首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various inositide phosphatases participate in the regulation of inositol polyphosphate signaling molecules. Plant phytases are phosphatases that hydrolyze phytate to less-phosphorylated myo-inositol derivatives and phosphate. The phytase from Selenomonas ruminantium shares no sequence homology with other microbial phytases. Its crystal structure revealed a phytase fold of the dual-specificity phosphatase type. The active site is located near a conserved cysteine-containing (Cys241) P loop. We also solved two other crystal forms in which an inhibitor, myo-inositol hexasulfate, is cocrystallized with the enzyme. In the "standby" and the "inhibited" crystal forms, the inhibitor is bound, respectively, in a pocket slightly away from Cys241 and at the substrate binding site where the phosphate group to be hydrolyzed is held close to the -SH group of Cys241. Our structural and mutagenesis studies allow us to visualize the way in which the P loop-containing phytase attracts and hydrolyzes the substrate (phytate) sequentially.  相似文献   

2.
Phytases are a special class of phosphatase that catalyze the sequential hydrolysis of phytate to less-phosphorylated myo-inositol derivatives and inorganic phosphate. Phytases are added to animal feedstuff to reduce phosphate pollution in the environment, since monogastric animals such as pigs, poultry, and fish are unable to metabolize phytate. Based on biochemical properties and amino acid sequence alignment, phytases can be categorized into two major classes, the histidine acid phytases and the alkaline phytases. The histidine acid phosphatase class shows broad substrate specificity and hydrolyzes metal-free phytate at the acidic pH range and produces myo-inositol monophosphate as the final product. In contrast, the alkaline phytase class exhibits strict substrate specificity for the calcium–phytate complex and produces myo-inositol trisphosphate as the final product. This review describes recent findings that present novel viewpoints concerning the molecular basis of phytase classification.  相似文献   

3.
Klebsiella sp. strain ASR1 isolated from an Indonesian rice field is able to hydrolyse myo-inositol hexakis phosphate (phytate). The phytase protein was purified and characterised as a 42 kDa protein accepting phytate, NADP and sugar phosphates as substrates. The corresponding gene (phyK) was cloned from chromosomal DNA using a combined approach of protein and genome analysis, and expressed in Escherichia coli. The recombinant enzyme was identified as a 3-phytase yielding myo-inositol monophosphate, Ins(2)P, as the final product of enzymatic phytate hydrolysis. Based on its amino acid sequence, PhyK appears to be a member of a hitherto unknown subfamily of histidine acid phytate-degrading enzymes with the active site RHGXRXP and HD sequence motifs, and is different from other general phosphatases and phytases. Due to its ability to degrade sodium phytate to the mono phosphate ester, the phyK gene product is an interesting candidate for industrial and agricultural applications to make phytate phosphorous available for plant and animal nutrition.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

4.
Using a screening procedure developed for detection of phytate hydrolysing enzymes, the gene agpE encoding glucose-1-phosphatase was cloned from an Enterobacter cloacae VKPM B2254 plasmid library. Sequence analysis revealed 78% identity on nucleotide and 79% identity on peptide level to Escherichia coli glucose-1-phosphatase characterising the respective gene product as a representative of acid histidine phosphatases harbouring the RH(G/N)RXRP motif. The purified recombinant protein displayed maximum specific activity of 196 U mg−1 protein against glucose-1-phosphate but was also active against other sugar phosphates and p-nitrophenyl phosphate. High-performance ion chromatography of hydrolysis products revealed that AgpE can act as a 3-phytase but is only able to cleave off the third phosphate group from the myo-inositol sugar ring. Based on sequence comparison and catalytic behaviour against phytate, we propose to classify bacterial acid histidine phosphatases/phytases in the three following subclasses: (1) AppA-related phytases, (2) PhyK-related phytases and (3) Agp-related phytases. A distinguished activity of 32 U mg−1 of protein towards myo-inositol-hexa-phosphate, which is two times higher than that of E. coli Agp, suggests that possibly functional differences in terms of phytase activity between Agp- and AppA-like acid histidine phosphatases are fluent. Electronic supplementary material Supplementary material is available for this article at and accessible for authorised users.  相似文献   

