首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biomass-derived sugars, such as glucose, xylose, and other minor sugars, can be readily fermented to fuel ethanol and commodity chemicals by the appropriate microbes. Due to the differences in the optimum conditions for the activity of the fungal cellulases that are required for depolymerization of cellulose to fermentable sugars and the growth and fermentation characteristics of the current industrial microbes, simultaneous saccharification and fermentation (SSF) of cellulose is envisioned at conditions that are not optimal for the fungal cellulase activity, leading to a higher-than-required cost of cellulase in SSF. We have isolated bacterial strains that grew and fermented both glucose and xylose, major components of cellulose and hemicellulose, respectively, to l(+)-lactic acid at 50 degrees C and pH 5.0, conditions that are also optimal for fungal cellulase activity. Xylose was metabolized by these new isolates through the pentose-phosphate pathway. As expected for the metabolism of xylose by the pentose-phosphate pathway, [(13)C]lactate accounted for more than 90% of the total (13)C-labeled products from [(13)C]xylose. Based on fatty acid profile and 16S rRNA sequence, these isolates cluster with Bacillus coagulans, although the B. coagulans type strain, ATCC 7050, failed to utilize xylose as a carbon source. These new B. coagulans isolates have the potential to reduce the cost of SSF by minimizing the amount of fungal cellulases, a significant cost component in the use of biomass as a renewable resource, for the production of fuels and chemicals.  相似文献   

2.
Sugarcane bagasse--a residue from sugar and ethanol production from sugar cane--is a potential raw material for lignocellulosic ethanol production. This material is high in xylan content. A prerequisite for bioethanol production from bagasse is therefore that xylose is efficiently fermented to ethanol. In the current study, ethanolic fermentation of steam-pretreated sugarcane bagasse was assessed in a simultaneous saccharification and fermentation (SSF) set-up using either Saccharomyces cerevisiae TMB3400, a recombinant xylose utilizing yeast strain, or Pichia stipitis CBS6054, a naturally xylose utilizing yeast strain. Commercial cellulolytic enzymes were used and the content of water insoluble solids (WIS) was 5% or 7.5%. S. cerevisiae TMB3400 consumed all glucose and large fraction of the xylose in SSF. Almost complete xylose conversion could be achieved at 5% WIS and 32 degrees C. Fermentation did not occur with P. stipitis CBS6054 at pH 5.0. However, at pH 6.0, complete glucose conversion and high xylose conversion (>70%) was obtained. Microaeration was required for P. stipitis CBS6054. This was not necessary for S. cerevisiae TMB3400.  相似文献   

3.

Background

Integration of second-generation (2G) bioethanol production with existing first-generation (1G) production may facilitate commercial production of ethanol from cellulosic material. Since 2G hydrolysates have a low sugar concentration and 1G streams often have to be diluted prior to fermentation, mixing of streams is beneficial. Improved ethanol concentrations in the 2G production process lowers energy demand in distillation, improves overall energy efficiency and thus lower production cost. There is also a potential to reach higher ethanol yields, which is required in economically feasible ethanol production. Integrated process scenarios with addition of saccharified wheat meal (SWM) or fermented wheat meal (FWM) were investigated in simultaneous saccharification and (co-)fermentation (SSF or SSCF) of steam-pretreated wheat straw, while the possibility of recovering the valuable protein-rich fibre residue from the wheat was also studied.

Results

The addition of SWM to SSF of steam-pretreated wheat straw, using commercially used dried baker’s yeast, S. cerevisiae, resulted in ethanol concentrations of about 60 g/L, equivalent to ethanol yields of about 90% of the theoretical. The addition of FWM in batch mode SSF was toxic to baker’s yeast, due to the ethanol content of FWM, resulting in a very low yield and high accumulation of glucose. The addition of FWM in fed-batch mode still caused a slight accumulation of glucose, but the ethanol concentration was fairly high, 51.2 g/L, corresponding to an ethanol yield of 90%, based on the amount of glucose added.In batch mode of SSCF using the xylose-fermenting, genetically modified S. cerevisiae strain KE6-12, no improvement was observed in ethanol yield or concentration, compared with baker’s yeast, despite the increased xylose utilization, probably due to the considerable increase in glycerol production. A slight increase in xylose consumption was seen when glucose from SWM was fed at a low feed rate, after 48 hours, compared with batch SSCF. However, the ethanol yield and concentration remained in the same range as in batch mode.

