首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The DNA sequences of genes 37 of bacteriophages T2 and K3 are presented and compared with that of phage T4. The corresponding proteins constitute, as dimers, the part of the long tail fibers that recognizes the bacterial receptor. The CO2H termini of the polypeptides are located at the free ends of the fibers. Morphologically, the three phages are essentially identical, but they use different receptors. The genes from phages T4, T2 and K3 encode proteins consisting of 1026, 1341 and 1243 amino acid residues, respectively. DNA-DNA hybridizations had shown earlier that genes 37, in contrast to the gene for the major capsid protein, of a number of T-even type phages are highly polymorphic. The deduced amino acid sequences now show that this polymorphism extends to the protein primary structures. About 50 NH2-terminal residues are conserved and are probably required for binding to the adjacent protein 36. This area is followed by more or less irregularly spaced regions of non-homology, partial homology or complete homology. The heterogeneity is most prominent in a region encompassing about 600 CO2H-terminal residues of the T2 or K3 proteins. Nevertheless, the amino acid compositions of the three proteins are very similar and all are rich in glycine. It has been found that the receptor specificities of phages K3 and T2 are determined by protein 38, a polypeptide required for the efficient dimerization of protein 37 of phage T4. Proteins 38 of phages K3 and T2 are functionally interchangeable, those of T4 and T2 or K3 are not. Proteins 37 of phages K3 and T2 possess a conserved sequence of 160 CO2H-terminal residues. This area is missing in the T4 protein. This region may serve as a binding site for polypeptides 38 of phages K3 and T2. The overall picture of the protein primary structures of the three phages strongly suggests that the evolution of genes 37, which was most likely driven by selection for variations in receptor recognition specificities, has not been a steady process but has involved loss and gain of segments of DNA.  相似文献   

2.
3.
Genes 38, which code for a receptor-recognizing protein present at the tip of the long tail fibers, have been sequenced from phages T2, the T-even-type phage K3 and its host range mutants K3hx, K3h1 and K3h1h. The genes from phages T2 and K3 code for proteins consisting of 262 and 260 amino acid residues, respectively. Fifty amino-terminal and 25 carboxy-terminal residues are highly conserved. The amino-terminal amino acids are most likely involved in binding to the neighboring protein 37. Between residues 116 and 226 of the T2 protein and residues 116 and 223 of the K3 protein, sequences exist that are similar to sequences present in Escherichia coli outer membrane proteins and which serve as phage receptors. Most likely, all of these regions in the latter proteins are exposed on the cell surface and are part of their phage receptor areas. In the phage proteins, these sequences are flanked by stretches rich in glycine, perhaps providing an increased flexibility for the polypeptide at these sites; some "wobble" may be required during the protein 38-receptor interaction. The mutational alterations in the host range mutants were found in gene 38. In the K3hx protein, a duplication of six base-pairs caused the wild-type sequence -Gly163-Lys-Leu-Ile- to be changed to -Gly163-Lys-Leu-Lys-Leu-Ile-. In the K3h1 protein, a glutamic acid residue at position 203 was substituted by a lysine. Both alterations occurred within areas similar to outer membrane proteins. Mutant K3h1h, derived from K3h1, exhibits an extended host range as compared to K3h1. No mutational alteration, in addition to that found in K3h1, was found in g38 nor was the part of gene 37 that encodes the carboxy-terminal moiety of the protein altered. K3h1h may represent a "trigger-happy" phage. The results of this and other work show that the phage-phage receptor systems under study represent a primitive immune system.  相似文献   

