首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Matrix metalloproteinases (MMPs) are a large family of proteases involved in many cell‐matrix and cell‐cell signalling processes through activation, inactivation or release of extracellular matrix (ECM) and non‐ECM molecules, such as growth factors and receptors. Uncontrolled MMP activities underlie the pathophysiology of many disorders. Also matrix metalloproteinase‐3 (MMP‐3) or stromelysin‐1 contributes to several pathologies, such as cancer, asthma and rheumatoid arthritis, and has also been associated with neurodegenerative diseases like Alzheimer's disease, Parkinson's disease and multiple sclerosis. However, based on defined MMP spatiotemporal expression patterns, the identification of novel candidate molecular targets and in vitro and in vivo studies, a beneficial role for MMPs in CNS physiology and recovery is emerging. The main purpose of this review is to shed light on the recently identified roles of MMP‐3 in normal brain development and in plasticity and regeneration after CNS injury and disease. As such, MMP‐3 is correlated with neuronal migration and neurite outgrowth and guidance in the developing CNS and contributes to synaptic plasticity and learning in the adult CNS. Moreover, a strict spatiotemporal MMP‐3 up‐regulation in the injured or diseased CNS might support remyelination and neuroprotection, as well as genesis and migration of stem cells in the damaged brain.  相似文献   

2.
Matrix metalloproteinases (MMPs) are a family of zinc‐dependent endopeptidases that degrade extracellular matrix components and play important roles in a variety of biological and pathological processes such as malignant tumor metastasis and invasion. In this study, we constructed carnosine–gallic acid peptide (CGP) to identify a better MMP inhibitor than carnosine. The inhibitory effects of CGP on MMP‐2 and MMP‐9 were investigated in the human fibrosarcoma (HT1080) cell line. As a result, CGP significantly decreased MMP‐2 and MMP‐9 expression levels without a cytotoxic effect. Moreover, CGP may inhibit migration and invasion in HT1080 cells through the urokinase plasminogen activator (uPA)–uPA receptor signaling pathways to inhibit MMP‐2 and MMP‐9. Based on these results, it appears that CGP may play an important role in preventing and treating several MMP‐2 and MMP‐9‐mediated health problems such as metastasis. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
Matrix metalloproteinase stromelysin-3 in development and pathogenesis   总被引:1,自引:0,他引:1  
The extracellular matrix (ECM) serves as a medium for cell-cell interactions and can directly signal cells through cell surface ECM receptors, such as integrins. In addition, many growth factors and signaling molecules are stored in the ECM. Thus, ECM remodeling and/or degradation plays a critical role in cell fate and behavior during many developmental and pathological processes. ECM remodeling/degradation is, to a large extent, mediated by matrix metalloproteinases (MMPs), a family of extracellular or membrane-bound, Zn2+-dependent proteases that are capable of digesting various proteinaceous components of the ECM. Of particular interest among them is the MMP11 or stromelysin-3, which was first isolated as a breast cancer associated protease. Here, we review some evidence for the involvement of this MMP in development and diseases with a special emphasis on amphibian metamorphosis, a postembryonic, thyroid hormone-dependent process that transforms essentially every organ/tissue of the animal.  相似文献   

4.
Extracellular matrix (ECM) molecules play critical roles in muscle function by participating in neuromuscular junction (NMJ) development and the establishment of stable, cytoskeleton‐associated adhesions required for muscle contraction. Matrix metalloproteinases (MMPs) are neutral endopeptidases that degrade all ECM components. While the role of MMPs and their inhibitors, the tissue inhibitor of metalloproteinases (TIMPs), has been investigated in many tissues, little is known about their role in muscle development and mature function. TIMP‐2 ?/? mice display signs of muscle weakness. Here, we report that TIMP‐2 is expressed at the NMJ and its expression is greater in fast‐twitch (extensor digitorum longus, EDL) than slow‐twitch (soleus) muscle. EDL muscle mass is reduced in TIMP‐2?/? mice without a concomitant change in fiber diameter or number. The TIMP‐2?/? phenotype is not likely due to increased ECM proteolysis because net MMP activity is actually reduced in TIMP‐2?/? muscle. Most strikingly, TIMP‐2 colocalizes with β1 integrin at costameres in the wild‐type EDL and β1 integrin expression is significantly reduced in TIMP‐2?/? EDL. We propose that reduced β1 integrin in fast‐twitch muscle may be associated with destabilized ECM‐cytoskeletal interactions required for muscle contraction in TIMP‐2?/? muscle; thus, explaining the muscle weakness. Given that fast‐twitch fibers are lost in muscular dystrophies and age‐related sarcopenia, if TIMP‐2 regulates mechanotransduction in an MMP‐independent manner it opens new potential therapeutic avenues. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

