首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The volatile profiles of rare Malus domestica Borkh . honey were investigated for the first time. Two representative samples from Poland (sample I) and Spain (sample II) were selected by pollen analysis (44–45% of Malus spp. pollen) and investigated by GC/FID/MS after headspace solid‐phase microextraction (HS‐SPME) and ultrasonic solvent extraction (USE). The apple honey is characterized by high percentage of shikimic acid‐pathway derivatives, as well as terpenes, norisoprenoids, and some other compounds such as coumaran and methyl 1H‐indole‐3‐acetate. The main compounds of the honey headspace were (sample I; sample II): benzaldehyde (9.4%; 32.1%), benzyl alcohol (0.3%; 14.4%), hotrienol (26.0%, 6.2%), and lilac aldehyde isomers (26.3%; 1.7%), but only Spanish sample contained car‐2‐en‐4‐one (10.2%). CH2Cl2 and pentane/Et2O 1 : 2 (v/v) were used for USE. The most relevant compounds identified in the extracts were: benzaldehyde (0.9–3.9%), benzoic acid (2.0–11.2%), terpendiol I (0.3–7.4%), coumaran (0.0–2.8%), 2‐phenylacetic acid (2.0–26.4%), methyl syringate (3.9–13.1%), vomifoliol (5.0–31.8%), and methyl 1H‐indole‐3‐acetate (1.9–10.2%). Apple honey contained also benzyl alcohol, 2‐phenylethanol, (E)‐cinnamaldehyde, (E)‐cinnamyl alcohol, eugenol, vanillin, and linalool that have been found previously in apple flowers, thus disclosing similarity of both volatile profiles.  相似文献   

2.
A series of thioether profragrances was prepared by reaction of different sulfanylalkanoates with δ‐damascone and tested for their release efficiencies in a fabric‐softener and an all‐purpose cleaner application. Dynamic headspace analysis on dry cotton and on a ceramic plate revealed that the performance of the different precursors depended on the structure, but also on the particular conditions encountered in different applications. Moreover, profragrances derived from other α,β‐unsaturated fragrance aldehydes and ketones were synthesized analogously and evaluated using the same test protocol. Thioethers were found to be suitable precursors to release the corresponding fragrances, but neither the quantity of profragrance deposited from an aqueous environment onto the target surface, nor the amount of fragrance released after deposition could be linearly correlated to the hydrophilicity or hydrophobicity of the compounds. Different sets of compounds were found to be the best performers for different types of applications. Only one of the compounds evaluated in the present work, namely the thiolactic acid derivative of δ‐damascone, efficiently released the corresponding fragrance in both of the tested applications. Profragrance development for functional perfumery thus remains a partially empirical endeavour. More knowledge (and control) of the various application conditions are required for an efficient profragrance design.  相似文献   

3.
In this article, volatile organic compounds in 14 honey samples (rosemary, eucalyptus, orange, thyme, sage, and lavender) were identified. Volatile organic compounds were extracted using a solid phase microextraction method followed by gas chromatography connected with mass spectrometry analysis. The studied honey samples were compared based on their volatile organic compounds composition. In total, more than 180 compounds were detected in the studied samples. The detected compounds belong to various chemical classes such as terpenes, alcohols, acids, aldehydes, ketones, esters, norisoprenoids, benzene and furane derivatives, and organic compounds containing sulfur and nitrogen heteroatom. Ten chiral compounds (linalool, trans‐linalool oxide, cis‐linalool oxide, 4‐terpineol, α‐terpineol, hotrienol, and four stereoisomers of lilac aldehydes) were selected for further chiral separation. Chirality 26:670‐674, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
The present study is focused on the antioxidant capacity and chemical profiling of eight Croatian Satureja montana L. honey samples. Among the 20 compounds obtained by headspace solid‐phase microextraction (HS‐SPME) and identified by GC‐FID and GC/MS analyses, hotrienol was predominant (75.9–81.7%). The honey matrix volatile/semivolatile profile was investigated by ultrasonic solvent extraction (USE) followed by GC‐FID and GC/MS analyses. The major compounds identified by this latter method were the sinapic‐acid derivatives methyl syringate (36.2–72.8%) and syringaldehyde (2.2–43.1%). Direct, targeted HPLC‐DAD analyses of the native honey samples revealed the presence of methyl syringate (7.10–39.60 mg/kg) and syringic acid (0.10–1.70 mg/kg). In addition, the total phenolic content of the samples was determined by the Folin? Ciocalteu assay (311.0–465.9 mg GAE/kg), and the antioxidant capacity was evaluated by the DPPH radical‐scavenging activity (0.5–1.0 mmol TEAC/kg) and the ferric reducing antioxidant power (2.5–5.1 mmol Fe2+/kg).  相似文献   