4.
Summary Genes (g) 36 and 37 code for the proteins of the distal half of the long tail fibers of phage T4, gene product (gp) 35 links the distal half to the proximal half of this fiber. The receptor, lipopolysaccharide, most likely is recognized by gp37. Using as probe a restriction fragment consisting of most of g36 and g37 of phage T4 the genes corresponding to g35, g36, and g37 of phages T2 and K3 (using the E. coli outer membrane proteins OmpF and OmpA, respectively, as receptors) have been cloned into plasmid pUC8. Partial DNA sequences of g37 of phage K3 have been determined. One area, corresponding to residues 157 to 210 of the 1026 residue gp37 of phage T4, codes for an identical sequence in phage K3. Another area corresponds to residues 767 to 832 of the phage T4 sequence. Amino acid residues 767 to 832 of the phage T4 sequence are almost identical in both phage proteins while the remainder is rather different. DNAs of T2, T4, T6, another T-even type phage using protein Tsx as a receptor, and 10 different T-even type phages using the OmpA protein as a receptor have been hybridized with restriction fragments covering various parts of the g37 area of phage K3. With probably only one exception all of the 13 phages tested possess unique genes 37 and within the majority of these, sequences highly homologous to parts of g37 of K3 are present in a mosaic type fashion. Other regions of these genes 37 did not show any homology with the K3 probes; in case of the OmpA specific phage M1 absence of homology was evident in most of its g37 even including the area that should serve for recognition of the cellular receptor. In sharp contrast to this situation it was found that a major part of the gene (g23) coding for the major capsid protein is rather highly conserved in all phages studied. The extreme variability in sequences existing in genes 37 might be a consequence of phages during evolution being able to more or less drastically change their receptor specifities.  相似文献   

5.
Protein 38 of the Escherichia coli phage T4 is thought to be required catalytically for the assembly of the long tail fibers of this phage. It is shown that this protein of phage T2 and the T-even-type phage K3 and Ox2 act differently. It was found that NH2-terminal fragments of the protein, expressed from cloned fragments of gene 38 of phage K3, bind to gene 38 amber mutants of phage T2. Such phage or T2 gene 38 amber mutants, grown on a non-permissive host, possess a complete set of six tail fibers but are non-infectious. Both types of non-infectious phage could be repaired by incubation with an extract of cells harboring a cloned gene 38 of a host range mutant of phage K3, K3hx. The repaired phages had the host range of K3hx and not of T2. Immuno-electron microscopy showed that protein 38 is located at the free ends of the long tail fibers of phages T2, K3 and Ox2. The protein serves the recognition of the cellular receptor, i.e. it acts as an adhesin.  相似文献   

6.
Escherichia coli phages of the T4 family (T4, TuIa, TuIb) recognize their cellular receptors by means of a C-terminal region of protein 37; a dimer of this polypeptide (1026 residues in T4) is located at the distal part of the long tail fibers. Virions of the T2 family use protein 38 (which is attached to the free end of protein 37) for this purpose. The corresponding areas of genes 37 belonging to TuIa and TuIb were cloned and sequenced. Comparison of the deduced protein primary structures, including those of T4 and lambda Stf (Stf most likely representing a subunit of the side tail fibers of phage lambda) showed that an area of 70 to 100 residues is characterized by very variable sequences, while the sequences of the adjacent 43 to 44 C-terminal residues as well as those upstream from the variable region are highly homologous. The variable regions are flanked and interrupted seven or eight times by the motif His-x-His-y, with x and y most often being Ser or Thr; furthermore, the locations of these repeated tetrapeptides are conserved. Using hybrid phages obtained by recombination of one phage with cloned fragments of gene 37 of another, it could be shown that the area of this gene encoding receptor specificity includes the variable area. The situation is analogous to the known receptor-recognizing region of proteins 38 belonging to the T2-type family, except that the repeating sequence is of a different nature. In T4, receptor specificity is coded for by 382 base-pairs of the 3'-end of the gene, starting exactly at the variable area. It was found that T4 can use the outer membrane protein OmpC or lipopolysaccharide as receptors with the same efficiency, and it is proposed that the 70 residues of the variable part of the protein serve to bind to both ligands.  相似文献   