5.
The matrix metalloproteinases (MMPs) play a crucial role in irreversible remodeling of the extracellular matrix (ECM) in normal homeostasis and pathological states. Accumulating data from various studies strongly suggest that MMPs are tightly regulated, starting from the level of gene expression all the way to zymogen activation and endogenous inhibition, with each level controlled by multiple factors. Recent in vivo findings indicate that cell–ECM and cell–cell interactions, as well as ECM bio-active products, contribute an additional layer of regulation at all levels, indicating that individual MMP expression and activity in vivo are highly coordinated and tissue specific processes.  相似文献   

6.
c‐Cbl, a multifunctional adaptor and an E3 ubiquitin ligase, plays a role in such cytoskeleton‐mediated events as cell adhesion and migration. Invasiveness of human glioma is dependent on cell adhesion, migration, and degradation of extracellular matrix (ECM). However, the function of c‐Cbl in glioma invasion has never been investigated. We report here, for the first time, that c‐Cbl plays a positive role in the invasion of ECM by SNB19 glioma cells. RNAi‐mediated depletion of c‐Cbl decreases SNB19 cell invasion and expression of matrix metalloproteinase 2 (MMP2). Consistent with these findings, SNB19 cells expressing wild‐type, but not mutant c‐Cbl show increased invasion and MMP2 expression. We demonstrate that the observed role of c‐Cbl in invasion of SNB19 cells is not mediated by the previously shown effects of c‐Cbl on cell adhesion and migration or on EGFR signaling. Together, our results suggest that c‐Cbl promotes glioma invasion through up‐regulation of MMP2. J. Cell. Biochem. 111: 1169–1178, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
Matrix metalloproteinases (MMP) comprise a family of structurally related proteinases that are believed to play a critical role in many physiological and pathological processes. Transgenic technology offers the possibility of determining whether MMPs contribute directly to these processes. For example, gain of function and loss of function models have confirmed causative roles of MMPs in the development of pulmonary emphysema and unexpectedly uncovered an MMP. dependent mechanism of inflammatory cell recruitment. Limitations of these techniques and powerful applications on the horizon are also presented as we embark on an era where controlled experiments can be performed in complex mammalian models.  相似文献   

