首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Wang X  Jia G  Qiu J  Diao J  Zhu W  Lv C  Zhou Z 《Chirality》2007,19(4):300-306
The enantioselective degradation of benalaxyl has been investigated to elucidate its behavior in several agricultural soils and plants (cucumber). Racemic benalaxyl was fortified into five types of agricultural soils and sprayed leaves of cucumber plants, respectively. The degradation kinetics and the enantiomer fraction (EF) were determined by normal-phase high-performance liquid chromatography (HPLC) with diode array detection (DAD) on the chiral column filled cellulose-tri-(3,5-dimethylphenylcarbamate)-based chiral stationary phase (CDMPC-CSP). The process of the degradation of benalaxyl enantiomers followed pseudo-first-order kinetics in cucumber plant. However, the dissipation phases of benalaxyl enantiomers in soils were biphasic ("slow-fast-slow" process). It has been shown that the degradation of benalaxyl was stereoselective. The results indicated that the (+)-S-benalaxyl showed a faster degradation in plants, while the (-)-R-benalaxyl showed a faster degradation in Soils 3, 4, and 5. No stereoselective degradation was observed in other soils.  相似文献   

2.
Triadimenol is a widely used triazole fungicide and consists of four stereoisomers with 1R,2S, 1S,2R, 1R,2R, and 1S,2S configurations. The trans‐enantiomeric pair (1R,2S‐isomer and 1S,2R‐isomer) is also called triadimenol‐A and the cis‐enantiomeric pair (1R,2R‐isomer and 1S,2S‐isomer) triadimenol‐B. In this study, the stereoselective degradation and chiral stability of triadimenol in two soils were investigated in details. The dissipation of technical triadimenol, a 6:1 mixture of triadimenol‐A and triadimenol‐B, showed significant epimerization from triadimenol‐A to triadimenol‐B occurred along with the dissipation process. The degradation exhibited some stereoselectivity, resulting in a concentration order of 1S,2S > 1R,2R > 1R,2S > 1S,2R or 1S,2S > 1R,2R > 1S,2R > 1R,2S at the end of the 100 days incubation for Baoding soil or Wuhan soil, respectively. Further incubation of triadimenol‐B revealed no epimerization, i.e. triadimenol‐B was configurationally stable in soil, and 1R,2R‐triadimenol degraded slightly slower in the former part and slightly faster in the later part of the incubation than 1S,2S‐triadimenol. Moreover, by incubation of enantiopure 1S,2R‐triadimenol and 1R,2S‐triadimenol, the results documented the epimerization for each enantiomer occurred at both C‐1 and C‐2 positions. Finally, the present work also documented that the enantiomerization reaction for all the four stereoisomers was nearly negligible in the soils. Chirality 25:355‐360:, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
《Chirality》2017,29(2):61-69
In this study the stereoselective bioaccumulation and transformation of triadimefon and the toxicity of triadimefon and its metabolite triadimenol to the green algae Scenedesmus obliquus were studied. In growth inhibition experiments, triadimenol was more toxic than triadimefon, and (1S,2R)‐triadimenol, which has the largest fungicidal activity, presented the highest toxicity to the algae. In bioaccumulation experiments, triadimefon was rapidly taken up by algae cells, and the decrease in the concentration of triadimefon was accompanied by an increase in triadimenol. The transformation of S‐(+)‐ triadimefon was faster than that of the R‐(−)‐enantiomer, resulting in four triadimenol stereoisomers at different forming rates: B2 (1S, 2S) > B1 (1R, 2R) > A2 (1S, 2R) > A1 (1R, 2S). Thus, it is necessary to explore the enantioselective toxicology and ecological fate of these chiral pesticides in an environmental risk assessment. Also, their metabolites should be paid specific attention to since they may pose higher ecological risks.  相似文献   

4.
Wang X  Wang X  Zhang H  Wu C  Wang X  Xu H  Wang X  Li Z 《Chirality》2012,24(2):104-111
The enantioselective degradation of tebuconazole has been investigated to elucidate the behaviors in agricultural soils, cabbage, and cucumber fruit. Rac-tebuconazole was fortified into three types of agricultural soils and sprayed foliage of cabbage and cucumber, respectively. The degradation kinetics, enantiomer fraction and enantiomeric selectivity were determined by reverse-phase high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) on a Lux amylose-2 chiral column. The process of the degradation of tebuconazole enantiomers followed first-order kinetic in the test soils and vegetables. It has been shown that the degradation of tebuconazole was enantioselective. The results indicated that the (+)-S-tebuconazole showed a faster degradation in cabbage, while the (-)-R-tebuconazole dissipated faster than (+)-S-form in cucumber fruit and the test soils.  相似文献   