5.
Alkaline phytases from Bacillus species, which hydrolyze phytate to less phosphorylated myo-inositols and inorganic phosphate, have great potential as additives to animal feed. The thermostability and neutral optimum pH of Bacillus phytase are attributed largely to the presence of calcium ions. Nonetheless, no report has demonstrated directly how the metal ions coordinate phytase and its substrate to facilitate the catalytic reaction. In this study, the interactions between a phytate analog (myo-inositol hexasulfate) and divalent metal ions in Bacillus subtilis phytase were revealed by the crystal structure at 1.25 Å resolution. We found all, except the first, sulfates on the substrate analog have direct or indirect interactions with amino acid residues in the enzyme active site. The structures also unraveled two active site-associated metal ions that were not explored in earlier studies. Significantly, one metal ion could be crucial to substrate binding. In addition, binding of the fourth sulfate of the substrate analog to the active site appears to be stronger than that of the others. These results indicate that alkaline phytase starts by cleaving the fourth phosphate, instead of the third or the sixth that were proposed earlier. Our high-resolution, structural representation of Bacillus phytase in complex with a substrate analog and divalent metal ions provides new insight into the catalytic mechanism of alkaline phytases in general.  相似文献   

6.
Phytases (myo-inositol hexakisphosphate phosphohydrolases) hydrolyze the phosphate ester bonds of phytate-releasing phosphate and lower myo-inositol phosphates and/or myo-inositol. Phytases, in general, are known to enhance phosphate and mineral uptake in monogastric animals such as poultry, swine, and fish, which cannot metabolize phytate besides reducing environmental pollution significantly. In this study, the molecular, biophysical, and biochemical properties of phytases are reviewed in detail. Alterations in the molecular and catalytic properties of phytases, upon expression in heterologous hosts, are discussed. Diverse applications of phytases as feed additives, as soil amendment, in aquaculture, development of transgenic organisms, and as nutraceuticals in the human diet also are dealt with. Furthermore, phytases are envisaged to serve as potential enzymes that can produce versatile lower myo-inositol phosphates of pharmaceutical importance. Development of phytases with improved attributes is an important area being explored through genetic and protein engineering approaches, as no known phytase can fulfill all the properties of an ideal feed additive.  相似文献   

7.
PhyA gene products of Aspergillus ficuum (AF) and Peniophora lycii (PL) as expressed in industrial strains of Aspergillus niger and Aspergillus oryzae, respectively, were purified to homogeneity and then characterized for both physical and biochemical properties. The PL phytase is 26 amino acid residues shorter than the AF phytase. Dynamic light scattering studies indicate that the active AF phytase is a monomer while the PL phytase is a dimer. While both of the phytases retained four identical glycosylatable Asn residues, unique glycosylation sites, six for PL and seven for AF phytase, were observed. Global alignment of both the phytases has shown 38% sequence homology between the two proteins. At 58 degrees C and pH 5.0, the PL phytase gave a specific activity of 22,000 nKat/mg as opposed to about 3000 nKat/mg for AF phytase. However, the AF phytase is more thermostable than its counterpart PL phytase at 65 degrees C. Also, AF phytase is more stable at pH 7.5 than the PL phytase. The two phytases differed in K(m) for phytate, K(i) for myo-inositol hexasulfate (MIHS), and pH optima profile. Despite similarities in the active site sequences, the two phytases show remarkable differences in turnover number, pH optima profile, stability at higher temperature, and alkaline pH. These biochemical differences indicate that phytases from ascomycete and basidiomycete fungi may have evolved to degrade phytate in different environments.  相似文献   

8.
The present study gives an overview on the whole mechanism of phytate degradation in the gut and the enzymes involved. Based on the similarity of the human and pigs gut, the study was carried out in pigs as model for humans. To differentiate between intrinsic feed phytases and endogenous phytases hydrolysing phytate in the gut, two diets, one high (control diet) and the other one very low in intrinsic feed phytases (phytase inactivated diet) were applied. In the chyme of stomach, small intestine and colon inositol phosphate isomers and activities of phytases and alkaline phosphatases were determined. In parallel total tract phytate degradation and apparent phosphorus digestibility were assessed. In the stomach chyme of pigs fed the control diet, comparable high phytase activity and strong phytate degradation were observed. The predominant phytate hydrolysis products were inositol phosphates, typically formed by plant phytases. For the phytase inactivated diet, comparable very low phytase activity and almost no phytate degradation in the stomach were determined. In the small intestine and colon, high activity of alkaline phosphatases and low activity of phytases were observed, irrespective of the diet fed. In the colon, stronger phytate degradation for the phytase inactivated diet than for the control diet was detected. Phytate degradation throughout the whole gut was nearly complete and very similar for both diets while the apparent availability of total phosphorus was significantly higher for the pigs fed the control diet than the phytase inactivated diet. The pathway of inositol phosphate hydrolysis in the gut has been elucidated.  相似文献   

