首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aras Kartouzian 《Chirality》2019,31(9):641-657
Heterogeneous catalysis has vastly benefited from investigations performed on model systems under well‐controlled conditions. The application of most of the techniques utilized for such studies is not feasible for asymmetric reactions as enantiomers possess identical physical and chemical properties unless while interacting with polarized light and other chiral entities. A thorough investigation of a heterogeneous asymmetric catalytic process should include probing the catalyst prior to, during, and after the reaction as well as the analysis of reaction products to evaluate the achieved enantiomeric excess. I present recent studies that demonstrate the strength of chiroptical spectroscopic methods to tackle the challenges in investigating model heterogeneous asymmetric catalysis covering all the abovementioned aspects.  相似文献   

2.
New chiral amidophosphite ligand was synthesized and tested in the Rh‐catalyzed asymmetric hydrogenation of (Z)‐β‐(acylamino)acrylates in protic solvents and supercritical carbon dioxide (scCO2) The catalytic performance is affected greatly by the acidity of the solvents. Better enantioselectivity (up to 88% ee) was achieved in scCO2 containing 1,1,1,3,3,3‐hexafluoro‐2‐propanol, compared to neat protic solvents. Chirality, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

3.
Modification of dimethyl tartrate has been investigated through transesterification with aminoalcohols to provide reactive functionalities for the covalent bonding of chiral tartrate to polyhedral oligomeric silsesquioxanes. The transesterification of dimethyl tartrate has been widely studied using different catalytic systems and reaction conditions. Through the proper selection of both the catalytic system and the reaction conditions, it is possible to achieve monosubstituted or bis‐substituted tartrate derivatives as sole products. All the intermediate chiral tartrate‐derived ligands were successfully used in the homogeneous enantioselective epoxidation of allylic alcohols providing moderate enantiomeric excess over the products. Attached amine groups have been used to support the modified tartrate ligands on to a haloaryl‐functionalized silsesquioxane moiety. This final chiral tartrate ligand displays reverse enantioselectivity in the asymmetric epoxidation of allylic alcohols with regard to the starting dimethyl tartrate ligand, both molecules having the same chiral sign. However, the POSS‐containing ligand can be easily recovered in almost quantitative yield and reused in asymmetric epoxidation reactions. In addition, recovered silsesquioxane‐pendant ligand, though displaying decreasing catalytic activity in recycling epoxidation tests, showed very stable enantioselective behavior. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
A new "CO2-philic" chiral rhodium diphosphinite complex was synthesized and applied as catalyst precursor in the asymmetric hydrogenation of dimethyl itaconate in scCO2, scC2H6 and various liquid organic solvents. Deuterium labeling studies and parahydrogen-induced polarization (PHIP) NMR experiments were used to provide the first detailed mechanistic insight into the activation and transfer of the dihydrogen molecule during hydrogenation in scCO2. Chemical interactions between CO2 and reactive intermediates of the catalytic pathway could be excluded as possible explanations for the experimentally verified difference in the catalytic behavior in scCO2 and hexane.  相似文献   

5.
Chiral and achiral Jacobsen's catalysts in their homogeneous form or immobilized on Al‐MCM‐41 exhibit similar catalytic activity during diastereoselective epoxidation of limonene when in situ generated dimethyldioxirane is used as oxidizing agent. Experimental observations suggest that not only the catalyst chiral center but also the substrate chiral center participates in the preferential formation of most diastereomers. Remarkable turnover numbers (TON), up to 288, was achieved over the heterogeneous catalysts in comparison to their homogeneous counterparts (TON up to 46). Catalyst leaching rather than catalyst oxidative degradation was identified as the main source of catalyst deactivation during reutilization tests. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
(R,R)‐formoterol was synthesized in seven steps with 4‐hydroxyl‐3‐nitro‐acetophenone as the starting material. The key intermediate, the chiral secondary alcohol 4 , was prepared via Rh‐catalyzed asymmetric transfer hydrogenation with (S,S)‐PEGBsDPEN as the ligand and sodium formate as the hydrogen donor under mild conditions. With a mixture of PEG 2000 and water as the reaction media, the catalyst system could be recycled four times. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
He‐yan Jiang  Jie Xu  Bin Sun 《Chirality》2019,31(10):818-823
The heterogeneous enantioselective hydrogenation of α‐ketoesters catalyzed by rhodium nanoparticles (Rh NPs) in ionic liquid was studied with the stabilization and modification of cinchona alkaloids. TEM characterization showed that well‐dispersed Rh NPs of about 1.96 nm were obtained in ionic liquid. The results showed that cinchona alkaloids not only had good enantiodifferentiating ability but also accelerated the catalytic reaction. Under the optimum reaction conditions, the enantiomeric excess in ethyl benzoylformate hydrogenation could reach as high as 60.9%.  相似文献   