7.
The T-even type Escherichia coli phage Ox2 recognizes the outer membrane protein OmpA as a receptor. This recognition is accomplished by the 266 residue protein 38, which is located at the free ends of the virion's long tail fibers. Host-range mutants had been isolated in three consecutive steps: Ox2----Ox2h5----Ox2h10----Ox2h12, with Ox2h12 recognizing the outer membrane protein OmpC efficiently and having lost some affinity for OmpA. Protein 38 consists, in comparison with these proteins of other phages, of two constant and one contiguous array of four hypervariable regions; the alterations leading to Ox2h12 were all found within the latter area. Starting with Ox2h12, further host-range mutants could be isolated on strains resistant to the respective phage: Ox2h12----h12h1----h12h1.1----h12h1.11----h12 h1.111. It was found that Ox2h12h1.1 (and a derivative of Ox2h10, h10h4) probably uses, instead of OmpA or OmpC, yet another outer membrane protein, designated OmpX. Ox2h12h1.11 was obtained on a strain lacking OmpA, -C and -X. This phage could not grow on a mutant of E. coli B, possessing a lipopolysaccharide (LPS) with a defective core oligosaccharide; Ox2h12h1.111 was obtained from this strain. It turned out that the latter two mutants used LPS as a receptor, most likely via its glucose residues. Selection for resistance to them in E. coli B (ompA+, ompC-, ompX-) yielded exclusively LPS mutants, and in another strain, possessing OmpA, C and X, the majority of resistant mutants were of this type. Isolated LPS inactivated the mutant phages very well and was inactive towards Ox2h12. By recombining the genes of mutant phages into the genome of parental phages it could be shown that the phenotypes were associated with gene 38. All mutant alterations (mostly single amino acid substitutions) were found within the hypervariable regions of protein 38. In particular, a substitution leading to Ox2h12h1.11 (Arg170----Ser) had occurred at the same site that led to Ox2h10 (His170----Arg), which binds to OmpC in addition to OmpA. It is concluded that not only can protein 38 gain the ability to switch from a protein to a carbohydrate as a receptor but can do so using the same domain of the polypeptide.  相似文献   

8.
I Riede  M Degen    U Henning 《The EMBO journal》1985,4(9):2343-2346
T-Even type bacteriophages recognize their cellular receptors with the distal ends of their long tail fibers. The distal part of these fibers consists of a dimer of gene product (gp) 37. The assembly of this gp to a functional dimer requires the action of two other proteins, gp57 and gp38. Genes (g) 38 have been cloned from five T-even type phages which use the Escherichia coli outer membrane protein OmpA as a receptor. The phages used differ in their ability to infect a series of ompA mutants producing altered OmpA proteins, i.e., each phage has a specific host range for these mutants. The cloned genes 38 complemented g38 amber mutants of phage T2, which uses the outer membrane protein OmpF as a receptor. The complemented phages had become phenotypically OmpA-dependent and, with one exception, OmpF-independent, but regained the host range of T2 upon growth in a host lacking the cloned g38. The host range of the complemented phages, as determined on the ompA mutants, was identical to, similar to, or different from that of the phage, from which the cloned g38 originated. The results presented show that gp38 from one phage can phenotypically 'imprint', in a finely-tuned manner, a host range onto gp37 of another phage with a different host specificity. In view of the extreme diversity of host ranges observed, it is suggested that gp38 of T2 and of the OmpA-specific phages may remain attached to gp37 in the phage particle and in cooperation with gp37 determine the host range.  相似文献   

9.
The Escherichia coli K12 outer-membrane proteins OmpA, OmpC, OmpF, PhoE, and LamB (all of transmembrane nature) can serve as phage receptors. We have shown previously that one OmpA-specific phage, Ox2, can give rise to the host range mutants Ox2h10 and Ox2h12, with the latter being derived from the former [Morona, R. & Henning, U. (1984) J. Bacteriol. 159, 579-582]. Unlike Ox2, both host range phages can use the OmpA and OmpC proteins as receptors and Ox2h12 is better adapted to the OmpC protein than Ox2h10. In a search for the site(s) of OmpC protein involved in phage recognition, it was found that proteinase K is able to cleave all of the proteins mentioned above. OmpC protein (Mr = 38306) could be cleaved from outside the cell by proteinase K resulting in two fragments of Mr approximately equal to 21000 and Mr approximately equal to 17500. The use of OmpC-PhoE hybrid proteins allowed us to assign the approximately equal to 21000-Mr fragment to the CO2H-terminal moiety of the protein. Proteinase K treatment of intact cells abolished their activity to neutralize the OmpC-specific phage Tulb and reduced this ability towards phage Ox2h12. The OmpA, OmpF, PhoE and LamB proteins were cleaved by the protease not in intact cells but only when acting on cell envelopes. The sizes of the OmpC protein fragments and the results obtained with the hybrid proteins very strongly suggest that the protein is cleaved from outside the cell at a region involving amino acid residues 150-178 of the 346-residue protein, which shows homology to two regions of the OmpA protein which are involved in its phage receptor site (loc. cit.). These areas also exhibit some homology to a region of the LamB protein which is thought to be part of this protein's receptor site [Charbit et al. (1984) J. Mol. Biol. 175, 395-401]. This suggests that there is a common denominator for proteinaceous phage receptor site because the LamB-specific phage lambda and phage Tulb are of completely different nature. We conclude that the region of the OmpC protein in question is cell-surface-exposed and acts as a phage receptor site.  相似文献   