Conclusion

Ethanol concentrations of about 6% (w/v) were obtained, which will result in a significant reduction in the cost of downstream processing, compared with SSF of the lignocellulosic substrate alone. As an additional benefit, it is also possible to recover the protein-rich residue from the SWM in the process configurations presented, providing a valuable co-product.
  相似文献   

4.
In this study, bioethanol production from steam-exploded wheat straw using different process configurations was evaluated using two Saccharomyces cerevisiae strains, F12 and Red Star. The strain F12 has been engineerically modified to allow xylose consumption as cereal straw contain considerable amounts of pentoses. Red Star is a robust hexose-fermenting strain used for industrial fuel ethanol fermentations and it was used for comparative purposes. The highest ethanol concentration, 23.7 g/L, was reached using the whole slurry (10%, w/v) and the recombinant strain (F12) in an SSF process, it showed an ethanol yield on consumed sugars of 0.43 g/g and a volumetric ethanol productivity of 0.7 g/L h for the first 3 h. Ethanol concentrations obtained in SSF processes were in all cases higher than those from SHF at the same conditions. Furthermore, using the whole slurry, final ethanol concentration was improved in all tests due to the increase of potential fermentable sugars in the fermentation broth. Inhibitory compounds present in the pretreated wheat straw caused a significantly negative effect on the fermentation rate. However, it was found that the inhibitors furfural and HMF were completely metabolized by the yeast during SSF by metabolic redox reactions. An often encountered problem during xylose fermentation is considerable xylitol production that occurs due to metabolic redox imbalance. However, in our work this redox imbalance was counteracted by the detoxification reactions and no xylitol was produced.  相似文献   

5.
The aim of the study was to evaluate, from a technical and economic standpoint, the enzymatic processes involved in the production of fuel ethanol from softwood. Two base case configurations, one based on simultaneous saccharification and fermentation (SSF) and one based on separate hydrolysis and fermentation (SHF), were evaluated and compared. The process conditions selected were based mainly on laboratory data, and the processes were simulated by use of Aspen plus. The capital costs were estimated using the Icarus Process Evaluator. The ethanol production costs for the SSF and SHF base cases were 4.81 and 5.32 SEK/L or 0.57 and 0.63 USD/L (1 USD = 8.5SEK), respectively. The main reason for SSF being lower was that the capital cost was lower and the overall ethanol yield was higher. A major drawback of the SSF process is the problem with recirculation of yeast following the SSF step. Major economic improvements in both SSF and SHF could be achieved by increasing the income from the solid fuel coproduct. This is done by lowering the energy consumption in the process through running the enzymatic hydrolysis or the SSF step at a higher substrate concentration and by recycling the process streams. Running SSF with use of 8% rather than 5% nonsoluble solid material would result in a 19% decrease in production cost. If after distillation 60% of the stillage stream was recycled back to the SSF step, the production cost would be reduced by 14%. The cumulative effect of these various improvements was found to result in a production cost of 3.58 SEK/L (0.42 USD/L) for the SSF process.  相似文献   

6.

