首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Periplasmic heme‐binding proteins (PBPs) in Gram‐negative bacteria are components of the heme acquisition system. These proteins shuttle heme across the periplasmic space from outer membrane receptors to ATP‐binding cassette (ABC) heme importers located in the inner‐membrane. In the present study, we characterized the structures of PBPs found in the pathogen Burkholderia cenocepacia (BhuT) and in the thermophile Roseiflexus sp. RS‐1 (RhuT) in the heme‐free and heme‐bound forms. The conserved motif, in which a well‐conserved Tyr interacts with the nearby Arg coordinates on heme iron, was observed in both PBPs. The heme was recognized by its surroundings in a variety of manners including hydrophobic interactions and hydrogen bonds, which was confirmed by isothermal titration calorimetry. Furthermore, this study of 3 forms of BhuT allowed the first structural comparison and showed that the heme‐binding cleft of BhuT adopts an “open” state in the heme‐free and 2‐heme‐bound forms, and a “closed” state in the one‐heme‐bound form with unique conformational changes. Such a conformational change might adjust the interaction of the heme(s) with the residues in PBP and facilitate the transfer of the heme into the translocation channel of the importer.  相似文献   

3.
Resonance Raman spectroscopy is used to probe the effect of calcium depletion on the heme group of horseradish peroxidase C at pH 8. Polarized Raman spectra are recorded with an argon ion laser at eight different wavelengths to provide a sound database for a reliable spectral decomposition. Upon calcium depletion, the spectrum is indicative of a predominantly pentacoordinated high spin state of the heme iron coexisting with small fractions of hexacoordinated high and low spin states. The dominant quantum mixed spin state of native ferric horseradish peroxidase, which is characteristic for class III peroxidases, is not detectable in the spectrum of the enzyme with partial distal Ca(2+) depletion. The quenching of the quantum mixed spin state and the predominance of the pentacoordinated high spin state are likely to arise from distortions induced by distal calcium depletion, which translates into a weaker Fe-N(epsilon)(His) bond and a more tilted imidazole. A correlation is proposed between the lower enzyme activity and the elimination of the pentacoordinated quantum mixed state upon Ca(2+) depletion.  相似文献   

4.
To investigate molecular effects of 1‐Ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide (EDC), EDC/N‐hydroxysuccinimide (NHS), glyceraldehyde cross‐linking as well as polymerization temperature and concentration on the three‐dimensional (3D) collagen hydrogels, we analyzed the structures in situ by Raman microspectroscopy. The increased intensity of the 814 and 936 cm?1 Raman bands corresponding to the C—C stretch of a protein backbone and a shift in the amide III bands from 1241 cm?1/1268 cm?1 in controls to 1247 cm?1/1283 cm?1 in glyceraldehyde‐treated gels indicated changes to the alignment of the collagen molecules, fibrils/fibers and/or changes to the secondary structure on glyceraldehyde treatment. The increased intensity of 1450 cm?1 band and the appearance of a strong peak at 1468 cm?1 reflected a change in the motion of lysine/arginine CH2 groups. For the EDC‐treated collagen hydrogels, the increased intensity of 823 cm?1 peak corresponding to the C—C stretch of the protein backbone indicated that EDC also changed the packing of collagen molecules. The 23% decrease in the ratio of 1238 cm?1 to 1271 cm?1 amide III band intensities in the EDC‐modified samples compared with the controls indicated changes to the alignment of the collagen molecules/fibrils and/or the secondary structure. A change in the motion of lysine/arginine CH2 groups was detected as well. The addition of NHS did not induce additional Raman shifts compared to the effect of EDC alone with the exception of a 1416 cm?1 band corresponding to a COO? stretch. Overall, the Raman spectra suggest that glyceraldehyde affects the collagen states within 3D hydrogels to a greater extent compared to EDC and the effects of temperature and concentration are minimal and/or not detectable. © 2012 Wiley Periodicals, Inc. Biopolymers 99: 349–356, 2013.  相似文献   