10.
Predicted structure of tail-fiber proteins of T-even type phages   总被引:1,自引:0,他引:1  
I Riede  H Schwarz  F J?hnig 《FEBS letters》1987,215(1):145-150
The sequences of the tail fiber protein 36 of the phages T4, T2, K3, and Ox2 were analyzed for homologies and for folding patterns using structure prediction methods. No repeating motif was found. A model for the fiber structure is proposed in which beta-strands of about 6 amino acids are separated by turns. In the beta-strand, hydrophobic amino acids are found alternating with hydrophilic ones. Such amphipathic beta-strands can be stabilized by dimer formation. The dimerization occurs in a parallel fashion so that both N-termini are at one end of the dimer. This structure represents a rigid fiber. Our model is consistent with electron microscopic data and electron diffraction patterns for the T4 tail fiber. The observation that all fiber components are found as dimers supports our model. Sequences of the receptor recognition proteins 38 of T-even type phages reveal an architecture different from the architecture of the fiber proteins 36 and 37 of these phages.  相似文献   

11.
I Riede 《Journal of bacteriology》1987,169(7):2956-2961
The lysis gene t of the T-even-like bacteriophage K3 has been cloned and sequenced. The gene codes for a protein with a predicted molecular weight of 25,200. Expression of the complete lysis protein was impossible, but peptides complementing T4 amber mutants in t are described. No known lysis protein of other phages is homologous to protein T. Also, the Escherichia coli phospholipase A is different from protein T. CelB, the lysis protein of the colicin E2 operon, shows a similarity to protein T. Sequences of colicins A, E1, and E2 are related to gene 38 sequences, the gene preceding t and coding for the phage adhesin. A common origin for colicin genes and phage genes is discussed, and a protein region in colicins that is responsible for receptor recognition is predicted.  相似文献   

12.
About 130 kb of sequence information was obtained from the coliphage JS98 isolated from the stool of a pediatric diarrhea patient in Bangladesh. The DNA shared up to 81% base pair identity with phage T4. The most conserved regions between JS98 and T4 were the structural genes, but their degree of conservation was not uniform. The head genes showed the highest sequence conservation, followed by the tail, baseplate, and tail fiber genes. Many tail fiber genes shared only protein sequence identity. Except for the insertion of endonuclease genes in T4 and gene 24 duplication in JS98, the structural gene maps of the two phages were colinear. The receptor-recognizing tail fiber proteins gp37 and gp38 were only distantly related to T4, but shared up to 83% amino acid identity to other T6-like phages, suggesting lateral gene transfer. A greater degree of variability was seen between JS98 and T4 over DNA replication and DNA transaction genes. While most of these genes came in the same order and shared up to 76% protein sequence identity, a few rearrangements, insertions, and replacements of genes were observed. Many putative gene insertions in the DNA replication module of T4 were flanked by intron-related endonuclease genes, suggesting mobile DNA elements. A hotspot of genome diversification was located downstream of the DNA polymerase gene 43 and the DNA binding gene 32. Comparative genomics of 100-kb genome sequence revealed that T4-like phages diversify more by the accumulation of point mutations and occasional gene duplication events than by modular exchanges.  相似文献   

13.
Liao WC  Ng WV  Lin IH  Syu WJ  Liu TT  Chang CH 《Journal of virology》2011,85(13):6567-6578
We report the genome organization and analysis of the first completely sequenced T4-like phage, AR1, of Escherichia coli O157:H7. Unlike most of the other sequenced phages of O157:H7, which belong to the temperate Podoviridae and Siphoviridae families, AR1 is a T4-like phage known to efficiently infect this pathogenic bacterial strain. The 167,435-bp AR1 genome is currently the largest among all the sequenced E. coli O157:H7 phages. It carries a total of 281 potential open reading frames (ORFs) and 10 putative tRNA genes. Of these, 126 predicted proteins could be classified into six viral orthologous group categories, with at least 18 proteins of the structural protein category having been detected by tandem mass spectrometry. Comparative genomic analysis of AR1 and four other completely sequenced T4-like genomes (RB32, RB69, T4, and JS98) indicated that they share a well-organized and highly conserved core genome, particularly in the regions encoding DNA replication and virion structural proteins. The major diverse features between these phages include the modules of distal tail fibers and the types and numbers of internal proteins, tRNA genes, and mobile elements. Codon usage analysis suggested that the presence of AR1-encoded tRNAs may be relevant to the codon usage of structural proteins. Furthermore, protein sequence analysis of AR1 gp37, a potential receptor binding protein, indicated that eight residues in the C terminus are unique to O157:H7 T4-like phages AR1 and PP01. These residues are known to be located in the T4 receptor recognition domain, and they may contribute to specificity for adsorption to the O157:H7 strain.  相似文献   