5.
The compounds responsible for highly individual aroma profile of Coriandrum sativum L. honey were isolated by headspace solid‐phase microextraction (HS‐SPME; used fibers: A: polydimethylsiloxane (PDMS)/divinylbenzene (DVB) and B: divinylbenzene/carboxen/polydimethylsiloxane), as well as ultrasonic solvent extraction (USE; used solvents: A: pentane/Et2O 1 : 2 (v/v) and B: CH2Cl2) and analyzed by gas chromatography (GC) and mass spectrometry (MS). Unusual chromatographic profiles were obtained containing derivatives of linalool/oxygenated methoxybenzene. trans‐Linalool oxide (11.1%; 14.6%) dominated in the headspace, followed by other linalool derivatives (such as cis/trans‐anhydrolinalool oxide (5.0%; 5.9%), isomers of lilac aldehyde/alcohol (14.9%; 13.8%) or p‐menth‐1‐en‐9‐al (15.6%; 18.5%)), octanal, and several low‐molecular‐weight esters. The major compounds in the solvent extracts were oxygenated methoxybenzene derivatives such as 3,4,5‐trimethoxybenzyl alcohol (26.3%; 24.7%), methyl syringate (23.8%; 11.7%), and 3,4‐dimethoxybenzyl alcohol (5.6%; 13.9%). Another group of abundant compounds in the extracts were derivatives of linalool (e.g., (E)/(Z)‐2,6‐dimethylocta‐2,7‐diene‐1,6‐diol (17.8%; 16.1%)). Among the compounds identified, cis/trans‐anhydrolinalool oxides and 3,4,5‐trimethoxybenzyl alcohol can be useful as chemical markers of coriander honey.  相似文献   

6.
Distinct synchronous diurnal rhythms were detected in the concentrations of phenethyl alcohol and phenethyl acetate in the tissue of blooming Trifolium repens florets. Corresponding rhythmic oscillations were observed for the same two compounds in the floral headspace. Maximum content of the volatiles in the tissue and headspace was observed 3–9 h after initiation of the photophase. The concentrations of phenethyl alcohol and phenethyl acetate in the tissue increased significantly during floral development. At full bloom the tissue contained amounts sufficient to support 2–3 h of emission. Several observations suggested that esterification of phenethyl alcohol was the source for phenethyl acetate. Trimethylsilyl derivatization and enzymatic hydrolysis of fractionated flower extracts identified 2‐phenylethyl β‐d ‐glucopyranoside as the major glucoside in the florets. The pool of glucosides increased significantly during floral development and at full bloom 97% of the phenethyl alcohol was bound as glucoside. The concentration of 2‐phenylethyl β‐d ‐glucopyranoside did not vary in a rhythmic diurnal manner. The dynamics among the diurnal rhythmic phenomena in the tissue and headspace and the fraction of volatiles bound as glucosides is discussed.  相似文献   