9.
The present study primarily deals with the identification of substrate-binding site and elucidation of catalytic residue of the phytase from Bacillus sp. (Genbank Accession No. EF536824) employing molecular modeling and site-directed mutagenesis. Homology-based modeling of the Bacillus phytase revealed β-propeller structure with twelve active-site aminoacid residues, viz., D75, R77, Y78, H138, Q140, D189, D190, E191, Y238, Y239, N346 and R348. Docking of substrate Ins(1,2,3,4,5,6)hexakisphosphate with the phytase model disclosed interaction of Y78 residue with the sixth position phosphate, while D75 and R77 residues revealed hydrogen bonding with the fifth position phosphate of the phytate. Analysis of hydrolysis products of phytate indicated the sequential removal of alternate phosphates, resulting in the formation of final product Ins triphosphate. Mutant phytases Y78A/F, derived from site-directed mutagenesis, exhibited complete loss of enzyme activity despite substrate binding, thereby suggesting the intrinsic role of Y78 residue in the catalytic activity. The Bacillus mutant phytases can be used to generate enzyme crystals complexed with phytate and lower Ins phosphates for indepth analysis of substrate binding and catalytic activity of the enzyme.  相似文献   

10.
Two thermostable phytases were identified from Thai isolates of Aspergillus japonicus BCC18313 (TR86) and Aspergillus niger BCC18081 (TR170). Both genes of 1404 bp length, coding for putative phytases of 468 amino acid residues, were cloned and transferred into Pichia pastoris . The recombinant phytases, r-PhyA86 and r-PhyA170, were expressed as active extracellular, glycosylated proteins with activities of 140 and 100 U mL−1, respectively. Both recombinant phytases exhibited high affinity for phytate but not for p -nitrophenyl phosphate. Optimal phytase activity was observed at 50 °C and pH 5.5. High thermostability, which is partly dependent on glycosylation, was demonstrated for both enzymes, as >50% activity was retained after heating at 100 °C for 10 min. The recombinant phytases also exhibited broad pH stability from 2.0 to 8.0 and are resistant to pepsin. In vitro digestibility tests suggested that r-PhyA86 and r-PhyA170 are at least as efficient as commercial phytase for hydrolyzing phytate in corn-based animal feed and are therefore suitable sources of phytase supplement.  相似文献   

11.
Microbial phytases are widely used as feed additive to increase phytate phosphorus utilization and to reduce fecal phytates and inorganic phosphate (iP) outputs. To facilitate the process of application, we engineered an Escherichia coli appA phytase gene into the chloroplast genome of the model microalga, Chlamydomonas reinhardtii, and isolated homoplasmic plastid transformants. The catalytic activity of the recombinant E. coli AppA can be directly detected in the whole-cell lysate, termed Chlasate, prepared by freeze-drying the transgenic cell paste with liquid nitrogen. The E. coli AppA in the Chlasate has a pH and temperature optima of 4.5 and 60°C, respectively, which are similar to those described in the literature. The phytase-expressed Chlasate contains 10 phytase units per gram dry matter at pH 4.5 and 37°C. Using this transgenic Chlasate at 500 U/kg of diet for young broiler chicks, the fecal phytate excretion was reduced, and the iP was increased by 43% and 41%, respectively, as compared to those of the chicks fed with only the basal diet. The effectiveness of the Chlasate to break down the dietary phytates is compatible with the commercial Natuphos fungal phytase. Our data provide the first evidence of functional expression of microbial phytase in microalgae and demonstrate the proof of concept of using transgenic microalgae as a food additive to deliver dietary enzymes with no need of protein purification.  相似文献   