14.
Artificial control of phage specificity may contribute to practical applications, such as the therapeutic use of phages and the detection of bacteria by their specific phages. To change the specificity of phage infection, gene products (gp) 37 and 38, expressed at the tip of the long tail fiber of T2 phage, were exchanged with those of PP01 phage, an Escherichia coli O157:H7 specific phage. Homologous recombination between the T2 phage genome and a plasmid encoding the region around genes 37-38 of PP01 occurred in transformant E. coli K12 cells. The recombinant T2 phage, named T2ppD1, carried PP01 gp37 and 38 and infected the heterogeneous host cell E. coli O157:H7 and related species. On the other hand, T2ppD1 could not infect E. coli K12, the original host of T2, or its derivatives. The host range of T2ppD1 was the same as that of PP01. Infection of T2ppD1 produced turbid plaques on a lawn of E. coli O157:H7 cells. The binding affinity of T2ppD1 to E. coli O157:H7 was weaker than that of PP01. The adsorption rate constant (ka) of T2ppD1 (0.17 x 10(-9)(ml CFU(-1) min(-1)) was almost 1/6 that of PP01 (1.10 x 10(-9)(ml CFU(-1) min(-1))). In addition to the tip of the long tail fiber, exchange of gene products expressed in the short tail fiber may be necessary for tight binding of recombinant phage.  相似文献   

15.
Gene 37 of phage T2 codes for a protein that, as a dimer, constitutes the most distal, receptor-recognizing part of its long tail fibers. It was found that, from a plasmid carrying a fragment of gene 37 that lacked a region of the gene encoding 87 CO2H-terminal amino acid residues, a protein was expressed that was slightly larger than that present in the phage. This size difference could not be accounted for. The missing region of gene 37 and also gene 38 (which codes for the auxiliary protein required for dimerization of protein 37) were cloned. Plasmids were constructed with gene 37, or gene 37 together with gene 38, under inducible control. Independent of the presence of the latter gene, a protein was produced that had the same size as protein 37 in the phage. A pulse-chase experiment revealed that a precursor of protein 37 is synthesized and processed such that approximately 120 amino acid residues, most likely CO2H-terminal, are removed. Therefore, the protein produced from the truncated gene was larger because it cannot be processed. This fact also solved an old puzzle: an amber fragment of protein 37 of phage T2 had been found to be larger than the mature protein. The amber codon could be located 24 codons away from the normal stop codon. Obviously, the fragment cannot be processed. The existence of this fragment demonstrates that processing occurs during phage maturation.  相似文献   

16.
We have determined the DNA sequence of the bacteriophage P2 tail genes G and H, which code for polypeptides of 175 and 669 residues, respectively. Gene H probably codes for the distal part of the P2 tail fiber, since the deduced sequence of its product contains regions similar to tail fiber proteins from phages Mu, P1, lambda, K3, and T2. The similarities of the carboxy-terminal portions of the P2, Mu, ann P1 tail fiber proteins may explain the observation that these phages in general have the same host range. The P2 H gene product is similar to the products of both lambda open reading frame (ORF) 401 (stf, side tail fiber) and its downstream ORF, ORF 314. If 1 bp is inserted near the end of ORF 401, this reading frame becomes fused with ORF 314, creating an ORF that may represent the complete stf gene that encodes a 774-amino-acid-long side tail fiber protein. Thus, a frameshift mutation seems to be present in the common laboratory strain of lambda. Gene G of P2 probably codes for a protein required for assembly of the tail fibers of the virion. The entire G gene product is very similar to the products of genes U and U' of phage Mu; a region of these proteins is also found in the tail fiber assembly proteins of phages TuIa, TuIb, T4, and lambda. The similarities in the tail fiber genes of phages of different families provide evidence that illegitimate recombination occurs at previously unappreciated levels and that phages are taking advantage of the gene pool available to them to alter their host ranges under selective pressures.  相似文献   