Background  

Simultaneous saccharification and fermentation (SSF) is a promising process option for ethanol production from lignocellulosic materials. However, both the overall ethanol yield and the final ethanol concentration in the fermentation broth must be high. Hence, almost complete conversion of both hexoses and pentoses must be achieved in SSF at a high solid content. A principal difficulty is to obtain an efficient pentose uptake in the presence of high glucose and inhibitor concentrations. Initial glucose present in pretreated spruce decreases the xylose utilization by yeast, due to competitive inhibition of sugar transport. In the current work, prefermentation was studied as a possible means to overcome the problem of competitive inhibition. The free hexoses, initially present in the slurry, were in these experiments fermented before adding the enzymes, thereby lowering the glucose concentration.  相似文献   

7.
Kenaf (Hibiscus cannabinus) is an annual fiber crop grown mainly in India and China. This crop is becoming a new bio‐based energy source because of its fast growth rate, excellent CO2 absorption ability, and large productivity per unit area. In this study, we evaluated 10 different cultivars of kenaf for their potential as biomass for cellulosic ethanol production. First, kenaf samples were hydrolyzed using dilute sulfuric acid, which is the most simple and cost‐effective pretreatment method. Next, simultaneous saccharification and fermentation (SSF) of the hydrolysates were performed by wild‐type and engineered xylose‐fermenting yeast strains. The results of compositional analysis of the biomass, the hydrolysates, and the fermented products suggested that ethanol yield and productivity were significantly affected by a type of kenaf cultivars, which was not predictable based on the biomass compositions. Also, the ethanol production was maximized when the xylose fraction was utilized by engineered yeast under the control of pH to avoid acetate inhibition. Considering the sugar compositions and their fermentability, kenaf can be a promising energy‐dedicated crop for cellulosic ethanol production.  相似文献   

8.
Until recently, the methylotrophic yeast has not been considered as a potential producer of biofuels, particularly, ethanol from lignocellulosic hydrolysates. The first work published 10 years ago revealed the ability of the thermotolerant methylotrophic yeast Hansenula polymorpha to ferment xylose—one of the main sugars of lignocellulosic hydrolysates—which has made the yeast a promising organism for high-temperature alcoholic fermentation. Such a feature of H. polymorpha could be used in the implementation of a potentially effective process of simultaneous saccharification and fermentation (SSF) of raw materials. SSF makes it possible to combine enzymatic hydrolysis of raw materials with the conversion of the sugars produced into ethanol: enzymes hydrolyze polysaccharides to monomers, which are immediately consumed by microorganisms (producers of ethanol). However, the efficiency of alcoholic fermentation of major sugars produced via hydrolysis of lignocellulosic raw materials and, especially, xylose by wild strains of H. polymorpha requires significant improvements. In this review, the main results of metabolic engineering of H. polymorpha for the construction of improved producers of ethanol from xylose, starch, xylan, and glycerol, as well as that of strains with increased tolerance to high temperatures and ethanol, are represented.  相似文献   

9.
Xylose is a second‐most abounded sugar after glucose in lignocellulosic hydrolysates and should be efficiently fermented for economically viable second‐generation ethanol production. Despite significant progress in metabolic and evolutionary engineering, xylose fermentation rate of recombinant Saccharomyces cerevisiae remains lower than that for glucose. Our recent study demonstrated that peroxisomedeficient cells of yeast Ogataea polymorpha showed a decrease in ethanol production from xylose. In this work, we have studied the role of peroxisomes in xylose alcoholic fermentation in the engineered xylose‐utilizing strain of S. cerevisiae. It was shown that peroxisome‐less pex3Δ mutant possessed 1.5‐fold decrease of ethanol production from xylose. We hypothesized that peroxisomal catalase Cta1 may have importance for hydrogen peroxide, the important component of reactive oxygen species, detoxification during xylose alcoholic fermentation. It was clearly shown that CTA1 deletion impaired ethanol production from xylose. It was found that enhancing the peroxisome population by modulation the peroxisomal biogenesis by overexpression of PEX34 activates xylose alcoholic fermentation.  相似文献   

