首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bioprinting has a wide range of applications and significance, including tissue engineering, direct cell application therapies, and biosensor microfabrication.1-10 Recently, thermal inkjet printing has also been used for gene transfection.8,9 The thermal inkjet printing process was shown to temporarily disrupt the cell membranes without affecting cell viability. The transient pores in the membrane can be used to introduce molecules, which would otherwise be too large to pass through the membrane, into the cell cytoplasm.8,9,11The application being demonstrated here is the use of thermal inkjet printing for the incorporation of fluorescently labeled g-actin monomers into cells. The advantage of using thermal ink-jet printing to inject molecules into cells is that the technique is relatively benign to cells.8, 12 Cell viability after printing has been shown to be similar to standard cell plating methods1,8. In addition, inkjet printing can process thousands of cells in minutes, which is much faster than manual microinjection. The pores created by printing have been shown to close within about two hours. However, there is a limit to the size of the pore created (~10 nm) with this printing technique, which limits the technique to injecting cells with small proteins and/or particles. 8,9,11A standard HP DeskJet 500 printer was modified to allow for cell printing.3, 5, 8 The cover of the printer was removed and the paper feed mechanism was bypassed using a mechanical lever. A stage was created to allow for placement of microscope slides and coverslips directly under the print head. Ink cartridges were opened, the ink was removed and they were cleaned prior to use with cells. The printing pattern was created using standard drawing software, which then controlled the printer through a simple print command. 3T3 fibroblasts were grown to confluence, trypsinized, and then resuspended into phosphate buffered saline with soluble fluorescently labeled g-actin monomers. The cell suspension was pipetted into the ink cartridge and lines of cells were printed onto glass microscope cover slips. The live cells were imaged using fluorescence microscopy and actin was found throughout the cytoplasm. Incorporation of fluorescent actin into the cell allows for imaging of short-time cytoskeletal dynamics and is useful for a wide range of applications.13-15  相似文献   

2.
The prospective of using direct‐write printing techniques for the manufacture of organic photovoltaics (OPVs) has made these techniques highly attractive. OPVs have the potential to revolutionize small‐scale portable electronic applications by directly providing electric power to the systems. However, no route is available for monolithically integrating the energy‐harvesting units into a system in which other components, such as transistors, sensors, or displays, are already fabricated. Here, the fabrication and the measurement of inkjet‐printed, air‐processed organic solar cells is reported for the first time. Highly controlled conducting and semiconducting films using engineered inks for inkjet printing enable good efficiencies for printed OPVs between ≈2 and 5% power conversion efficiency. The results show that inkjet printing is an attractive digital printing technology for cost‐effective, environmentally friendly integration of photovoltaic cells onto plastic substrates.  相似文献   

3.
Bioprinting based on thermal inkjet printing is a promising but unexplored approach in bone tissue engineering. Appropriate cell types and suitable biomaterial scaffolds are two critical factors to generate successful bioprinted tissue. This study was undertaken in order to evaluate bioactive ceramic nanoparticles in stimulating osteogenesis of printed bone marrow‐derived human mesenchymal stem cells (hMSCs) in poly(ethylene glycol)dimethacrylate (PEGDMA) scaffold. hMSCs suspended in PEGDMA were co‐printed with nanoparticles of bioactive glass (BG) and hydroxyapatite (HA) under simultaneous polymerization so the printed substrates were delivered with highly accurate placement in three‐dimensional (3D) locations. hMSCs interacted with HA showed the highest cell viability (86.62 ± 6.02%) and increased compressive modulus (358.91 ± 48.05 kPa) after 21 days in culture among all groups. Biochemical analysis showed the most collagen production and highest alkaline phosphatase activity in PEG‐HA group, which is consistent with gene expression determined by quantitative PCR. Masson's trichrome staining also showed the most collagen deposition in PEG‐HA scaffold. Therefore, HA is more effective comparing to BG for hMSCs osteogenesis in bioprinted bone constructs. Combining with our previous experience in vasculature, cartilage, and muscle bioprinting, this technology demonstrates the capacity for both soft and hard tissue engineering with biomimetic structures.  相似文献   