12.
A new phytase (APPA) with optimum pH 2.5—substantially lower than that of most of microbial phytases (pH 4.5–6.0)—was cloned from Yersinia frederiksenii and heterologously expressed in Escherichia coli. Containing the highly conserved motifs typical of histidine acid phosphatases, APPA has the highest identity (84%) to the Yersinia intermedia phytase (optimal pH 4.5), a member of histidine acid phosphatase family. Based on sequence alignment and molecular modeling of APPA and related phytases, APPA has only one divergent residue, Ser51, in close proximity to the catalytic site. To understand the acidic adaptation of APPA, five mutants (S51A, S51T, S51D, S51K, and S51I) were constructed by site‐directed mutagenesis, expressed in E. coli, purified, and characterized. Mutants S51T and S51I exhibited a shift in the optimal pH from 2.5 to 4.5 and 5.0, respectively, confirming the role of Ser51 in defining the optimal pH. Thus, a previously unrecognized factor other than electrostatics—presumably the side‐chain structure near the active site—contributes to the optimal pH for APPA activity. Compared with wild‐type APPA, mutant S51T showed higher specific activity, greater activity over pH 2.0–5.5, and increased thermal and acid stability. These properties make S51T a better candidate than the wild‐type APPA for use in animal feed. Biotechnol. Bioeng. 2009;103: 857–864. © 2009 Wiley Periodicals, Inc.  相似文献   

13.
The physical and chemical properties of six crude phytase preparations were compared. Four of these enzymes (Aspergillus A, Aspergillus R, Peniophora and Aspergillus T) were produced at commercial scale for the use as feed additives while the other two (E. coli and Bacillus) were produced at laboratory scale. The encoding genes of the enzymes were from different microbial origins (4 of fungal origin and 2 of bacterial origin, i.e., E. coli and Bacillus phytases). One of the fungal phytases (Aspergillus R) was expressed in transgenic rape. The enzymes were studied for their pH behaviour, temperature optimum and stability and resistance to protease inactivation. The phytases were found to exhibit different properties depending on source of the phytase gene and the production organism. The pH profiles of the enzymes showed that the fungal phytases had their pH optima ranging from 4.5 to 5.5. The bacterial E. coli phytase had also its pH optimum in the acidic range at pH 4.5 while the pH optimum for the Bacillus enzyme was identified at pH 7.0. Temperature optima were at 50 and 60°C for the fungal and bacterial phytases, respectively. The Bacillus phytase was more thermostable in aqueous solutions than all other enzymes. In pelleting experiments performed at 60, 70 and 80°C in the conditioner, Aspergillus A, Peniophora (measurement at pH 5.5) and E. coli phytases were more heat stable compared to other enzymes (Bacillus enzyme was not included). At a temperature of 70°C in the conditioner, these enzymes maintained a residual activity of approximately 70% after pelleting compared to approximately 30% determined for the other enzymes. Incubation of enzyme preparations with porcine proteases revealed that only E. coli phytase was insensitive against pepsin and pancreatin. Incubation of the enzymes in digesta supernatants from various segments of the digestive tract of hens revealed that digesta from stomach inactivated the enzymes most efficiently except E. coli phytase which had a residual activity of 93% after 60 min incubation at 40°C. It can be concluded that phytases of various microbial origins behave differently with respect to their in vitro properties which could be of importance for future developments of phytase preparations. Especially bacterial phytases contain properties like high temperature stability (Bacillus phytase) and high proteolytic stability (E. coli phytase) which make them favourable for future applications as feed additives.  相似文献   

14.
Phytases release inorganic phosphates from phytate in soil. A gene encoding phytase (AfPhyA) was isolated from Aspergillus ficuum and its ability to degrade phytase and release phosphate was demonstrated in Saccharomyces cerevisiae. A promoter from the Arabidopsis Pky10 gene and the carrot extensin signal peptide were used to drive the root-specific and secretory expression of the AfPhyA gene in soybean plants. The phytase activity and inorganic phosphate levels in transgenic soybean root secretions were 4.7 U/mg protein and 439 μM, respectively, compared to 0.8 U/mg protein and 120 μM, respectively, in control soybeans. Our results demonstrated the potential usefulness of the root-specific promoter for the exudation of recombinant phytases and offered a new perspective on the mobilization of phytate in soil to inorganic phosphates for plant uptake. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Guilan Li and Shaohui Yang authors contribute equally to the paper.  相似文献   