8.
多官能化手性氨基酸及其衍生物是一类重要的手性药物以及合成手性药的关键中间体,如现在大量用于临床的左甲状腺素、赖诺普利、阿莫西林、缬沙坦、头孢氨苄以及青霉素等。进行多官能化手性氨基酸类化合物的不对称催化合成,可为新型化学药的设计与发现开辟新的视野。噁唑烷酮(Azlactone)被证明是合成四取代氨基酸衍生物的优秀底物。可通过不对称催化手段向其中引入需要的基团,再经多取代的噁唑烷酮直接开环得到一系列的目标化合物。本文主要综述了近年来基于恶唑烷酮的不对称催化反应构建四取代氨基酸类化合物的研究。  相似文献   

9.
A B?rner 《Chirality》2001,13(10):625-628
Enzymes and synthetic organometallic catalysts utilize different approaches for the creation of chiral centers in prochiral substrates. While chiral organometallic catalysts realize the transfer of chirality mainly by repulsive interactions, several enzymes use preferentially stereodiscriminating hydrogen bonding. To investigate if hydrogen bonding within the catalyst-substrate assembly can also have a benefit on the rhodium diphosphine-catalyzed asymmetric hydrogenation, some model metal complexes and substrates were investigated. As 'biomimetically acting' functionalities, hydroxy groups were incorporated in the chiral ligand. Three secondary interactions could be identified by different analytical methods which influence rate and enantioselectivity of the catalytic reaction: 1) HO/Rh-interactions, 2) HO/HO-interactions within the backbone of the ligand, and 3) hydrogen bonding between HO-groups of the ligand and functional groups of an appropriate substrate. Due to the effect of the additional hydroxy groups, enantioselectivities by up to 99% ee could be induced in the hydrogenation product even with water as solvent.  相似文献   

10.
Novel chiral diisopropyl spiro bis(isoxazoline) ligands, anti‐i‐Pr‐SPRIX and syn‐i‐Pr‐SPRIX, were designed and synthesized. Their catalytic utility, X‐ray crystallographic analyses, and complexation studies demonstrated the structural features of tetraisopropyl spiro bis(isoxazoline) ligand, i‐Pr‐SPRIX, which is a prominent ligand in various enantioselective Pd catalytic processes: All i‐Pr groups work in collaboration to create an effective asymmetric environment. Chirality 27:532–537, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
Using chiral BINOL‐derived phosphoric acids (PA's) to activate substrates for enhanced reactivity is now regarded as a powerful strategy to control enantioselectivity in asymmetric synthesis. Generally, most substituents at the 3,3′‐positions of BINOL PA's are aryl derivatives. These derivatives are pivotal in attaining high selectivity. PA's with alkyl substituents in these positions have rarely been reported. Herein, we introduced alkyl‐based substituents at the 3,3′‐position of PA's. These new potential catalysts, if applied in reactions, may allow altered noncovalent interactions (as opposed to the typical aryl substituents in these positions) with substrates used in chiral PA‐catalyzed chemistry in the future.  相似文献   

12.
A series of chiral phosphite‐type ligands was tested in asymmetric Ir‐catalyzed hydrogenation of quinolines and 2,4,5,6‐tetrahydro‐1H‐pyrazino(3,2,1‐j,k)carbazole. Hydrogenation of quinaldine hydrochloride provided superior enantioselectivity up to 65% ee compared to quinaldine free base. The ligands were tested for the first time in the asymmetric Ir‐Ircatalyzed hydrogenation of 2,4,5,6‐tetrahydro‐1H‐pyrazino(3,2,1‐j,k)carbazole yielding the antidepressant drug, pirlindole. Chirality 26:56–60, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
Novel chiral secondary amines bearing a tetraoxacalix[2]arene[2]triazine scaffold were created and used for catalytic asymmetric Michael reaction of anthrone with nitroalkenes. The relevant adducts were obtained in good to excellent yields (82%‐98%) and enantioselectivities (75%‐98%).  相似文献   

14.
Bian G  Huang H  Zong H  Song L 《Chirality》2012,24(10):825-832
A series of new camphorsulfonylated ligands derived from chiral 2‐amino‐2′‐hydroxy‐1,1′‐binaphthyl (NOBIN) and (+)‐camphorsulfonic acid were synthesized by a short and simple synthetic sequence, and their enantioselective catalytic activities were assessed in the nucleophilic addition reaction of dialkylzinc reagents to aldehydes in the presence of titanium tetraisopropoxide. The most efficient ligand, N‐hydroxycamphorsulfonylated (S)‐NOBIN, gave (S)‐addition products with good yields and up to 87% of ee value. The 1H nuclear magnetic resonance (NMR) and 13C NMR results of the titanium titration experiments on this ligand indicate that the most likely catalytic reactive species involved in this catalytic asymmetric addition is a bimetallic titanium complex. A possible catalytic reaction mechanism is proposed. Chirality 24:825–832, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
New chiral porphyrin imine was synthesized from (S)‐3‐benzyl‐2‐methyl‐4‐phenylbutanal according to dipyrromethane method using trifluoroacetic acid, BF3 etherate, and p‐chloranil. Manganese complex of this chiral porphyrin imine ligand was used as catalyst in the asymmetric epoxidation of styrene derivatives possessing different substituents. Styrene derivatives possessing electron withdrawing groups gave the corresponding chiral epoxides in high yield up to 98% and ee up to 99%. The mechanism for the catalytic asymmetric epoxidation was also discussed based on transfer of oxygen.  相似文献   