4.
With the advances of stem cell research, development of intelligent biomaterials and three-dimensional biofabrication strategies, highly mimicked tissue or organs can be engineered. Among all the biofabrication approaches, bioprinting based on inkjet printing technology has the promises to deliver and create biomimicked tissue with high throughput, digital control, and the capacity of single cell manipulation. Therefore, this enabling technology has great potential in regenerative medicine and translational applications. The most current advances in organ and tissue bioprinting based on the thermal inkjet printing technology are described in this review, including vasculature, muscle, cartilage, and bone. In addition, the benign side effect of bioprinting to the printed mammalian cells can be utilized for gene or drug delivery, which can be achieved conveniently during precise cell placement for tissue construction. With layer-by-layer assembly, three-dimensional tissues with complex structures can be printed using converted medical images. Therefore, bioprinting based on thermal inkjet is so far the most optimal solution to engineer vascular system to the thick and complex tissues. Collectively, bioprinting has great potential and broad applications in tissue engineering and regenerative medicine. The future advances of bioprinting include the integration of different printing mechanisms to engineer biphasic or triphasic tissues with optimized scaffolds and further understanding of stem cell biology.  相似文献   

5.
Bioprinting, which is based on thermal inkjet printing, is one of the most attractive enabling technologies in the field of tissue engineering and regenerative medicine. With digital control cells, scaffolds, and growth factors can be precisely deposited to the desired two-dimensional (2D) and three-dimensional (3D) locations rapidly. Therefore, this technology is an ideal approach to fabricate tissues mimicking their native anatomic structures. In order to engineer cartilage with native zonal organization, extracellular matrix composition (ECM), and mechanical properties, we developed a bioprinting platform using a commercial inkjet printer with simultaneous photopolymerization capable for 3D cartilage tissue engineering. Human chondrocytes suspended in poly(ethylene glycol) diacrylate (PEGDA) were printed for 3D neocartilage construction via layer-by-layer assembly. The printed cells were fixed at their original deposited positions, supported by the surrounding scaffold in simultaneous photopolymerization. The mechanical properties of the printed tissue were similar to the native cartilage. Compared to conventional tissue fabrication, which requires longer UV exposure, the viability of the printed cells with simultaneous photopolymerization was significantly higher. Printed neocartilage demonstrated excellent glycosaminoglycan (GAG) and collagen type II production, which was consistent with gene expression. Therefore, this platform is ideal for accurate cell distribution and arrangement for anatomic tissue engineering.  相似文献   

6.
Transferring the high power conversion efficiencies (PCEs) of spin‐coated perovskite solar cells (PSCs) on the laboratory scale to large‐area photovoltaic modules requires a significant advance in scalable fabrication methods. Digital inkjet printing promises scalable, material, and cost‐efficient deposition of perovskite thin films on a wide range of substrates and in arbitrary shapes. In this work, high‐quality inkjet‐printed triple‐cation (methylammonium, formamidinium, and cesium) perovskite layers with exceptional thicknesses of >1 µm are demonstrated, enabling unprecedentedly high PCEs > 21% and stabilized power output efficiencies > 18% for inkjet‐printed PSCs. In‐depth characterization shows that the thick inkjet‐printed perovskite thin films deposited using the process developed herein exhibit a columnar crystal structure, free of horizontal grain boundaries, which extend over the entire thickness. A thin film thickness of around 1.5 µm is determined as optimal for PSC for this process. Up to this layer thickness X‐ray photoemission spectroscopy analysis confirms the expected stoichiometric perovskite composition at the surface and shows strong deviations and inhomogeneities for thicker thin films. The micrometer‐thick perovskite thin films exhibit remarkably long charge carrier lifetimes, highlighting their excellent optoelectronic characteristics. They are particularly promising for next‐generation inkjet‐printed perovskite solar cells, photodetectors, and X‐ray detectors.  相似文献   

7.
Biomolecules and living cells can be printed in high‐resolution patterns to fabricate living constructs for tissue engineering. To evaluate the impact of processing cells with rapid prototyping (RP) methods, we modeled the printing phase of two RP systems that use biomaterial inks containing living cells: a high‐resolution inkjet system (BioJet) and a lower‐resolution nozzle‐based contact printing system (PAM2). In the first fabrication method, we reasoned that cell damage occurs principally during drop collision on the printing surface, in the second we hypothesize that shear stresses act on cells during extrusion (within the printing nozzle). The two cases were modeled changing the printing conditions: biomaterial substrate stiffness and volumetric flow rate, respectively, in BioJet and PAM2. Results show that during inkjet printing impact energies of about 10?8 J are transmitted to cells, whereas extrusion energies of the order of 10?11 J are exerted in direct printing. Viability tests of printed cells can be related to those numerical simulations, suggesting a threshold energy of 10?9 J to avoid permanent cell damage. To obtain well‐defined living constructs, a combination of these methods is proposed for the fabrication of scaffolds with controlled 3D architecture and spatial distribution of biomolecules and cells. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