17.
The application of bacteriophages (phages) in therapy urgently requires the production of wide-host-range recombinant phages that possess strong lytic activity. The wide-host-range IP008 phage was classified by transmission electron microscopy analysis as an A2 morphotype member of the Myoviridae family of the order Caudovirales . IP008 showed a high homology (99.4% similarity in the amino acid alignment of the major capsid protein Gp 23) with KEP10, another wide-host-range phage. The long tail fiber genes (genes 37 and 38 ) from the genome of T2 were replaced with those of the IP008 phage by homologous recombination. The host range of the recombinant phages was identical to that of IP008. Furthermore, the recombinant phage bacterial lytic activity was restored. Future analyses of host-range mutants of the closely related phages T2 and IP008 could lead to a more precise localization of the genetic factors responsible for receptor specificity.  相似文献   

18.
Structure of bacteriophage T4 genes 37 and 38   总被引:10,自引:0,他引:10  
The distal half of the bacteriophage T4 tail fiber interacts with the bacterial surface during adsorption. The specificity of this interaction is controlled by the largest polypeptide in this half fiber, P37. During assembly of the half fiber P37 interacts with P38. These two gene products are incompatible with the corresponding gene products from the related phage T2: T2 P37 does not interact with T4 P38 and T4 P37 does not interact with T2 P38. Thus P37 has two specific functions, interaction with P38 and interaction with the bacterial surface. Both functions differ in specificity between T2 and T4. We have compared genes 37 and 38 of T2 with the corresponding genes of T4 to determine in more detail how the genes have diverged.Crosses between T2 and T4 phage which are mutant in genes 37 and 38 divide gene 37 into four segments which show different frequencies of T2-T4 recombination. These crosses show that both functional specializations of P37, attachment to the bacterial surface and interaction with P38, are determined by a single segment at the carboxyl end of P37. In this segment of gene 37 and in all of gene 38 there is no recombination between T2 and T4. The rest of gene 37 contains a segment with a small amount of T2-T4 recombination flanked by two small segments with relatively high T2-T4 recombination.When T2/T4 heteroduplex DNA molecules are examined under the electron microscope, four heterologous loops appear in the region of genes 37 and 38. When genes 37 and 38 are aligned with this heteroduplex pattern, regions of low recombination correspond to regions of T2-T4 heterology. Begions with relatively high recombination are homologous.As determined from sodium dodecyl sulfate polyacrylamide gels, the molecular weight of T2 P37 is about 13,000 larger than that of T4 P37. Analysis of T2-T4 hybrid phage has shown that, like the functional differences, this molecular weight difference is determined by the carboxyl terminal segment of P37.  相似文献   

19.
The classical T-even bacteriophages recognize host cells with their long tail fibers. Gene products 35, 36, and 37 constitute the distal moiety of these fibers. The free ends of the tail fibers, which are formed by the CO2H terminus of gene product 37, possess the host range determinants. It was found that 4 out of 10 different strains of Escherichia coli K-12 contained regions of chromosomal DNA which hybridized with a probe consisting of genes 35, 36, and 37 of the T-even phage K3. From one strain this homologous DNA, which was associated with an EcoRI fragment of about 5 kilobases, was cloned into plasmid pUC8. Two independently recovered hybrid plasmids had undergone a peculiar rearrangement which resulted in the loss of about 3 kilobases of cloned DNA and a duplication of both the vector and the remaining chromosomal DNA. The mechanisms causing this duplication-deletion may be related to that of transposases. The cloned DNA was capable of recombination with phage T4 gene 36 and a phage T2 gene 37 amber mutant. DNA sequencing revealed the existence of regions of identity between the cloned DNA and genes 36 and 37 of phage T2. In addition, after growth of a derivative of phage K3 on a strain harboring T2 DNA, it was found that this phage contained the same parts of the T2 tail fiber genes which had been recovered from the bacterial chromosome. There appears to be little doubt that the phage had picked up this DNA from the host. The possibility is considered that a repertoire of parts of genes 36 and 37 of various T-even-type phages is present in their hosts, allowing the former to change their host ranges.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号