16.
There is an escalating interest of using double stranded DNA molecules as a chiral scaffold to construct metal‐biomacromolecule hybrid catalysts for asymmetric synthesis. Several recent studies also evaluated the use of G‐quadruplex DNA‐based catalysts for asymmetric Diels‐Alder and Friedel‐Crafts reactions. However, there is still a lack of understanding of how different oligonucleotides, salts (such as NaCl and KCl), metal ligands and co‐solvents affect the catalytic performance of quadruplex DNA‐based hybrid catalysts. In this study, we aim to systematically evaluate these key factors in asymmetric Michael addition reactions, and to examine the conformational and molecular changes of DNA by circular dichroism (CD) spectroscopy and gel electrophoresis. We achieved up to 95% yield and 50% enantiomeric excess (ee) when the reaction of 2‐acylimidazole 1a and dimethylmalonate was catalyzed by 5′‐G3(TTAG3)3?3′ (G4DNA1) in 20 mM MOPS (pH 6.5) containing 50 mM KCl and 40 µM [Cu(dmbipy)(NO3)2], and G4DNA1 was pre‐sonicated in ice bath for 10 min prior to the reaction. G‐quadruplex‐based hybrid catalysts provide a new tool for asymmetric catalysis, but future mechanistic studies should be sought to further improve the catalytic efficiency. The current work presents a systematic study of asymmetric Michael addition catalyzed by G‐quadruplex catalysts constructed via non‐covalent complexing, and an intriguing finding of the effect of pre‐sonication on catalytic efficiency. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:891–898, 2016  相似文献   

17.
The reaction of chiral diphosphines with a configurationally pure cationic bis-enamide complex of iridium, bis(menthyl (Z)-α-benzamidocinnamate)-iridium tetrafluoroborate, is described. When the reactant ligand is racemic then kinetic resolution occurs with high specificity under the appropriate conditions. Since the iridium diphosphine complex is catalytically inactive in homogeneous hydrogenation, the residual enantiomer may be reacted with bis(norbornadiene)-rhodium tetrafluoroborate to produce an active catalyst. This effects the hydrogenation of methyl (Z)-α-acetamidocinnamate in optical yields comparable with those obtained separately with the enantiomerically pure ligand rhodium complex. The reaction of pure (+)- or (-)-enantiomer of bis(menthyl (Z)-α-benzamidocinnamate)-iridium tetrafluoroborate with enantiomerically pure diphosphines has been studied. Invariably one hand of the diphosphine reacts rapidly with a given enantiomer of the iridium complex to give a stable diphosphine iridium enamide complex in which the original configuration of the coordinated olefin is maintained. The other combination of enantiomers reacts much more slowly, in keeping with the kinetic resolution work, and produces an enamide complex which is unstable in solution, isomerising to a second diastereomer. Since the absolute configuration of the iridium bis-enamide complex has been established by X-ray crystallography, this experiment affords a method of determining the configuration of rhodium enamide complexes in asymmetric hydrogenation (assuming structural homology between Rh and Ir). In all cases the disfavoured enamide complex was the one involved in the catalytic pathway.  相似文献   

18.
The relationships between the enantiomer excess of product in catalytic asymmetric reactions and the structures of the catalysts or reagents in several asymmetric reactions were studied using a backpropagation (BP) neural network with topological indices and their chiral expansions. The trained network can be used to screen new asymmetric catalysts, estimate catalytic effects, design reaction environments, and prove or improve the proposed reaction mechanism.  相似文献   

19.
In this paper, we discuss the rational design of polymeric catalysts and the positive effect of polymer supports on the catalytic asymmetric reactions. The attachment of chiral catalysts to soluble polymers, particularly dendritic polymers, offered a potential combination of the advantages of homogeneous and heterogeneous asymmetric catalysis.  相似文献   

20.
A series of chiral tridentate Schiff‐bases were prepared and used as ligands in the catalytic asymmetric Henry reaction. Under the optimal conditions, a variety of arylaldehydes were smoothly converted into corresponding adducts with high yields (up to 98%) and excellent enantioselectivities (up to 97% ee). Chirality 26: 780–783, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号