8.
The sedimentation and aggregation of cells within inkjet printing systems has been hypothesized to negatively impact printer performance. The purpose of this study was to investigate this influence through the use of neutral buoyancy. Ficoll PM400 was used to create neutrally buoyant MCF‐7 breast cancer cell suspensions, which were ejected using a piezoelectric drop‐on‐demand inkjet printing system. It was found that using a neutrally buoyant suspension greatly increased the reproducibility of consistent cell counts, and eliminated nozzle clogging. Moreover, the use of Ficoll PM400 was shown to not affect cellular viability. This is the first demonstration of such scale and accuracy achieved using a piezoelectric inkjet printing system for cellular dispensing. Biotechnol. Bioeng. 2012; 109: 2932–2940. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Printing multistrain bacterial patterns with a piezoelectric inkjet printer   总被引:1,自引:0,他引:1  
Many studies involving interacting microorganisms would benefit from simple devices able to deposit cells in precisely defined patterns. We describe an inexpensive bacterial piezoelectric inkjet printer (adapted from the design of the POSaM oligonucleotide microarrayer) that can be used to "print out" different strains of bacteria or chemicals in small droplets onto a flat surface at high resolution. The capabilities of this device are demonstrated by printing ordered arrays comprising two bacterial strains labeled with different fluorescent proteins. We also characterized several properties of this piezoelectric printer, such as the droplet volume (of the order of tens of pl), the distribution of number of cells in each droplet, and the dependence of droplet volume on printing frequency. We established the limits of the printing resolution, and determined that the printed viability of Escherichia coli exceeded 98.5%.  相似文献   

10.
The capability to print three‐dimensional (3D) cellular tubes is not only a logical first step towards successful organ printing but also a critical indicator of the feasibility of the envisioned organ printing technology. A platform‐assisted 3D inkjet bioprinting system has been proposed to fabricate 3D complex constructs such as zigzag tubes. Fibroblast (3T3 cell)‐based tubes with an overhang structure have been successfully fabricated using the proposed bioprinting system. The post‐printing 3T3 cell viability of printed cellular tubes has been found above 82% (or 93% with the control effect considered) even after a 72‐h incubation period using the identified printing conditions for good droplet formation, indicating the promising application of the proposed bioprinting system. Particularly, it is proved that the tubular overhang structure can be scaffold‐free fabricated using inkjetting, and the maximum achievable height depends on the inclination angle of the overhang structure. As a proof‐of‐concept study, the resulting fabrication knowledge helps print tissue‐engineered blood vessels with complex geometry. Biotechnol. Bioeng. 2012; 109: 3152–3160. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Direct inkjet printing of functional inks is an emerging and promising technique for the fabrication of electrochemical energy storage devices. Electrochromic energy devices combine electrochromic and energy storage functions, providing a rising and burgeoning technology for next‐generation intelligent power sources. However, printing such devices has, in the past, required additives or other second phase materials in order to create inks with suitable rheological properties, which can lower printed device performance. Here, tungsten oxide nanocrystal inks are formulated without any additives for the printing of high‐quality tungsten oxide thin films. This allows the assembly of novel electrochromic pseudocapacitive zinc‐ion devices, which exhibit a relatively high capacity (≈260 C g?1 at 1 A g?1) with good cycling stability, a high coloration efficiency, and fast switching response. These results validate the promising features of inkjet‐printed electrochromic zinc‐ion energy storage devices in a wide range of applications in flexible electronic devices, energy‐saving buildings, and intelligent systems.  相似文献   