10.
Fermentation to ethanol of pentose-containing spent sulphite liquor   总被引:3,自引:0,他引:3  
Ethanolic fermentation of spent sulphite liquor with ordinary bakers' yeast is incomplete because this yeast cannot ferment the pentose sugars in the liquor. This results in poor alcohol yields, and a residual effluent problem By using the yeast Candida shehatae (R) for fermentation of the spent sulphite liquor from a large Canadian alcohol-producing sulphite pulp and paper mill, pentoses as well as hexoses were fermented nearly completely, alcohol yields were raised by 33%, and sugar removal increased by 46%. Inhibitors were removed prior to fermentation by steam stripping. Major benefits were obtained by careful recycling of this yeast, which was shown to be tolerant both of high sugar concentrations and high alcohol concentrations. When sugar concentrations over 250 g/L (glucose: xylose 70:30) were fermented, ethanol became an inhibitor when its concentration reached 90 g/L. However, when the ethanol was removed by low-temperature vacuum distillation, fermentation continued and resulted in a yield of 0.50 g ethanol/g sugar consumed. Further improvement was achieved by combining enzyme saccharification of sugar oligomers with fermentation. This yeast is able to ferment both hexoses and pentoses simultaneously, efficiently, and rapidly. Present indications are that it is well suited to industrial operations wherever hexoses and pentoses are both to be fermented to ethanol, for example, in wood hydrolysates.  相似文献   

11.

Background

The commercialization of second-generation bioethanol has not been realized due to several factors, including poor biomass utilization and high production cost. It is generally accepted that the most important parameters in reducing the production cost are the ethanol yield and the ethanol concentration in the fermentation broth. Agricultural residues contain large amounts of hemicellulose, and the utilization of xylose is thus a plausible way to improve the concentration and yield of ethanol during fermentation. Most naturally occurring ethanol-fermenting microorganisms do not utilize xylose, but a genetically modified yeast strain, TMB3400, has the ability to co-ferment glucose and xylose. However, the xylose uptake rate is only enhanced when the glucose concentration is low.

Results

Separate hydrolysis and co-fermentation of steam-pretreated wheat straw (SPWS) combined with wheat-starch hydrolysate feed was performed in two separate processes. The average yield of ethanol and the xylose consumption reached 86% and 69%, respectively, when the hydrolysate of the enzymatically hydrolyzed (18.5% WIS) unwashed SPWS solid fraction and wheat-starch hydrolysate were fed to the fermentor after 1 h of fermentation of the SPWS liquid fraction. In the other configuration, fermentation of the SPWS hydrolysate (7.0% WIS), resulted in an average ethanol yield of 93% from fermentation based on glucose and xylose and complete xylose consumption when wheat-starch hydrolysate was included in the feed. Increased initial cell density in the fermentation (from 5 to 20 g/L) did not increase the ethanol yield, but improved and accelerated xylose consumption in both cases.

Conclusions

Higher ethanol yield has been achieved in co-fermentation of xylose and glucose in SPWS hydrolysate when wheat-starch hydrolysate was used as feed, then in co-fermentation of the liquid fraction of SPWS fed with the mixed hydrolysates. Integration of first-generation and second-generation processes also increases the ethanol concentration, resulting in a reduction in the cost of the distillation step, thus improving the process economics.  相似文献   

12.
From a continuous spent sulfite liquor fermentation plant, two species of yeast were isolated, Saccharomyces cerevisiae and Pichia membranaefaciens. One of the isolates of S. cerevisiae, no. 3, was heavily flocculating and produced a higher ethanol yield from spent sulfite liquor than did commercial baker's yeast. The greatest difference between isolate 3 and baker's yeast was that of galactose fermentation, even when galactose utilization was induced, i.e., when they were grown in the presence of galactose, prior to fermentation. Without acetic acid present, both baker's yeast and isolate 3 fermented glucose and galactose sequentially. Galactose fermentation with baker's yeast was strongly inhibited by acetic acid at pH values below 6. Isolate 3 fermented galactose, glucose, and mannose without catabolite repression in the presence of acetic acid, even at pH 4.5. The xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) activities were determined in some of the isolates as well as in two strains of S. cerevisiae (ATCC 24860 and baker's yeast) and Pichia stipitis CBS 6054. The S. cerevisiae strains manifested xylose reductase activity that was 2 orders of magnitude less than the corresponding P. stipitis value of 890 nmol/min/mg of protein. The xylose dehydrogenase activity was 1 order of magnitude less than the corresponding activity of P. stipitis (330 nmol/min/mg of protein).  相似文献   