5.
Li J  Dong F  Xu J  Liu X  Li Y  Shan W  Zheng Y 《Chirality》2012,24(4):294-302
A simple chiral high-performance liquid chromatography method with diode array detector was developed and validated for stereoselective determination of tetraconazole enantiomers in cucumber, muskmelon, and soils. Good separation was achieved at 20°C using cellulose tris-(4-methylbenzoate) as chiral stationary phase, a mixture of n-hexane and ethanol (90:10) as mobile phase at a flow rate of 0.8 ml/min. The assay method was linear over a range of concentrations (0.5-50 μg/ml) and the mean recoveries in all samples were more than 85% for the two enantiomers. The limits of detection for both enantiomers in plant and soil samples were 0.06 and 0.12 μg/g, respectively. Then, the proposed method was successfully applied to the study of enantioselective degradation of rac-tetraconazole in cucumber, muskmelon, and soils. The results showed that the degradation of two enantiomers of tetraconazole followed first-order kinetics and significantly stereoselective behavior was observed in cucumber, muskmelon, and Beijing soil. The preferential absorption and degradation of (-)-S-tetraconzole resulted in an enrichment of the (+)-R-tetraconazole residue in plant samples, whereas the (+)-R-tetraconazole showed a faster degradation in Beijing soil and the stereoselectivity might be caused by microorganisms. No stereoselective degradation was observed in Heilongjiang soil.  相似文献   

6.
Three synthetic genes for the production of anti-sense RNA to different regions of the cucumber mosaic virus (CMV) genome were constructed using virus-derived double-stranded cDNA coupled to a promoter sequence from cauliflower mosaic virus. The genes were used to transform tobacco plants by a Ti plasmid vector. Transgenic plants obtained with the three constructs produced anti-sense RNA at different levels. Plants expressing each of the three anti-sense RNAs were inoculated with CMV and their sensitivity to the virus infection was compared with the non-transformed plants. Only one plant line which expressed relatively low levels of one of the anti-sense RNAs showed resistance to CMV but other plants expressing the same or the other two antisense RNAs had similar sensitivity to CMV infection as the non-transformed plants.  相似文献   

7.
8.
Mobility and deposition of silicon in cucumber plants   总被引:8,自引:0,他引:8  
Abstract. The mobility and deposition of silicon (Si) in cucumber plants grown in hydroponic culture were studied using scanning electron microscopy and energy dispersive X-ray analysis under conditions of powdery mildew fungus infection. Following transfer to Si containing media, plants grown in the absence of Si showed rapid silicification of leafy tissue, primarily in the trichome bases. These plants also exhibited increased disease resistance to Sphaerotheca fuliginea (Schlecht.:Fr.) Poll, and concentration of Si in the leaf epidermis surrounding the invading pathogen. Plants grown in Si-supplemented media and transferred into Si-deficient media contained residual Si in the leaf trichome bases, but failed to display disease resistance or silicification of host tissue surrounding the invading pathogen.  相似文献   

9.
Stereoselective degradation kinetics of tebuconazole in rabbits   总被引:2,自引:0,他引:2  
Zhu W  Qiu J  Dang Z  Lv C  Jia G  Li L  Zhou Z 《Chirality》2007,19(2):141-147
Tebuconazole[(RS)-1-p-chlorophenyl-4,4-dimethyl-3-(1H-1,2,4-triazol-1-ylmethyl)pentan-3-ol] is a potent triazole fungicide and consists of a pair of enantiomers. The enantioselective degradation kinetics of tebuconazole was investigated in rabbits by intravenous (iv) injection. The concentrations of (-)-(R)-tebuconazole and (+)-(S)-tebuconazole in plasma and tissues were determined by HPLC with a cellulose tris(3,5-dimethylphenylcarbamate)-based chiral stationary phase. Enantioselective analysis methods for this fungicide in plasma and tissues were developed and validated. Good linearities were obtained over the concentration range of 0.25-25 mg/l for both enantiomers. The degradation followed pseudo-first-order kinetics and the degradation of the (+)-(S)-tebuconazole was much faster than that of the (-)-(R)-tebuconazole in plasma after administration of racemic tebuconazole. This study also indicated that environmental assessment of enantiomeric degradation may be needed to fully evaluate risks of tebuconazole use.  相似文献   