12.
Bioprinting is an emerging technology in the field of tissue engineering and regenerative medicine. The process consists of simultaneous deposition of cells, biomaterial and/or growth factors under pressure through a micro-scale nozzle. Cell viability can be controlled by varying the parameters like pressure and nozzle diameter. The process itself can be a very useful tool for evaluating an in vitro cell injury model. It is essential to understand the cell responses to process-induced mechanical disturbances because they alter cell morphology and function. We carried out analysis and quantification of the degree of cell injury induced by bioprinting process. A parametric study with different process parameters was conducted to analyze and quantify cell injury as well as to optimize the parameters for printing viable cells. A phenomenological model was developed correlating the percentage of live, apoptotic and necrotic cells to the process parameters. This study incorporates an analytical formulation to predict the cell viability through the system as a function of the maximum shear stress in the system. The study shows that dispensing pressure has a more significant effect on cell viability than the nozzle diameter. The percentage of live cells is reduced significantly (by 38.75%) when constructs are printed at 40 psi compared to those printed at 5 psi.  相似文献   

13.
Polymer:fullerene blends were screened in a combinatorial approach using inkjet printing thin film libraries for photovoltaic devices. The application of inkjet printing enabled a fast and simple experimental workflow from film preparation to the study of structure‐property‐relationships with a very high material efficiency. Inkjet printing requires less material for the preparation of thin film libraries in comparison to other dispensing techniques, like spin‐coating. Two polymers (PCPDTBT, PSBTBT) and two fullerene derivatives (mono‐PCBM, bis‐PCBM) were investigated in various blend ratios, concentrations, solvent ratios, and film thicknesses. Morphological and optical properties of the inkjet printed films were investigated and compared with spin‐coated films. This study shows the principle of an experimental setup from solution preparation to film characterization for the combinatorial investigation of large polymer:fullerene libraries.  相似文献   

14.
A modified commercial inkjet printer was developed to deliver biological samples. The active Escherichia coli cells were directly printed at precisely targeted positions on agar-coated substrates via this technique to generate complex bacterial colony patterns. Viable cell arrays with a high density of 400 dots/cm2 were obtained without the addition of any surfactants or other chemicals. Moreover, an applicable example of multiple-layer inkjet printing technique was adapted to deposit bacteria and antibiotics for antimicrobial potential assays. After fluorescent E. coli cells were printed, gradient concentrations of water-soluble antibiotics were ejected onto them to determine its minimum inhibitory concentration (MIC) to test the antimicrobial activities. This approach simplifies the experimental manipulation by replacing laborious manual loading processes with automatically controlled printing procedures, which makes it a versatile tool for high-throughput applications.  相似文献   

15.
Transporters mediate the uptake of nutrients such as amino acids and the excretion of metabolites. The fact that transporters play crucial roles in regulating cell metabolism suggests that they might be useful targets for cell engineering to enhance the yield and/or quality of monoclonal antibody (MAb) produced by CHO cells. The taurine transporter (TAUT) is stably expressed in CHO‐DXB11 cells and is upregulated late in the culture period. We found that forcing the overexpression of TAUT delayed apoptotic cell death, extending the culture period. Thus, under fed‐batch small‐culture conditions, CHO cells that expressed pHyg‐TAUT plasmid (TAUT/CHO cells), but not those that contained the null plasmid pHyg (HYG/CHO cells), produced more MAb (P < 0.01) and less lactate (P < 0.05). In a 1‐L bioreactor, a representative high‐yield TAUT/CHO cell line (T10) showed >80% viability for more than 1 month and a 47% increase in medium MAb concentration. In T10 cells, the upregulation of TNF‐α mRNA (an apoptosis marker) and the accumulation of ammonia late in the culture period were suppressed. Moreover, if an excess of taurine was added, T10 cells efficiently consumed glutamine but not other amino acids, so T10 cells may have gained a glutamine transporter‐like function. Because a considerable amount of metabolic energy is derived from glutamine, this active glutamine consumption in T10 cells might be a reason for the improved cell viability and MAb concentration. These results demonstrate that forcing the overexpression of TAUT in CHO cells can enhance cell culture performance and increase MAb titer. Biotechnol. Bioeng. 2010;107: 998–1003. © 2010 Wiley Periodicals, Inc.  相似文献   