13.
From a continuous spent sulfite liquor fermentation plant, two species of yeast were isolated, Saccharomyces cerevisiae and Pichia membranaefaciens. One of the isolates of S. cerevisiae, no. 3, was heavily flocculating and produced a higher ethanol yield from spent sulfite liquor than did commercial baker's yeast. The greatest difference between isolate 3 and baker's yeast was that of galactose fermentation, even when galactose utilization was induced, i.e., when they were grown in the presence of galactose, prior to fermentation. Without acetic acid present, both baker's yeast and isolate 3 fermented glucose and galactose sequentially. Galactose fermentation with baker's yeast was strongly inhibited by acetic acid at pH values below 6. Isolate 3 fermented galactose, glucose, and mannose without catabolite repression in the presence of acetic acid, even at pH 4.5. The xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) activities were determined in some of the isolates as well as in two strains of S. cerevisiae (ATCC 24860 and baker's yeast) and Pichia stipitis CBS 6054. The S. cerevisiae strains manifested xylose reductase activity that was 2 orders of magnitude less than the corresponding P. stipitis value of 890 nmol/min/mg of protein. The xylose dehydrogenase activity was 1 order of magnitude less than the corresponding activity of P. stipitis (330 nmol/min/mg of protein).  相似文献   

14.
浓香型白酒发酵过程微生物合成正丙醇途径解析   总被引:1,自引:0,他引:1  
田源  孔小勇  方芳 《微生物学报》2020,60(7):1421-1432
【目的】揭示浓香型白酒窖内发酵过程与正丙醇合成相关的微生物和代谢途径。【方法】通过对浓香型白酒窖内发酵过程酒醅中微生物的宏转录组进行分析,解析与正丙醇合成相关的微生物和代谢途径,并验证相关微生物合成正丙醇的能力。【结果】浓香型白酒窖内发酵过程中有3条可能的酒醅微生物合成正丙醇的途径。真菌主要通过2-甲基苹果酸代谢途径和苏氨酸代谢途径合成正丙醇,细菌则主要通过丙酸代谢途径合成并参与苏氨酸代谢途径。宏转录组测序分析表明,这3条途径对白酒窖内发酵过程正丙醇的合成与积累均有贡献,并且微生物通过这3条途径合成正丙醇的时期和能力存在较大差异。此外,对分离自酒醅的酵母和乳酸菌合成正丙醇能力分析发现,它们均与浓香型白酒窖内发酵过程正丙醇的合成有关。【结论】本研究揭示了浓香型白酒窖内发酵过程中正丙醇合成相关的微生物和代谢途径,为阐明白酒发酵过程中正丙醇的形成机制奠定了理论基础。  相似文献   

15.
【目的】构建可用于纤维素乙醇高效生产的混合糖发酵重组酿酒酵母菌株,并利用菊芋秸秆为原料进行乙醇发酵。【方法】筛选在木糖中生长较好的酿酒酵母YB-2625作为宿主菌,构建木糖共代谢菌株YB-2625 CCX。进一步通过r DNA位点多拷贝整合的方式,以YB-2625 CCX为出发菌株构建木糖脱氢酶过表达菌株,并筛选得到优势菌株YB-73。采用同步糖化发酵策略研究YB-73的菊芋秸秆发酵性能。【结果】YB-73菌株以90 g/L葡萄糖和30 g/L木糖为碳源进行混合糖发酵,乙醇产量比出发菌株YB-2625 CCX提高了13.9%,副产物木糖醇产率由0.89 g/g降低至0.31 g/g,下降了64.6%。利用重组菌YB-73对菊芋秸秆进行同步糖化发酵,48 h最高乙醇浓度达到6.10%(体积比)。【结论】通过转入木糖代谢途径以及r DNA位点多拷贝整合过表达木糖脱氢酶基因可有效提高菌株木糖发酵性能,并用于菊芋秸秆的纤维素乙醇生产。这是首次报道利用重组酿酒酵母进行菊芋秸秆原料的纤维素乙醇发酵。  相似文献   