5.
The Isd (iron‐regulated surface determinant) system of the human pathogen Staphylococcus aureus is responsible for the acquisition of heme from the host organism. We recently reported that the extracellular heme receptor IsdH‐NEAT3 captures and transfers noniron antimicrobial porphyrins containing metals in oxidation state (III). However, it is unclear if geometric factors such as the size of the metal (ionic radius) affect binding and transfer of metalloporphyrins. We carried out an ample structural, functional, and thermodynamic analysis of the binding properties of antimicrobial indium(III)‐porphyrin, which bears a much larger metal ion than the iron(III) of the natural ligand heme. The results demonstrate that the NEAT3 receptor recognizes the In(III)‐containing PPIX in a manner very similar to that of heme. Site‐directed mutagenesis identifies Tyr642 as the central element in the recognition mechanism as suggested from the crystal structures. Importantly, the NEAT3 receptor possesses the remarkable ability to capture dimers of metalloporphyrin. Molecular dynamics simulations reveal that IsdH‐NEAT3 does not require conformational changes, or large rearrangements of the residues within its binding site, to accommodate the much larger (heme)2 ligand. We discuss the implications of these findings for the design of potent inhibitors against this family of key receptors of S. aureus.  相似文献   

6.
Heme‐containing catalases and catalase‐peroxidases catalyze the dismutation of hydrogen peroxide as their predominant catalytic activity, but in addition, individual enzymes support low levels of peroxidase and oxidase activities, produce superoxide, and activate isoniazid as an antitubercular drug. The recent report of a heme enzyme with catalase, peroxidase and penicillin oxidase activities in Bacillus pumilus and its categorization as an unusual catalase‐peroxidase led us to investigate the enzyme for comparison with other catalase‐peroxidases, catalases, and peroxidases. Characterization revealed a typical homotetrameric catalase with one pentacoordinated heme b per subunit (Tyr340 being the axial ligand), albeit in two orientations, and a very fast catalatic turnover rate (kcat = 339,000 s?1). In addition, the enzyme supported a much slower (kcat = 20 s?1) peroxidatic activity utilizing substrates as diverse as ABTS and polyphenols, but no oxidase activity. Two binding sites, one in the main access channel and the other on the protein surface, accommodating pyrogallol, catechol, resorcinol, guaiacol, hydroquinone, and 2‐chlorophenol were identified in crystal structures at 1.65–1.95 Å. A third site, in the heme distal side, accommodating only pyrogallol and catechol, interacting with the heme iron and the catalytic His and Arg residues, was also identified. This site was confirmed in solution by EPR spectroscopy characterization, which also showed that the phenolic oxygen was not directly coordinated to the heme iron (no low‐spin conversion of the FeIII high‐spin EPR signal upon substrate binding). This is the first demonstration of phenolic substrates directly accessing the heme distal side of a catalase. Proteins 2015; 83:853–866. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
Cantharidin, a monoterpene isolated from the insect blister beetle, has long been used as a medicinal agent in the traditional Chinese medicine. Cantharidin inhibits a subgroup of serine/threonine phosphatases, thus inducing cell growth inhibition and cytotoxicity. Cantharidin has anticancer activity in vitro, since it is able of inducing p53‐dependent apoptosis and double‐strand breakage of DNA in cancer cells. Although the toxicity of cantharidin to the gastrointestinal and urinary tracts prevents its medical use, it is a promising lead compound for chemical modification to develop new anticancer therapeutics. In fact, cantharidin does not cause myelosuppression and displays anticancer activity against cells with a multidrug resistance phenotype. Here, the competitive inhibitory effect of cantharidin on heme‐Fe(III) binding to the fatty acid site 1 (FA1) of human serum albumin (HSA) is reported. Docking and molecular dynamics simulations support functional data indicating the preferential binding of cantharidin to the FA1 site of HSA. Present results may be relevant in vivo as HSA could transport cantharidin, which in turn could affect heme‐Fe(III) scavenging by HSA.  相似文献   