15.
Microbial phytases play a major role in the mineralization of organic phosphorous, especially in symbiotic plants and animals. In this study, we identified two types of phytases in Serratia sp. TN49 that was harbored in the gut of Batocera horsfieldi (Coleoptera) larvae. The two phytases, an acidic histidine acid phosphatase (PhyH49) and an alkaline β-propeller phytase (PhyB49), shared low identities with known phytases (61% at most). PhyH49 and PhyB49 produced in Escherichia coli exhibited maximal activities at pH 5.0 (60°C) and pH 7.5–8.0 (45°C), respectively, and are complementary in phytate degradation over the pH range 2.0–9.0. Serratia sp. TN49 harboring both PhyH49 and PhyB49 might make it more adaptive to environment change, corresponding to the evolution trend of microorganism.  相似文献   

16.
Supplementation with phytase is an effective way to increase the availability of phosphorus in seed-based animal feed. The biochemical characteristics of an ideal phytase for this application are still largely unknown. To extend the biochemical characterization of wild-type phytases, the catalytic properties of a series of fungal phytases, as well as Escherichia coli phytase, were determined. The specific activities of the fungal phytases at 37°C ranged from 23 to 196 U · (mg of protein)−1, and the pH optima ranged from 2.5 to 7.0. When excess phytase was used, all of the phytases were able to release five phosphate groups of phytic acid (myo-inositol hexakisphosphate), which left myo-inositol 2-monophosphate as the end product. A combination consisting of a phytase and Aspergillus niger pH 2.5 acid phosphatase was able to liberate all six phosphate groups. When substrate specificity was examined, the A. niger, Aspergillus terreus, and E. coli phytases were rather specific for phytic acid. On the other hand, the Aspergillus fumigatus, Emericella nidulans, and Myceliophthora thermophila phytases exhibited considerable activity with a broad range of phosphate compounds, including phenyl phosphate, p-nitrophenyl phosphate, sugar phosphates, α- and β-glycerophosphates, phosphoenolpyruvate, 3-phosphoglycerate, ADP, and ATP. Both phosphate liberation kinetics and a time course experiment in which high-performance liquid chromatography separation of the degradation intermediates was used showed that all of the myo-inositol phosphates from the hexakisphosphate to the bisphosphate were efficiently cleaved by A. fumigatus phytase. In contrast, phosphate liberation by A. niger or A. terreus phytase decreased with incubation time, and the myo-inositol tris- and bisphosphates accumulated, suggesting that these compounds are worse substrates than phytic acid is. To test whether broad substrate specificity may be advantageous for feed application, phosphate liberation kinetics were studied in vitro by using feed suspensions supplemented with 250 or 500 U of either A. fumigatus phytase or A. niger phytase (Natuphos) per kg of feed. Initially, phosphate liberation was linear and identical for the two phytases, but considerably more phosphate was liberated by the A. fumigatus phytase than by the A. niger phytase at later stages of incubation.  相似文献   

17.
Five sources of phytases were used to study their biochemical characteristics. Phytase E was from an original Escherichia coli (E. coli), phytase PI and PG from the transformed Pichia pastoris (P. pastoris) with phytase gene of E. coli, phytase B and R from Aspergillus niger (A. niger). The results showed that the relative phytase activities had no significant changes when temperature was below 60 °C (P>0.05), and then decreased significantly with temperature increasing (P<0.01). The fungal phytase with the phytase gene from A. niger had the higher thermostability than the bacterial phytase with the phytase gene from E. coli; i.e. at 70 °C, 27–58% of phytase activity (compared with 30 °C) was retained for the bacterial phytase, and 73–96% for the fungal phytase; at 90 °C, 20–47% was retained for the bacterial phytase, and 41–52% for the fungal phytase, especially for the most thermostable phytase R (P<0.01). The optimum pH ranges were 3.0–4.5 for the bacterial phytases and 5.0–5.5 for the fungal phytases (P<0.01). When pH levels were 1, 7 and 8, only 3–7% of phytase activity (compared with the maximum phytase activity at a pH point) was retained for both bacterial and fungal phytases. The amount of inorganic P released from soybean meal was significantly increased when the levels of phytase activity in the soybean meal increased from 0 to 1.0 U/g soybean meal (P<0.01), except for phytase PI. The maximum P released was obtained at 1 U/g soybean meal for all five kinds of phytases (P<0.01). The most economical phytase concentration for P released was 0.25 U/g for phytase PI and B, and 0.50–1.0 U/g for phytase PG, E and R. In addition, the linear and non-linear regression models were established to estimate phytase activity and its characteristics very easily and economically.  相似文献   