16.
The perennial herbaceous crop Arundo donax is a potential feedstock for second-generation bioethanol production. In the present work, two different process options were investigated for the conversion of two differently steam-pretreated batches of A. donax. The pretreated raw material was converted to ethanol with a xylose-consuming Saccharomyces cerevisiae strain, VTT C-10880, by applying either separate hydrolysis and fermentation (SHF) or simultaneous saccharification and fermentation (SSF). The highest overall ethanol yield and final ethanol concentration were achieved using SHF (0.27 g g?1 and 20.6 g L?1 compared to 0.24 g g?1 and 19.0 g L?1 when SSF was used). The performance of both SHF and SSF was improved by complementing the cellulolytic enzymes with hemicellulases. The higher amount of acetic acid in one of the batches was shown to strongly affect xylose consumption in the fermentation. Only half of the xylose was consumed when batch 1 (high acetic acid) was fermented, compared to that 94% of the xylose was consumed in fermentation of batch 2 (lower acetic acid). Furthermore, the high amount of xylooligomers present in the pretreated materials considerably inhibited the enzymatic hydrolysis. Both the formation of xylooligomers and acetic acid thus need to be considered in the pretreatment process in order to achieve efficient conversion of A. donax to ethanol.  相似文献   

17.
Wheat straw is an abundant agricultural residue which can be used as a raw material for bioethanol production. Due to the high xylan content in wheat straw, fermentation of both xylose and glucose is crucial to meet desired overall yields of ethanol. In the present work a recombinant xylose fermenting strain of Saccharomyces cerevisiae, TMB3400, cultivated aerobically on wheat straw hydrolysate, was used in simultaneous saccharification and fermentation (SSF) of steam pretreated wheat straw. The influence of fermentation strategy and temperature was studied in relation to xylose consumption, ethanol formation and by-product formation. In addition, model SSF experiments were made to further investigate the influence of temperature on xylose fermentation and by-product formation. In particular for SSF at the highest value of fibre content tested (9% water insoluble substance, WIS), it was found that a fed-batch strategy was clearly superior to the batch process in terms of ethanol yield, where the fed-batch gave 71% of the theoretical yield (based on all available sugars) in comparison to merely 59% for the batch. Higher ethanol yields, close to 80%, were obtained at a WIS-content of 7%. Xylose fermentation significantly contributed to the overall ethanol yields. The choice of temperature in the range 30-37 degrees C was found to be important, especially at higher contents of water insoluble solids (WIS). The optimum temperature was found to be 34 degrees C for the raw material and yeast strain studied. Model SSF experiments with defined medium showed strong temperature effects on the xylose uptake rate and xylitol yield.  相似文献   