8.
Lactoperoxidase (LPO) belongs to mammalian heme peroxidase superfamily, which also includes myeloperoxidase (MPO), eosinophil peroxidase (EPO), and thyroid peroxidase (TPO). LPO catalyzes the oxidation of a number of substrates including thiocyanate while TPO catalyzes the biosynthesis of thyroid hormones. LPO is also been shown to catalyze the biosynthesis of thyroid hormones indicating similar functional and structural properties. The binding studies showed that 2‐mercaptoimidazole (MZY) bound to LPO with a dissociation constant of 0.63 µM. The inhibition studies showed that the value of IC50 was 17 µM. The crystal structure of the complex of LPO with MZY showed that MZY bound to LPO in the substrate‐binding site on the distal heme side. MZY was oriented in the substrate‐binding site in such a way that the sulfur atom is at a distance of 2.58 Å from the heme iron. Previously, a similar compound, 3‐amino‐1,2,4‐triazole (amitrole) was also shown to bind to LPO in the substrate‐binding site on the distal heme side. The amino nitrogen atom of amitrole occupied the same position as that of sulfur atom in the present structure indicating a similar mode of binding. Recently, the structure of the complex of LPO with a potent antithyroid drug, 1‐methylimidazole‐2‐thiol (methimazole, MMZ) was also determined. It showed that MMZ bound to LPO in the substrate‐binding site on the distal heme side with 2 orientations. The position of methyl group was same in the 2 orientations while the positions of sulfur atom differed indicating a higher preference for a methyl group.  相似文献   

9.
TyrA is a member of the dye-decolorizing peroxidase (DyP) family, a new family of heme-dependent peroxidase recently identified in fungi and bacteria. Here, we report the crystal structure of TyrA in complex with iron protoporphyrin (IX) at 2.3 A. TyrA is a dimer, with each monomer exhibiting a two-domain, alpha/beta ferredoxin-like fold. Both domains contribute to the heme-binding site. Co-crystallization in the presence of an excess of iron protoporphyrin (IX) chloride allowed for the unambiguous location of the active site and the specific residues involved in heme binding. The structure reveals a Fe-His-Asp triad essential for heme positioning, as well as a novel conformation of one of the heme propionate moieties compared to plant peroxidases. Structural comparison to the canonical DyP family member, DyP from Thanatephorus cucumeris (Dec 1), demonstrates conservation of this novel heme conformation, as well as residues important for heme binding. Structural comparisons with representative members from all classes of the plant, bacterial, and fungal peroxidase superfamily demonstrate that TyrA, and by extension the DyP family, adopts a fold different from all other structurally characterized heme peroxidases. We propose that a new superfamily be added to the peroxidase classification scheme to encompass the DyP family of heme peroxidases.  相似文献   

10.
Interaction of an iodide ion with lactoperoxidase was studied by the use of 1H NMR, 127I NMR, and optical difference spectrum techniques. 1H NMR spectra demonstrated that a major broad hyperfine-shifted signal at about 60 ppm, which is ascribed to the heme peripheral methyl protons, was shifted toward high field by adding KI, indicating the binding of iodide to the active site of the enzyme; the dissociation constant was estimated to be 38 mM at pH 6.1. The binding was further detected by 127I NMR, showing no competition with cyanide. Both 1H NMR and 127I NMR revealed that the binding of iodide to the enzyme is facilitated by the protonation of an ionizable group with a pKa value of 6.0-6.8, which is presumably the distal histidyl residue. Optical difference spectra showed that the binding of an aromatic donor molecule to the enzyme is slightly but distinctly affected by adding KI. On the basis of these results, it was suggested that an iodide ion binds to lactoperoxidase outside the heme crevice but at the position close enough to interact with the distal histidyl residue which possibly mediates electron transport in the iodide oxidation reaction.  相似文献   

