strain arise from energy differences in the excited states of the molecules involved in the process. In order to determine the contribution from reaction centers to the magnetic field effects observed in the mutants which contain all three pigment-protein complexes, reaction centers were isolated from these strains. The reaction center contribution to the magnetic field effect on fluorescence in whole cells was determined to be smaller than the antenna contribution when carotenoid excitation was employed.  相似文献   

17.
Spectrophotometric, kinetic, thermodynamic and stoichiometric properties of the low-potential b-type cytochrome of chromatophores from Rhodopseudomonas sphaeroides are reported. Cytochrome b-566 has a double α-band with maxima at 559 and 566 nm. Resolution of the spectrum by full-spectral redox potentiometry showed no indication that the two peaks represent more than one component. The component titrated with Em,7 ≈ ?80 ± 10 mV. By appropriate choice of wavelength pairs and by subtraction of the contribution due to other components, the kinetics of cytochrome b-566 absorbance changes following flash excitation have been resolved from those of other components. Time-resolved flash spectra corrected for the contributions of other components are consistent with the behavior of both peaks of the α-band as a single kinetic species. The kinetics of cytochrome b-566 in the presence of antimycin show that the reduction of this cytochrome occurred only if cytochrome b-561 was reduced before the flash, either chemically, by poising the ambient redox potential (Eh) below the Em of cytochrome b-561 (Em,7 ≈ 50 mV), or photochemically at higher redox potentials by a previous flash. The rate of reduction of cytochrome b-566 varied with Eh. At low Eh (approx. 0 mV) reduction on the first flash showed t12 ≈ 1.25 ms; at high Eh (approx. 180 mV) reduction on the second flash showed t12 ≈ 10 ms. In the absence of antimycin at Eh ≈ 0 mV, cytochrome b-566 was observed to become rapidly reduced (t12 ≈ 500 μs) and then reoxidized (t12 ≈ 2 ms) after a single flash. At higher redox potentials (Eh > 80 mV) no kinetic changes which could be unambiguously attributed to cytochrome b-566 were observed following a single flash. The results are interpreted in terms of a Q-cycle mechanism in which the reductant for cytochrome b-566 is the semiquinone formed on oxidation of ubiquinol from the quinone pool. The oxidation of the ubiquinol occurs by a concerted reaction in which one electron is accepted by the Rieske-type FeS center and the other by cytochrome b-566. We suggest that the kinetic characteristics may indicate a pathway for reduction of the b-type cytochromes in which cytochrome b-566 is the immediate electron acceptor and donates to cytochrome b-561 in a serial pathway. The experimental results in the presence of antimycin are compared with data from a computer simulation of the thermodynamic behavior of the chain, and the computer model is shown to provide an excellent fit.  相似文献   

18.
MT113, a nonphotosynthetic mutant of Rhodobacter capsulatus previously characterized as lacking cytochrome c2 is shown to lack also cytochrome c1, the Rieske iron-sulfur cluster and the antimycin sensitive semiquinone Qc, all components of the cytochrome bc1 complex. Although MT113 contained b-type cytochromes and other iron-sulfur clusters at nearly wild-type level, it lacks c-type cytochromes. Based on antibody detection, c2 apoprotein was absent in MT113, however the apoproteins corresponding to the cytochromes b and c1 and the Rieske iron-sulfur cluster were present in reduced amounts. Genetic analysis indicated that the lesion appears to be due to a single mutation which is not localized in the structural genes of cytochrome c2 or the bc1 complex. These data taken together suggest that the pleiotropic mutation in MT113 might be related to the biosynthesis of c-type cytochromes.  相似文献   

19.
The bacteriochlorophyll a-binding polypeptide B806–866-β was extracted from membranes of the green thermophilic bacterium Chloroflexus aurantiacus with chloroform/methanol/ammonium acetate. Purification of the antenna polypeptide (6.3 kDa) was achieved by chromatography on Sephadex LH-60, Whatman DE-32 and by FPLC. The complete amino acid sequence (53 amino acid residues) was determined. The B806–866-β polypeptide is sequence homologous to the antenna β-polypeptides of purple bacteria (27–40%) and exhibits the characteristic three domain structure of the B870, B800–850 and B800–820 antenna complexes. The two typical His residues, conserved in all antenna β-polypeptides of purple bacteria, were found: His-24 lies within the N-terminal hydrophilic domain and His-42 within the central hydrophobic domain. This polypeptide together with the previously described α-polypeptide form the basic structural unit of the B806–866 antenna complex from C. aurantiacus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号