18.
The Bacillus subtilis strain VTT E-68013 was chosen for purification and characterization of its excreted phytase. Purified enzyme had maximal phytase activity at pH 7 and 55°C. Isolated enzyme required calcium for its activity and/or stability and was readily inhibited by EDTA. The enzyme proved to be highly specific since, of the substrates tested, only phytate, ADP, and ATP were hydrolyzed (100, 75, and 50% of the relative activity, respectively). The phytase gene (phyC) was cloned from the B. subtilis VTT E-68013 genomic library. The deduced amino acid sequence (383 residues) showed no homology to the sequences of other phytases nor to those of any known phosphatases. PhyC did not have the conserved RHGXRXP sequence found in the active site of known phytases, and therefore PhyC appears not to be a member of the phytase subfamily of histidine acid phosphatases but a novel enzyme having phytase activity. Due to its pH profile and optimum, it could be an interesting candidate for feed applications.  相似文献   

19.
A novel class of cysteine phytase showing ability to degrade phytate has recently been isolated from rumen bacteria. To expand our knowledge of this enzyme class, a total of 101 distinct cysteine phytase gene fragments were identified from the ruminal genomic DNA of Bore goats and Holstein cows, and most of them shared low identities (< 50%) with known sequences. By phylogenetic analysis, these sequences were separated into three clusters that showed substantial diversity. The two most abundant cysteine phytase genes of goat rumens were cloned and their protein products were characterized. Four findings were revealed based on our results. (i) Compared with soil and water environment, where β‐propeller phytase is the most important phytate‐degrading enzyme, cysteine phytase is the major phytate‐degrading enzyme in the anaerobic ruminal environment. (ii) Cysteine phytase fragments in the rumen contents of goat and cow have the same diversity profile, although most of the sequences and their abundance differ in the two species. (iii) Each species has their respective high‐abundance genes, which may play major roles for phytate degradation. (iv) Compared with previously reported cysteine phytases that have pH optimum at 4.5, the pH optima of the two most abundant secreted goat cysteine phytases are 6.5 and 6.0, which are within the pH range found in the rumens. This study provides valuable information about the diversity, abundance and enzymatic properties of the ruminal cysteine phytases and emphasizes the important role(s) of these cysteine phytases probably in the terrestrial cycle of phosphorus.  相似文献   

20.
Phytate is the main storage form of phosphorus in many plant seeds, but phosphate bound in this form is not available to monogastric animals. Phytase, an enzyme that hydrolyzes phosphate from phytate, has the potential to enhance phosphorus availability in animal diets when engineered in rice seeds as a feed additive. Two genes, derived from a ruminal bacterium Selenomonas ruminantium (SrPf6) and Escherichia coli (appA), encoding highly active phytases were expressed in germinated transgenic rice seeds. Phytase expression was controlled by a germination inducible alpha-amylase gene (alphaAmy8) promoter, and extracellular phytase secretion directed by an betaAmy8 signal peptide sequence. The two phytases were expressed in germinated transgenic rice seeds transiently and in a temporally controlled and tissue-specific manner. No adverse effect on plant development or seed formation was observed. Up to 0.6 and 1.4 U of phytase activity per mg of total extracted cellular proteins were obtained in germinated transgenic rice seeds expressing appA and SrPf6 phytases, respectively, which represent 46-60 times of phytase activities compared to the non-transformant. The appA and SrPf6 phytases produced in germinated transgenic rice seeds had high activity over broad pH ranges of 3.0-5.5 and 2.0-6.0, respectively. Phytase levels and inheritance of transgenes in one highly expressing plant were stable over four generations. Germinated transgenic rice seeds, which produce a highly active recombinant phytase and are rich in hydrolytic enzymes, nutrients and minerals, could potentially be an ideal feed additive for improving the phytate-phosphorus digestibility in monogastric animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号