7.
Eight propolis samples from Croatia were analyzed in detail, to study the headspace, volatiles, anti‐Varroa‐treatment residue, phenolics, and antioxidant properties. The samples exhibited high qualitative/quantitative variability of the chemical profiles, total phenolic content (1,589.3–14,398.3 mg GAE (gallic acid equivalent)/l EtOH extract), and antioxidant activity (11.1–133.5 mmol Fe2+/l extract and 6.2–65.3 mmol TEAC (Trolox® equivalent antioxidant capacity)/l extract). The main phenolics quantified by HPLC‐DAD at 280 and 360 nm were vanillin, p‐coumaric acid, ferulic acid, chrysin, galangin, and caffeic acid phenethyl ester. The major compounds identified by headspace solid‐phase microextraction (HS‐SPME), simultaneous distillation extraction (SDE), and subsequent GC‐FID and GC/MS analyses were α‐eudesmol (up to 19.9%), β‐eudesmol (up to 12.6%), γ‐eudesmol (up to 10.5%), benzyl benzoate (up to 28.5%), and 4‐vinyl‐2‐methoxyphenol (up to 18.1%). Vanillin was determined as minor constituent by SDE/GC‐FID/MS and HPLC‐DAD. The identified acaricide residue thymol was ca. three times more abundant by HS‐SPME/GC‐FID/MS than by SDE/GC‐FID/MS and was not detected by HPLC‐DAD.  相似文献   

8.
This study aimed to characterize the chemical composition of Aloysia polystachia, Acantholippia seriphioides, Schinus molle, Solidago chilensis, Lippia turbinata, Minthostachys mollis, Buddleja globosa, and Baccharis latifolia essential oils (EOs), and to evaluate their antibacterial activities and their capacity to provoke membrane disruption in Paenibacillus larvae, the bacteria that causes the American Foulbrood (AFB) disease on honey bee larvae. The relationship between the composition of the EOs and these activities on Plarvae was also analyzed. Monoterpenes were the most abundant compounds in all EOs. All EOs showed antimicrobial activity against Plarvae and disrupted the cell wall and cytoplasmic membrane of Plarvae provoking the leakage of cytoplasmic constituents (with the exception of Blatifolia EO). While, the EOs’ antimicrobial activity was correlated most strongly to the content of pulegone, carvone, (Z)‐β‐ocimene, δ‐cadinene, camphene, terpinen‐4‐ol, elemol, β‐pinene, β‐elemene, γ‐cadinene, α‐terpineol, and bornyl acetate; the volatiles that better explained the membrane disruption were carvone, limonene, cis‐carvone oxide, pentadecane, trans‐carvyl acetate, trans‐carvone oxide, trans‐limonene oxide, artemisia ketone, trans‐carveol, thymol, and γ‐terpinene (positively correlated) and biciclogermacrene, δ‐2‐carene, verbenol, α‐pinene, and α‐thujene (negatively correlated). The studied EOs are proposed as natural alternative means of control for the AFB disease.  相似文献   

9.
Thistle (Galactites tomentosa Moench.) honey organic extracts were obtained by headspace solid‐phase microextraction (HS‐SPME) and ultrasonic solvent extraction (USE) and analyzed by gas chromatography (GC‐FID and GC‐MS) for the first time. Most abundant headspace compounds were terpenes, particularly linalool derivatives (hotrienol was predominant with a range of 38.6–57.5%). 3‐Phenyllactic acid dominated in the solvent extracts (77.4–86.4%) followed by minor percentages of other shikimate pathway derivatives. After determination of an adequate enantioseparation protocol on Chirallica PST‐4 column, the honey solvent extracts were analyzed by high‐performance liquid chromatography (HPLC). The chiral analysis revealed high enantiomeric excess (>95%) of (–)‐3‐phenyllactic acid in all samples. Therefore, previous findings of chemical markers of thistle honey were extended, providing new potential for advanced chemical fingerprinting (optical pure chemical marker). Chirality 26:405–410, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
In this study, we evaluated the responses of Triatoma dimidiata Latreille (Hemiptera: Reduviidae) to volatiles emitted by conspecific females, males, mating pairs and metasternal gland (MG) extracts with a Y‐tube olfactometer. The volatile compounds released by mating pairs and MGs of T. dimidiata were identified using solid‐phase microextraction and coupled gas chromatography‐mass spectrometry (GC‐MS). Females were not attracted to volatiles emitted by males or MG extracts; however, they preferred clean air to their own volatiles or those from mating pairs. Males were attracted to volatiles emitted by males, females, mating pairs, pairs in which the male had the MG orifices occluded or MG extracts of both sexes. However, males were not attracted to volatiles emitted by pairs in which the female had the MG orifices occluded. The chemical analyses showed that 14 and 15 compounds were detected in the headspace of mating pairs and MG, respectively. Most of the compounds identified from MG except for isobutyric acid were also detected in the headspace of mating pairs. Both females and males were attracted to octanal and 6‐methyl‐5‐hepten‐2‐one, and males were attracted to 3,5‐dimethyl‐2‐hexanol. Males but not females were attracted to a seven‐compound blend, formulated from compounds identified in attractive MG extracts.  相似文献   