8.
Tissue degradation and leukocyte extravasation suggest proteolytic destruction of the extracellular matrix (ECM) during severe malaria. Matrix metalloproteinases (MMPs) play an established role in ECM turnover, and increased MMP‐9 protein abundance is correlated with malarial infection. The malaria pigment hemozoin (Hz) is a heme detoxification biomineral that is produced during infection and associated with biologically active lipid peroxidation products such as 4‐hydroxynonenal (HNE) adsorbed to its surface. Hz has innate immunomodulatory activity, and many of its effects can be reproduced by exogenously added HNE. Hz phagocytosis enhances MMP‐9 expression in monocytes; thus, this study was designed to examine the ability of HNE to alter MMP‐9 regulation in activated cells of macrophage lineage. Data show that treatment of lipopolysaccharide‐stimulated RAW 264.7 cells with HNE increased MMP‐9 secretion and activity. HNE treatment abolished the cognate tissue inhibitor of metalloproteinase‐1 protein levels, further decreasing MMP‐9 regulation. Phosphorylation of both p38 mitogen‐activated protein kinase (MAPK) and c‐Jun NH2‐terminal kinase was induced by HNE, but only p38 MAPK inhibition lessened MMP‐9 secretion. These results demonstrate the in vitro ability of HNE to cause MMP‐9 dysregulation in an activated cell model. The findings may extend to myriad pathologies associated with lipid peroxidation and elevated MMP‐9 levels leading to tissue damage. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The lifetime exposure of organisms to oxidative stress influences many aging processes which involve the turnover of the extracellular matrix. In this study, we identify the redox‐responsive molecular signals that drive senescence‐associated (SA) matrix metalloproteinase‐1 (MMP‐1) expression. Precise biochemical monitoring revealed that senescent fibroblasts increase steady‐state (H2O2) 3.5‐fold (13.7–48.6 pM) relative to young cells. Restricting H2O2 production through low O2 exposure or by antioxidant treatments prevented SA increases in MMP‐1 expression. The H2O2‐dependent control of SA MMP‐1 is attributed to sustained JNK activation and c‐jun recruitment to the MMP‐1 promoter. SA JNK activation corresponds to increases and decreases in the levels of its activating kinase (MKK‐4) and inhibitory phosphatase (MKP‐1), respectively. Enforced MKP‐1 expression negates SA increases in JNK phosphorylation and MMP‐1 production. Overall, these studies define redox‐sensitive signaling networks regulating SA MMP‐1 expression and link the free radical theory of aging to initiation of aberrant matrix turnover. J. Cell. Physiol. 225: 52–62, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
基质金属蛋白酶家族介绍(英文)   总被引:8,自引:0,他引:8  
 当细胞外基质 (ECM)组分被破坏时 ,基质金属蛋白酶 (MMPs)影响发育过程并和许多疾病如关节炎及肿瘤相关联 . ECM的正常转换是发育所需要的 . ECM的调节异常却能引起过多的损伤 ,并导致疾病如关节炎 .因此 ,更好地了解 MMP介导的 ECM的水解作用 ,有可能从机理方面为疾病诊断学与治疗学的介入提供依据 .本文介绍了 MMP生物学以及它的 ECM的相关的转换方面的最新进展 .随着新的 MMPs的发现 ,MMP家族正在迅速地扩大 .并且开始向已经确立的基因结构、潜伏期、底物专一性和功能调节方面的范例提出挑战 .即将完成的基因组测序将无容置疑地确定人类 MMPs的有限的数字 .揭示每个 MMP的功能所进行的努力可能标志我们在寻求最终了解细胞与它们的环境之间的相互作用的开始 ,这个过程对于哺乳类物种例如人类的进化是至关重要的 .  相似文献   

11.
12.
Controlled degradation of extracellular matrix (ECM) is essential in many physiological situations including developmental tissue remodeling, angiogenesis, tissue repair, and normal turnover of ECM. In addition, degradation of matrix components is an important feature of tumor growth, invasion, metastasis, and tumor-induced angiogenesis. Matrix metallo-proteinases (MMPs) are a family of zinc-dependent neutral endopeptidases, which are collectively capable of degrading essentially all ECM components. MMPs apparently play an important role in all the above mentioned aspects of tumor development. In addition, there is recent evidence that MMP activity is required for tumor cell survival. At present, several MMP inhibitors are in clinical trials of malignant tumors of different histogenetic origin. In this review we discuss the current view on the role of MMPs and their inhibitors in development and invasion of squamous cell carcinomas, as a basis for prognostication and therapeutic intervention in these tumors.  相似文献   