11.
Hemopexin binds 1 mol of heme per mol with high affinity (K d < 1 pM) in a low-spin complex and acts as a transport vehicle for the heme. Circular dichroism (CD) spectroscopy was used to examine the heme environment in the ferri-, ferro-, and CO-ferro complexes of four iron tetrapyrroles [meso-, proto-, deutero-, and (2-vinyl, 4-hydroxymethyl)-deutero-heme] with three species (human, rabbit, and rat) of hemopexin. All ferri-heme-hemopexin complexes exhibit a band of positive ellipticity near the Soret maximum, except for the human ferri-protoheme hemopexin complex, which has a bisignate spectrum. The ferro-heme and CO-ferro-heme complexes display a variety of spectra, demonstrating redox- and ligand-linked shifts in conformation that alter the environment of the heme. The rabbit mesoheme-N-domain complexes have absorbance spectra almost indistinguishable from those of intact hemopexin, but present CD spectra that are distinctly different. However, adding the C-domain to mesoheme-N-domain restores most of the CD characteristics of the intact hemopexin complexes.  相似文献   

12.
At present, 69 families of carbohydrate‐binding modules (CBMs) have been isolated by statistically significant differences in the amino acid sequences (primary structures) of their members, with most members of different families showing little if any homology. On the other hand, members of the same family have primary and tertiary (three‐dimensional) structures that can be computationally aligned, suggesting that they are descended from common protein ancestors. Members of the large majority of CBM families are β‐sandwiches. This raises the question of whether members of different families are descended from distant common ancestors, and therefore are members of the same tribe. We have attacked this problem by attempting to computationally superimpose tertiary structure representatives of each of the 53 CBM families that have members with known tertiary structures. When successful, we have aligned locations of secondary structure elements and determined root mean square deviations and percentages of similarity between adjacent amino acid residues in structures from similar families. Further criteria leading to tribal membership are amino acid chain lengths and bound ligands. These considerations have led us to assign 27 families to nine tribes. Eight of the tribes have members with β‐sandwich structures, while the ninth is composed of structures with β‐trefoils. © 2014 Wiley Periodicals, Inc. Biopolymers 103: 203–214, 2015.  相似文献   

13.
Mak PJ  Kaluka D  Manyumwa ME  Zhang H  Deng T  Kincaid JR 《Biopolymers》2008,89(11):1045-1053
Resonance Raman spectra are reported for substrate-free and camphor-bound cytochrome P450cam and its isotopically labeled analogues that have been reconstituted with protoheme derivatives that bear -CD(3) groups at the 1, 3, 5, and 8-positions (d12-protoheme) or deuterated methine carbons (d4-protoheme). In agreement with previous studies of this and similar enzymes, substrate binding induces changes in the high frequency and low frequency spectral regions, with the most dramatic effect in the low frequency region being activation of a new mode near 367 cm(-1). This substrate-activated mode had been previously assigned as a second "propionate bending" mode (Chen et al., Biochemistry, 2004, 43, 1798-1808), arising in addition to the single propionate bending mode observed for the substrate-free form at 380 cm(-1). In this work, this newly activated mode is observed to shift by 8 cm(-1) to lower frequency in the d12-protoheme reconstituted enzyme (i.e., the same shift as that observed for the higher frequency "propionate bending" mode) and is therefore consistent with the suggested assignment. However, the newly acquired data for the d4-protoheme substituted analogue also support an earlier alternate suggestion (Deng et al., Biochemistry, 1999, 38, 13699-13706) that substrate binding activates several heme out-of-plane modes, one of which (gamma(6)) is accidentally degenerate with the 367 cm(-1) propionate bending mode. Finally, the study of the enzyme reconstituted with the protoheme-d4, which shifts the macrocycle nu(10) mode, has now allowed a definitive identification of the vinyl C==C stretching modes. (c) 2008 Wiley Periodicals, Inc. Biopolymers 89: 1045-1053, 2008.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com.  相似文献   