11.
Rare unifloral willow (Salix spp.) honeys obtained from nectar or honeydew were investigated by direct RP‐HPLC‐DAD method in order to identify and quantify compounds that can be used as possible markers of their origin. Antioxidant and antiradical activities of willow honeys were evaluated using FRAP (=ferric reducing antioxidant assay) and DPPH (=1,1‐diphenyl‐2‐picrylhydrazyl radical) tests, respectively. Also HMF (=5‐(hydroxymethyl)furfural), diastase activity, and CIE L*a*b*C*h* chromatic coordinates were evaluated. Abscisic acids (ABA) are typical of willow nectar honey, with a predominance of (Z,E)ABA on (E,E)ABA (98.2 and 31.7 mg/kg, resp.). Kinurenic acid and salicylic acid are useful to mark willow honeydew honey. The proposed HPLC‐DAD method proved to be easy and reliable to identify the two different Salix spp. honeys, being not affected from any sample preparation artifact. Total antioxidant activity measured with the FRAP assay ranged from 3.2 to 12.6 mmol Fe2+/kg, and the antiradical activity measured with the DPPH assay ranged from 0.6 to 3.0 mmol TEAC (=Trolox equivalent antioxidant capacity)/kg in nectar and honeydew honeys, respectively. Salix spp. nectar and honeydew honeys proved to be two completely different honeys, because, besides color attributes, they show different antioxidant properties and specific compounds.  相似文献   

12.
A new neolignan (7'E)-2',4,8-trihydroxy-3-methoxy-2,4'-epoxy-8,5'-neolign-7'-en-7-one (1) was isolated from the whole plants of Penthorum chinense Pursh, along with Iupeol (2), betulinic acid (3), glyceryl monopalmitate (4), β-sitosterol (5), palmitic acid (5), ursolic acid (7), 2β,3β,23-trihydroxy-urs-12-ene-28-oic acid (8), glyceryl monolaurate (9), scopoletin (10), (-)syringaresinol (11), 9,9'-O-diferuIoyl-(-)-secoisolariciresionl (12), pinocembrin (13), apigenin (14), kaempferol (15), Iuteolin (16), β-daucosterol (17), quercetin (18), 1-O-(β-D-glucopyranosyl)-(2S, 2'R, 3R,4E,8E)-2-(2'-hydroxyhexadecanoy- lamino)-4,8-octdecadiene-1,3-diol (19), gallic acid (20), pinocembrin-7-O-β-D-glucoside (21), and quercetin-3-O-β-D- glucoside (22). The structures of these compounds were elucidated on the basis of chemical and spectral evidence.  相似文献   