16.
One of the challenges in tissue engineering is to provide adequate supplies of oxygen and nutrients to cells within the engineered tissue construct. Soft‐lithographic techniques have allowed the generation of hydrogel scaffolds containing a network of fluidic channels, but at the cost of complicated and often time‐consuming manufacturing steps. We report a three‐dimensional (3D) direct printing technique to construct hydrogel scaffolds containing fluidic channels. Cells can also be printed on to and embedded in the scaffold with this technique. Collagen hydrogel precursor was printed and subsequently crosslinked via nebulized sodium bicarbonate solution. A heated gelatin solution, which served as a sacrificial element for the fluidic channels, was printed between the collagen layers. The process was repeated layer‐by‐layer to form a 3D hydrogel block. The printed hydrogel block was heated to 37°C, which allowed the gelatin to be selectively liquefied and drained, generating a hollow channel within the collagen scaffold. The dermal fibroblasts grown in a scaffold containing fluidic channels showed significantly elevated cell viability compared to the ones without any channels. The on‐demand capability to print fluidic channel structures and cells in a 3D hydrogel scaffold offers flexibility in generating perfusable 3D artificial tissue composites. Biotechnol. Bioeng. 2010;105: 1178–1186. © 2009 Wiley Periodicals, Inc.  相似文献   

17.
The development of cell printing is vital for establishing biofabrication approaches as clinically relevant tools. Achieving this requires bio-inks which must not only be easily printable, but also allow controllable and reproducible printing of cells. This review outlines the general principles and current progress and compares the advantages and challenges for the most widely used biofabrication techniques for printing cells: extrusion, laser, microvalve, inkjet and tissue fragment printing. It is expected that significant advances in cell printing will result from synergistic combinations of these techniques and lead to optimised resolution, throughput and the overall complexity of printed constructs.  相似文献   

18.
Evaporation is the most commonly used deposition method in the processing of back electrodes in polymer solar cells used in scientific studies. However, vacuum‐based methods such as evaporation are uneconomical in the upscaling of polymer solar cells as they are throughput limiting steps in an otherwise fast roll‐to‐roll production line. In this paper, the applicability of inkjet printing in the ambient processing of back electrodes in inverted polymer solar cells with the structure ITO/ZnO/P3HT:PCBM/PEDOT:PSS/Ag is investigated. Furthermore, the limitation of screen printing, the commonly employed method in the ambient processing of back electrode, is demonstrated and discussed. Both inkjet printing and screen printing of back electrodes are studied for their impact on the photovoltaic properties of the polymer solar cells measured under 1000 Wm?2 AM1.5. Each ambient processing technique is compared with evaporation in the processing of back electrode. Laser beam induced current (LBIC) imaging is used to investigate the impact of the processing techniques on the current collection in the devices. We report that inkjet printing of back electrode delivers devices having photovoltaic performance comparable to devices with evaporated back electrodes. We further confirm that inkjet printing represent an efficient alternative to screen printing.  相似文献   

19.
We introduce a non‐contact approach to microprint multiple types of feeder cells in a microarray format using immiscible aqueous solutions of two biopolymers. Droplets of cell suspension in the denser aqueous phase are printed on a substrate residing within a bath of the immersion aqueous phase. Due to their affinity to the denser phase, cells remain localized within the drops and adhere to regions of the substrate underneath the drops. We show the utility of this technology for creating duplex heterocellular stem cell niches by printing two different support cell types on a gel surface and overlaying them with mouse embryonic stem cells (mESCs). As desired, the type of printed support cell spatially direct the fate of overlaid mESCs. Interestingly, we found that interspaced mESCs colonies on differentiation‐inducing feeder cells show enhanced neuronal differentiation and give rise to dense networks of neurons. This cell printing technology provides unprecedented capabilities to efficiently identify the role of various feeder cells in guiding the fate of stem cells. Biotechnol. Bioeng. 2011;108: 2509–2516. © 2011 Wiley Periodicals, Inc.  相似文献   

20.
Bio-microarray fabrication techniques--a review   总被引:1,自引:0,他引:1  
Microarrays with biomolecules (e.g., DNA and proteins), cells, and tissues immobilized on solid substrates are important tools for biological research, including genomics, proteomics, and cell analysis. In this paper, the current state of microarray fabrication is reviewed. According to spot formation techniques, methods are categorized as "contact printing" and "non-contact printing." Contact printing is a widely used technology, comprising methods such as contact pin printing and microstamping. These methods have many advantages, including reproducibility of printed spots and facile maintenance, as well as drawbacks, including low-throughput fabrication of arrays. Non-contact printing techniques are newer and more varied, comprising photochemistry-based methods, laser writing, electrospray deposition, and inkjet technologies. These technologies emerged from other applications and have the potential to increase microarray fabrication throughput; however, there are several challenges in applying them to microarray fabrication, including interference from satellite drops and biomolecule denaturization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号