14.
Iron is a versatile metal cofactor that is used in a wide range of essential cellular processes. During infections, many bacterial pathogens acquire iron from human hemoglobin (Hb), which contains the majority of the body's total iron content in the form of heme (iron protoporphyrin IX). Clinically important Gram‐positive bacterial pathogens scavenge heme using an array of secreted and cell‐wall‐associated receptors that contain NEAr‐iron Transporter (NEAT) domains. Experimentally defining the Hb binding properties of NEAT domains has been challenging, limiting our understanding of their function in heme uptake. Here we show that solution‐state NMR spectroscopy is a powerful tool to define the Hb binding properties of NEAT domains. The utility of this method is demonstrated using the NEAT domains from Bacillus anthracis and Listeria monocytogenes. Our results are compatible with the existence of at least two types of NEAT domains that are capable of interacting with either Hb or heme. These binding properties can be predicted from their primary sequences, with Hb‐ and heme‐binding NEAT domains being distinguished by the presence of (F/Y)YH(Y/F) and S/YXXXY motifs, respectively. The results of this work should enable the functions of a wide range of NEAT domain containing proteins in pathogenic bacteria to be reliably predicted.  相似文献   

15.
True catalases are tyrosine‐liganded, usually tetrameric, hemoproteins with subunit sizes of ~55–84 kDa. Recently characterized hemoproteins with a catalase‐related structure, yet lacking in catalatic activity, include the 40–43 kDa allene oxide synthases of marine invertebrates and cyanobacteria. Herein, we describe the 1.8 Å X‐ray crystal structure of a 33 kDa subunit hemoprotein from Mycobacterium avium ssp. paratuberculosis (annotated as MAP‐2744c), that retains the core elements of the catalase fold and exhibits an organic peroxide‐dependent peroxidase activity. MAP‐2744c exhibits negligible catalatic activity, weak peroxidatic activity using hydrogen peroxide (20/s) and strong peroxidase activity (~300/s) using organic hydroperoxides as co‐substrate. Key amino acid differences significantly impact prosthetic group conformation and placement and confer a distinct activity to this prototypical member of a group of conserved bacterial “minicatalases”. Its structural features and the result of the enzyme assays support a role for MAP‐2744c and its close homologues in mitigating challenge by a variety of reactive oxygen species.  相似文献   

16.
Lactoperoxidase (LPO) is a member of the family of mammalian heme peroxidases. It catalyzes the oxidation of halides and pseudohalides in presence of hydrogen peroxide. LPO has been co-crystallized with inorganic substrates, SCN-, I-, Br- and Cl-. The structure determination of the complex of LPO with above four substrates showed that all of them occupied distinct positions in the substrate binding site on the distal heme side. The bound substrate ions were separated from each other by one or more water molecules. The heme iron is coordinated to His-351 Nϵ2 on the proximal side while it is coordinated to conserved water molecule W-1 on the distal heme side. W-1 is hydrogen bonded to Br- ion which is followed by Cl- ion with a hydrogen bonded water molecule W-5′ between them. Next to Cl- ion is a hydrogen bonded water molecule W-7′ which in turn is hydrogen bonded to W-8′ and N atom of SCN-. W-80 is hydrogen bonded to W-9′ which is hydrogen bonded to I-. SCN- ion also interacts directly with Asn-230 and through water molecules with Ser-235 and Phe-254. Therefore, according to the locations of four substrate anions, the order of preference for binding to lactoperoxidase is observed as Br- > Cl- > SCN- > I-. The positions of anions are further defined in terms of subsites where Br- is located in subsite 1, Cl- in subsite 2, SCN- in subsite 3 and I- in subsite 4.  相似文献   