13.
Blends of volatile compounds emitted by host plants are known to mediate the attraction of gravid female herbivores to oviposition sites, but the role of individual odor components is still little understood. We characterized the olfactory response of mated female Cydia (Grapholita) molesta (Busck) (Lepidoptera: Tortricidae) to synthetic mixtures of compounds emitted by peach shoot, a key host plant of this herbivore, and investigated the role of important constituents of bioactive mixtures in moth attraction. Relative ratios of constituents of the mixtures corresponded to the natural ratio of volatile compounds collected in the plant's headspace. A significant attractant effect was found for a comparatively complex 10‐compound mixture that included four green leaf volatiles [(Z)‐3‐hexen‐1‐ol, 1‐hexanol, (E)‐2‐hexenal, and (Z)‐3‐hexen‐1‐yl acetate], five aromatics (benzaldehyde, methyl salicylate, methyl benzoate, benzonitrile, and phenylacetonitrile), and a carboxylic acid (valeric acid). Using a subtraction approach, the number of compounds was progressively decreased, resulting in a bioactive 5‐compound mixture composed of two constituents, green leaf volatiles and aromatic compounds. Further evaluations revealed that benzaldehyde and benzonitrile must be present in association with three distinct green leaf volatiles to produce an attractant effect on the female moths. This 5‐compound mixture was as attractive as natural peach shoot volatiles, which are known to comprise over 20 compounds. Results are discussed in light of the documented synergistic effect between the three general green leaf volatiles and the two specific aromatic compounds.  相似文献   

14.
Two new phenylpropanoids were isolated from Lindelofia stylosa (Kar . and Kir .) and characterized as 4‐hydroxy‐N‐{4‐[(E)‐3‐(4‐hydroxy‐3‐methoxyphenyl)prop‐2‐enamido]butyl}benzamide ( 1 ) and 2‐[3‐hydroxy‐4‐(4‐hydroxyphenoxy)phenyl]‐1‐(methoxycarbonyl)ethyl (E)‐3‐(3,4‐dihydroxyphenyl)prop‐2‐enoate ( 2 ). Four known compounds, i.e. two phenylpropanoids, p‐coumaric acid (=(E)‐3‐(4‐hydroxyphenyl)prop‐2‐enoic acid; 3 ) and ferulic acid (=(E)‐3‐(4‐hydroxy‐3‐methoxyphenyl)prop‐2‐enoic acid; 4 ), and two naphthalene glycosides, 8‐Oβ‐D ‐glucopyranosyltorachrysone ( 5 ) and 8‐Oβ‐D ‐glucopyranosyl‐6‐demethoxytorachrysone ( 6 ), were also isolated for the first time from the plant. Compounds 1 – 6 were subjected to various antioxidant assays, including DPPH radical‐ and superoxide anion‐scavenging, and Fe2+‐chelation assays. Compound 2 was found to be most active in all assays with potency nearly similar to that of propyl gallate. Besides 2 , compounds 1 and 5 were also found to be active in DPPH radical‐scavenging standard assay.  相似文献   

15.
GC/MS of headspace solid phase micro extraction (HS‐SPME) and solvent extractives along with targeted HPLC‐DAD of Polish fir (Abies alba Mill .) honeydew honey (FHH), were used to determine the chemical profiles and potential markers of botanical origin. Additionally, typical physical‐chemical parameters were also assigned. The values determined for FHH were: conductivity (1.2 mS/cm), water content (16.7 g/100 g), pH (4.5), and CIE chromaticity coordinates (L* = 48.4, a* = 20.6, b* = 69.7, C* = 72.9, and h° = 73.5). FHH contained moderate‐high total phenolic content (533.2 mg GAE/kg) and antioxidant activity (1.1 mmol TEAC/kg) and (3.2 mmol Fe2+/kg) in DPPH and FRAP assays. The chemical profiles were dominated by source plant‐originated benzene derivatives: 3,4‐dihydroxybenzoic acid (up to 8.7 mg/kg, HPLC/honey solution), methyl syringate (up to 14.5%, GC/solvent extracts) or benzaldehyde (up to 43.7%, GC/headspace). Other markers were terpenes including norisoprenoid (4‐hydroxy‐3,5,6‐trimethyl‐4‐(3‐oxobut‐1‐enyl)cyclohex‐2‐en‐1‐one, up to 20.3%, GC/solvent extracts) and monoterpenes, mainly linalool derivatives (up to 49%, GC/headspace) as well as borneol (up to 5.9%, GC/headspace). The application of various techniques allowed comprehensive characterisation of FHH. 4‐Hydroxy‐3,5,6‐trimethyl‐4‐(3‐oxobut‐1‐enyl)cyclohex‐2‐en‐1‐one, coniferyl alcohol, borneol, and benzaldehyde were first time proposed for FHH screening. Protocatechuic acid may be a potential marker of FFH regardless of the geographical origin.  相似文献   