18.
High productivity processes are critical for commercial production of cellulosic ethanol. One high productivity process—continuous hydrolysis and fermentation—has been applied in corn ethanol industry. However, little research related to this process has been conducted on cellulosic ethanol production. Here, we report and compare the kinetics of both batch SHF (separate hydrolysis and co‐fermentation) and SSCF (simultaneous saccharification and co‐fermentation) of AFEX? (Ammonia Fiber Expansion) pretreated corn stover (AFEX?‐CS). Subsequently, we designed a SSCF process to evaluate continuous hydrolysis and fermentation performance on AFEX?‐CS in a series of continuous stirred tank reactors (CSTRs). Based on similar sugar to ethanol conversions (around 80% glucose‐to‐ethanol conversion and 47% xylose‐to‐ethanol conversion), the overall process ethanol productivity for continuous SSCF was 2.3‐ and 1.8‐fold higher than batch SHF and SSCF, respectively. Slow xylose fermentation and high concentrations of xylose oligomers were the major factors limiting further enhancement of productivity. Biotechnol. Bioeng. 2013; 110: 1302–1311. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Lignocellulosic biomass from agricultural and agro-industrial residues represents one of the most important renewable resources that can be utilized for the biological production of ethanol. The yeast Saccharomyces cerevisiae is widely used for the commercial production of bioethanol from sucrose or starch-derived glucose. While glucose and other hexose sugars like galactose and mannose can be fermented to ethanol by S. cerevisiae, the major pentose sugars D-xylose and L-arabinose remain unutilized. Nevertheless, D-xylulose, the keto isomer of xylose, can be fermented slowly by the yeast and thus, the incorporation of functional routes for the conversion of xylose and arabinose to xylulose or xylulose-5-phosphate in Saccharomyces cerevisiae can help to improve the ethanol productivity and make the fermentation process more cost-effective. Other crucial bottlenecks in pentose fermentation include low activity of the pentose phosphate pathway enzymes and competitive inhibition of xylose and arabinose transport into the cell cytoplasm by glucose and other hexose sugars. Along with a brief introduction of the pretreatment of lignocellulose and detoxification of the hydrolysate, this review provides an updated overview of (a) the key steps involved in the uptake and metabolism of the hexose sugars: glucose, galactose, and mannose, together with the pentose sugars: xylose and arabinose, (b) various factors that play a major role in the efficient fermentation of pentose sugars along with hexose sugars, and (c) the approaches used to overcome the metabolic constraints in the production of bioethanol from lignocellulose-derived sugars by developing recombinant S. cerevisiae strains.  相似文献   

20.
Simultaneous saccharification and fermentation of cellulose to lactic acid   总被引:3,自引:0,他引:3  
Recent interest in the industrial manufacture of ethanol and other organic chemicals from biomass has led to the utilization of surplus grain and cane juice as a fermentation feedstock. Since those starting materials are also foods, they are expensive. As an alternative, cellulosic substances-the most abundant renewable resources on earth(1)-have long been considered for conversion to readily utilizable hydrolyzates.(2, 3)For the production of ethanol from cellulose, we have proposed the simultaneous saccharification and fermentation (SSF) process.(4) In SSF, enzymatic cellulose hydrolysis and glucose fermentation to ethanol by yeast proceed simultaneously within one vessel. The process advantages-reduced reactor volume and faster saccharification rates-have been confirmed by many researchers.(5-8) During SSF, the faster saccharification rates result because the glucose product is immediately removed, considerably diminishing its inhibitory effect on the cellulase system.(9)To effectively apply the SSF method to produce substances fermented from glucose, several conditions should be satisfied. One is coincident enzymatic hydrolysis and fermentation conditions, such as pH and temperature. The other is that cellulase inhibition by the final product is less than that by glucose and/or cellobiose. One of us has reported that acetic acid, citric acid, itaconic acid, alpha-ketoglutaric acid, lactic acid, and succinic acid scarcely inhibit cellulase.(10) This suggests that if the microorganisms which produce these organic acids were compatible with cellulase reaction conditions, the organic acids could be produced efficiently from cellulosic substrates by SSF.In this article, the successful application of SSF to lactic acid production from cellulose is reported. Though there have been several reports of direct cellulose conversion to organic acids by anaerobes such as Clostridium, only trace amounts of lactic acid were detected in the fermentation medium among the low-molecular-weight fatty acid components.(11-13) Lactic acid is one of the most important organic acids and has a wide range of food-related and industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号