17.
18.
Raspy crickets produce silk webs that are used to build shelters. These webs have been found to consist of both fiber and film components. Raman spectra obtained from both components were found to be very similar for a given species. The protein structure of the fibers and films produced by both species was predominately β‐sheet with lesser amounts of β‐turns, unordered and α‐helical protein also detected. The orientation of the β‐sheet backbone in the fiber was determined to be parallel to the fiber axis. Compared to cocoon and dragline silk the orientation distribution exhibits a significant randomly orientated protein component. Amino acid analysis confirmed the presence of glycine, serine, and alanine in both species, which are known to form antiparallel β‐sheet structures. Both species, although at significantly different concentrations, where found to contain proline. This amino acid is uncommon in insect silks, and likely involved in increasing fiber elasticity. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 630–639, 2014.  相似文献   

19.
Mycobacterium tuberculosis catalase‐peroxidase (KatG) is a bifunctional hemoprotein that has been shown to activate isoniazid (INH), a pro‐drug that is integral to frontline antituberculosis treatments. The activated species, presumed to be an isonicotinoyl radical, couples to NAD+/NADH forming an isoniazid‐NADH adduct that ultimately confers anti‐tubercular activity. To better understand the mechanisms of isoniazid activation as well as the origins of KatG‐derived INH‐resistance, we have compared the catalytic properties (including the ability to form the INH‐NADH adduct) of the wild‐type enzyme to 23 KatG mutants which have been associated with isoniazid resistance in clinical M. tuberculosis isolates. Neither catalase nor peroxidase activities, the two inherent enzymatic functions of KatG, were found to correlate with isoniazid resistance. Furthermore, catalase function was lost in mutants which lacked the Met‐Tyr‐Trp crosslink, the biogenic cofactor in KatG which has been previously shown to be integral to this activity. The presence or absence of the crosslink itself, however, was also found to not correlate with INH resistance. The KatG resistance‐conferring mutants were then assayed for their ability to generate the INH‐NADH adduct in the presence of peroxide (t‐BuOOH and H2O2), superoxide, and no exogenous oxidant (air‐only background control). The results demonstrate that residue location plays a critical role in determining INH‐resistance mechanisms associated with INH activation; however, different mutations at the same location can produce vastly different reactivities that are oxidant‐specific. Furthermore, the data can be interpreted to suggest the presence of a second mechanism of INH‐resistance that is not correlated with the formation of the INH‐NADH adduct.  相似文献   

20.
Ligand binding of neutral progesterone, basic propranolol, and acidic warfarin to human α1‐acid glycoprotein (AGP) was investigated by Raman spectroscopy. The binding itself is characterized by a uniform conformational shift in which a tryptophan residue is involved. Slight differences corresponding to different contacts of the individual ligands inside the β‐barrel are described. Results are compared with in silico ligand docking into the available crystal structure of deglycosylated AGP using quantum/molecular mechanics. Calculated binding energies are ?18.2, ?14.5, and ?11.5 kcal/mol for warfarin, propranolol, and progesterone, respectively. These calculations are consistent with Raman difference spectroscopy; nevertheless, minor discrepancies in the precise positions of the ligands point to structural differences between deglycosylated and native AGP. Thermal dynamics of AGP with/without bounded warfarin was followed by Raman spectroscopy in a temperature range of 10–95 °C and analyzed by principal component analysis. With increasing temperature, a slight decrease of α‐helical content is observed that coincides with an increase in β‐sheet content. Above 45 °C, also β‐strands tend to unfold, and the observed decrease in β‐sheet coincides with an increase of β‐turns accompanied by a conformational shift of the nearby disulfide bridge from high‐energy trans‐gauche‐trans to more relaxed gauche‐gauche‐trans. This major rearrangement in the vicinity of the bridge is not only characterized by unfolding of the β‐sheet but also by subsequent ligand release. Hereby, ligand binding alters the protein dynamics, and the more rigid protein–ligand complex shows an improved thermal stability, a finding that contributes to the reported chaperone‐like function of AGP. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号