16.
Using various chromatographic methods, a new hexacyclic triterpenoid, 2β,3β,24β‐trihydroxy‐12,13‐cyclotaraxer‐l4‐en‐28oic acid ( 1 ), together with ten known compounds, 2α,3α,23‐trihydroxyurs‐12,20(30)‐dien‐28oic acid ( 2 ), 6,7‐dehydroroyleanone ( 3 ), horminone ( 4 ), 7‐O‐methylhorminone ( 5 ), sugiol ( 6 ), demethylcryptojaponol ( 7 ), 14‐deoxycoleon U ( 8 ), 5,6‐didehydro‐7‐hydroxy‐taxodone ( 9 ), ferruginol ( 10 ), and dichroanone ( 11 ), were isolated from the roots of Salvia deserta. Their structures were identified on the basis of spectroscopic analysis and comparison with the reported data. The individual compounds ( 1 , 3  –  8 ) were screened for cytotoxic activity, using the sulforhodamine B bioassay (SRB) method. As the results, Compounds 3 , 5 , and 8 showed cytotoxic potency against A549, MDA‐MB‐231, KB, KB‐VIN, and MCF7 cell lines with IC50 values ranging from 6.5 to 10.2 μm .  相似文献   

17.
Plant volatiles have been demonstrated to play an important role in regulating the behavior of Cotesia plutellae, a major larval parasitoid of the diamondback moth (DBM), Plutella xylostella, but little is currently known about the function of each volatile and their mixtures. We selected 13 volatiles of the DBM host plant, a cruciferous vegetable, to study the electroantennogram (EAG) and behavioral responses of C. plutellae. EAG responses to each of the compounds generally increased with concentration. Strong EAG responses were to 100 μL/mL of trans‐2‐hexenal, benzaldehyde, nonanal and cis‐3‐hexenol, and 10 μL/mL of trans‐2‐hexenal and benzaldehyde with the strongest response provoked by trans‐2‐hexenal at 100 μL/mL. In the Y‐tube olfactometer, C. plutellae, was significantly attracted by 1 μL/mL of trans‐2‐hexenal and benzaldehyde. β‐caryophyllene, cis‐3‐hexenol or trans‐2‐hexenal significantly attracted C. plutellae at 10 μL/mL, while nonanal, benzyl alcohol, cis‐3‐hexenol or benzyl cyanide at 100 μL/mL significantly attracted C. plutellae. Trans‐2‐hexenal significantly repelled C. plutellae at 100 μL/mL. EAG of C. plutellae showed strong responses to all mixtures made of five various compounds with mixtures 3 (trans‐2‐hexenal, benzaldehyde, nonanal, cis‐3‐hexenol, benzyl cyanide, farnesene, eucalyptol) and 4 (trans‐2‐hexenal, benzaldehyde, benzyl alcohol, (R)‐(+)‐limonene, β‐ionone, farnesene, eucalyptol) significantly attracting C. plutellae. These findings demonstrate that the behavior of C. plutellae can be affected either by individual compounds or mixtures of plant volatiles, suggesting a potential of using plant volatiles to improve the efficiency of this parasitoid for biocontrol of P. xylostella.  相似文献   