13.
Matrix metalloproteinases (MMPs) are secreted endopeptidases that play an essential role in remodeling the extracellular matrix (ECM). MMPs are primarily active during development, when the majority of ECM remodeling events occurs. In adults, elevated MMP activity has been observed in many pathological conditions such as cancer and osteoarthritis. The proteolytic activity of MMPs is controlled by their natural inhibitors - the tissue inhibitor of metalloproteinases (TIMPs). In addition to blocking MMP-mediated proteolysis, TIMPs have a number of MMP-independent functions including binding to cell surface proteins thereby stimulating signaling cascades. TIMP-2, the most studied member of the family, can both inhibit and activate MMPs directly, as well as inhibit MMP activity indirectly by upregulating expression of RECK, a membrane anchored MMP regulator. While TIMP-2 has been shown to play important roles in breast cancer, we describe how the MMP-independent effects of TIMP-2 can modulate the invasiveness of MCF-7, T47D and MDA-MB-231 breast cancer cells. Using an ALA + TIMP-2 mutant which is devoid of MMP inhibition, but still capable of initiating specific cell signaling cascades, we show that TIMP-2 can differentially affect MMP activity and cellular invasiveness in both an MMP dependent and independent manner. More specifically, MMP activity and invasiveness is increased with the addition of exogenous TIMP-2 in poorly invasive cell lines whereas it is decreased in highly invasive cells lines (MDA-MB-231). Conversely, the addition of ALA + TIMP-2 resulted in decreased invasiveness regardless of cell line.  相似文献   

14.
BACKGROUND: Aberrations during neurulation due to genetic and/or environmental factors underlie a variety of adverse developmental outcomes, including neural tube defects (NTDs). Methylmercury (MeHg) is a developmental neurotoxicant and teratogen that perturbs a wide range of biological processes/pathways in animal models, including those involved in early gestation (e.g., cell cycle, cell differentiation). Yet, the relationship between these MeHg‐linked effects and changes in gestational development remains unresolved. Specifically, current information lacks mechanistic comparisons across dose or time for MeHg exposure during neurulation. These detailed investigations are crucial for identifying sensitive indicators of toxicity and for risk assessment applications. METHODS: Using a systems‐based toxicogenomic approach, we examined dose‐ and time‐dependent effects of MeHg on gene expression in C57BL/6 mouse embryos during cranial neural tube closure, assessing for significantly altered genes and associated Gene Ontology (GO) biological processes. Using the GO‐based application GO‐Quant, we quantitatively assessed dose‐ and time‐dependent effects on gene expression within enriched GO biological processes impacted by MeHg. RESULTS: We observed MeHg to significantly alter expression of 883 genes, including several genes (e.g., Vangl2, Celsr1, Ptk7, Twist, Tcf7) previously characterized to be crucial for neural tube development. Significantly altered genes were associated with development cell adhesion, cell cycle, and cell differentiation–related GO biological processes. CONCLUSIONS: Our results suggest that MeHg‐induced impacts within these biological processes during gestational development may underlie MeHg‐induced teratogenic and neurodevelopmental toxicity outcomes. Birth Defects Res (Part B) 89:188–200, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
细胞外基质与基质金属蛋白酶   总被引:24,自引:0,他引:24  
细胞外基质(ECM)是存在于细胞之间的动态网状结构,由胶原、蛋白聚糖及糖蛋白等大分子物质组成.这些大分子物质可与细胞表面上的特异性受体结合,通过受体与细胞骨架结构直接发生联系或触发细胞内的一系列信号传导而引起不同的基因表达,从而导致细胞的生长和分化.作为降解ECM成分最重要的酶-基质金属蛋白酶(MMPs)及其组织抑制因子(TIMPs)在这一过程中起着非常重要的作用.MMPs是一类依赖金属离子锌并以ECM成分为水解底物的蛋白水解酶.其在转录水平的表达受到生长因子、细胞因子及激素等因素的严格调控,在蛋白质水平其活性也受到其激活剂和抑制剂的调节. MMPs通过对ECM成分的水解来影响其降解与重组的动态平衡而参与多种细胞的生理和病理过程.  相似文献   