18.
Volatile compounds of unifloral Salvia officinalis L. honey has been investigated for the first time. The botanical origin of ten unifloral Salvia honey samples has been ascertained by pollen analysis (the honey samples displayed 23-60% of Salvia pollen). Fifty-four volatile compounds were identified by GC and GC/MS in ten Salvia honey extracts obtained by ultrasound-assisted extraction (USE) with pentane/Et(2)O 1 : 2. The yield of isolated volatiles varied from 25.7 to 30.5 mg kg(-1). Salvia honey could be distinguished on the basis of the high percentage of benzoic acid (6.4-14.8%), and especially phenylacetic acid (5.7-18.4%). Minor, but floral-origin important volatiles were identified such as shikimate pathway derivatives, 'degraded-carotenoid-like' structures (3,5,5-trimethylcyclohex-2-ene derivatives) and 2,6,6-trimethylcyclohex-2-ene derivatives. Compounds from other metabolic pathways such as aliphatic acids and higher linear hydrocarbons, as well as heterocycles (pyrans, furans, and pyrroles), were also present. Most of the identified compounds do not constitute specific Salvia honey markers, due to their presence in honeys of other botanical origins; however, their ratio in different honeys could be useful to distinguish floral origin. Salvia-honey volatile markers were: benzoic acid, phenylacetic acid, p-anisaldehyde, alpha-isophorone, 4-ketoisophorone, dehydrovomifoliol, 2,6,6-trimethyl-4-oxocyclohex-2-ene-1-carbaldehyde, 2,2,6-trimethylcyclohexane-1,4-dione, and coumaran.  相似文献   

19.
The behavioural and electrophysiological (electroantennography) responses of the first two instars of Triatoma dimidiata (Hemiptera: Reduviidae) Latreille to fresh and dry faecal headspace volatile extracts from fifth instar conspecific nymphs and synthetic compounds were analysed in this study. Recently emerged nymphs (3–5 days) aggregated around filter paper impregnated with dry faeces and around filter paper impregnated with extracts from both fresh and dry faeces. Older first instars (10–15 days) and second instars aggregated around filter paper impregnated with fresh and dry faeces, and their respective headspace extracts. Dry faecal volatile extracts elicited the strongest antennal responses, followed by fresh faecal extracts. Gas chromatography?mass spectrometry analysis of dried faecal headspace volatiles demonstrated the presence of 12 compounds: 2‐ethyl‐1‐hexanol, 1,2,4‐trimethylbenzene, n ‐octadecane, n ‐nonadecane, n ‐eicosane, n ‐heneicosane, n ‐tricosane, n ‐pentaeicosane, n ‐hexaeicosane, n ‐octaeicosane, nonanal, and 4‐methyl quinazoline. In fresh faecal headspace extracts, only nonanal was clearly detected, although there were other trace compounds, including several unidentified sesquiterpenes. Four of the 11 compounds tested individually elicited aggregation behaviour at concentrations of 100 ng/µL and 1 µg/µL. A blend containing these four components also mediated the aggregation of nymphs. These volatiles may be valuable for developing monitoring methods and designing sensitive strategies to detect and measure T. dimidiata infestation.  相似文献   

20.
A new triterpenoid, 11a.O.trans-p-coumaroyltaraxerol (1), along with 11 known triterpenoids, taraxerone (2), taraxerol (3), 2α,3β,23,24-tetrahydroxyolean-12-en-28-oic acid (4), oleanolic acid (5), β-amyrin (6), 3β,23-dihydroxylursan-12-en- 28-oic acid (7), 2α,3β-dihydroxyursan-12-en-28-oic acid (8), 2α,3β,23-trihydroxyursan-12-en-28-oic acid (9), 2α,3β,24- trihydroxyursan-12-en-28-oic acid (10), u rsolic acid (11), and 3-O-acetylursolic acid (12), was isolated from Craibiodendron henryi W. W. Smith (Ericaceae). The structures of these compounds were elucidated on the basis of spectral evidence. Antioxidant activity and vasodilator effect of compound 1 were assessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号