16.
Previously we detected new signaling pathways, some downregulatory and others upregulatory, from seven known suppressors of cancer progression to the expression of eight cancer‐promoting matrix metalloproteinases (MMPs) in breast cancer cells. The goals of the present study were to test whether the preceding observations occur only in breast cancer cells and, if not, whether the same downregulatory and upregulatory signaling pathways are active in cells of other human cancers, focusing on activator protein‐2α, E‐cadherin, fibulin1D, interleukin 4, p16INK4α, p53, PTEN, and RKIP, and on MMP1, MMP2, MMP7, MMP13, MMP14, MMP16, MMP19, and MMP25. To this end, in the present study we tested the effects of raising the cellular levels of wild‐type copies of these known suppressors of cancer progression on the expression of these MMPs. This study yielded several unexpected results. We have detected 53 new signaling pathways in cells of prostate, brain, lung, ovarian and breast human cancers, with an abundance of signaling pathways as high as ~40% of the cancer progression regulator/MMP pairs tested in cells of prostate and breast cancers. Cells of various cancers differed widely and sequence‐specifically in the identity of their signaling pathways, so that almost 90% of the pathways were different in cells from one cancer to another. In each of 18 out of 51 signaling pathways, a known suppressor of cancer progression stimulated, rather than inhibited, the expression of a cancer‐promoting MMP. Ten signaling pathways were upregulatory in cells of some cancers and downregulatory in cells of other cancers. J. Cell. Physiol. 224: 549–558, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
18.
Mesenchymal stem cells (MSCs) have been shown to be perivascular, occupying a prime location for regulating vessel stability. Here, we focused on the MSC‐contribution of key regulators of the perivascular niche, the matrix metalloproteinases (MMPs) and their inhibitors, the TIMPs. Despite secretion of active forms of MMPs by MSCs, MMP enzyme activity was not detected in MSC‐conditioned medium (MSC‐CM) due to TIMP‐mediated inhibition. By means of bifunctional‐crosslinking to probe endogenous MMP:TIMP interactions, we showed MMP‐2‐inhibition by TIMP‐2. MSCs also inhibited high levels of exogenous MMP‐2 and MMP‐9 through TIMP‐2 and TIMP‐1, respectively. Furthermore, MSC‐CM protected vascular matrix molecules and endothelial cell structures from MMP‐induced disruption. MSCs remained matrix‐protective when exposed to pro‐inflammatory cytokines and hypoxia, countering these stresses with increased TIMP‐1 expression and augmented MMP‐inhibition. Thus, MSCs are revealed as robust sources of TIMP‐mediated MMP‐inhibition, capable of protecting the perivascular niche from high levels of MMPs even under pathological conditions. J. Cell. Physiol. 226: 385–396, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
Epidermal wound healing is a complex and highly coordinated process where several different cell types and molecules, such as growth factors and extracellular matrix (ECM) components, play an important role. Among the many proteins that are essential for the restoration of tissue integrity is the metalloproteinase (MMP) family. MMPs can act on ECM and non-ECM components affecting degradation and modulation of the ECM, growth-factor activation and cell–cell and cell–matrix signalling. MMPs are secreted by different cell types such as keratinocytes, fibroblasts and inflammatory cells at different stages and locations during wound healing, thereby regulating this process in a very coordinated and controlled way. In this article, we review the role of MMPs and their inhibitors (TIMPs), as well as the disintegrin and metalloproteinase with the thrombospondin motifs (ADAMs) family, in epithelial wound repair.  相似文献   

20.
Cell migration during wound healing is a complex process that involves the expression of a number of growth factors and cytokines. One of these factors, transforming growth factor-beta (TGF-β) controls many aspects of normal and pathological cell behavior. It induces migration of keratinocytes in wounded skin and of epithelial cells in damaged cornea. Furthermore, this TGF-β-induced cell migration is correlated with the production of components of the extracellular matrix (ECM) proteins, and expression of integrins and matrix metalloproteinases (MMPs). MMP digests ECMs and integrins during cell migration, but the mechanisms regulating their expression and the consequences of their induction remain unclear. It has been suggested that MMP-14 activates cellular signaling processes involved in the expression of MMPs and other molecules associated with cell migration. Because of the manifold effects of MMP-14, it is important to understand the roles of MMP-14 not only the cleavage of ECM but also in the activation of signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号