10.
Stereoselective degradation of tebuconazole in rat liver microsomes   总被引:1,自引:0,他引:1  
Shen Z  Zhu W  Liu D  Xu X  Zhang P  Zhou Z 《Chirality》2012,24(1):67-71
The aim of this study was to assess the stereoselectivity of two tebuconazole [(RS)-1-p-chlorophenyl-4,4-dimethyl-3-(1H-1,2,4-triazol-1-ylmethyl)pentan-3-ol] enantiomers in in vitro system (rat liver microsomes). The analytes were extracted with acetic ether and concentrations were determined by high performance liquid chromatography (HPLC) with a cellulose tris(3,5-dimethylphenylcarbamate)-based chiral stationary phase. The degradation of rac-tebuconazole (15 μM) followed first-order kinetics, and the degradation of the S-tebuconazole (t(1/2) = 22.31 min) was faster than that of the R-tebuconazole (t(1/2) = 48.76 min), but no significant difference between the enantiomers was found in the respective incubation (7.5 μM for each). Kinetic assays showed that the K(m) was different between the two enantiomers (K(mR) = 14.83 ± 2.19, K(mS) = 12.23 ± 2.72). The interaction results revealed that there was competitive inhibition between S- and R-form, and there was a significant difference between the IC(50) of R- to S-tebuconazole and S- to R-tebuconazole (IC(50R/S)/IC(50S/R) = 4.98).  相似文献   

11.
12.
Lu Y  Diao J  Gu X  Zhang Y  Xu P  Wang P  Zhou Z 《Chirality》2011,23(5):424-428
Stereoselective degradation of Diclofop-methyl (DM) has been found in alcohol fermentation of grape must and sucrose solution with dry yeast. A method was developed for separation and determination the two enantiomers of DM during the fermentation process by high-performance liquid chromatography based on cellulose tri-(3,5-dimethylphenyl-carbamate) chiral stationary phase. The results showed that the enantiomers of DM degraded following the first-order kinetics in the sucrose solution and the degradation of DM enantiomers in grape must were biphasic (slow-fast-slow process). In the sucrose solution, half lives of (+)-(R)-DM and (-)-(S)-DM were calculated to be 8.5 h and 3.1 h, respectively. In the grape must, half life of (+)-(R)-DM was calculated to be 41.7 h while (-)-(S)-DM was 16.0 h. The result was that (-)-(S)-enantiomer degraded faster than the (+)-(R)-enantiomer in both alcohol fermentation. The results also showed that the differences of the enantioselective degradation of DM depended on the fermentation matrix. DM was configurationally stable in fermentation, showing no interconversion of (-)-(S)- to (+)-(R)- enantiomer, and vice-versa.  相似文献   

13.
Gu X  Wang P  Liu D  Lv C  Lu Y  Zhou Z 《Chirality》2008,20(2):125-129
The stereoselective degradation of the racemic benalaxyl in vegetables such as tomato, tobacco, sugar beet, capsicum, and the soil has been investigated. The two enantiomers of benalaxyl in the matrix were extracted by organic solvent and determined by validated chiral high-performance liquid chromatography with a cellulose-tris-(3, 5-dimethylphenylcarbamate)-based chiral column. Rac-benalaxyl was fortified into the soil and foliar applied to vegetables. The assay method was linear over a range of concentrations (0.5-50 microg ml(-1)) and the mean recoveries in all the samples were more than 70% for the two enantiomers. The limit of detection for both enantiomers was 0.05 microg g(-1). The results in soil showed that R-(-)-enantiomer dissipated faster than S-(+)-enantiomer and the stereoselectivity might be caused by microorganisms. In tomato, tobacco, sugar, beet, and capsicum plants, there was significantly stereoselective metabolism. The preferential absorption and degradation of S-(+)-enantiomer resulted an enrichment of the R-(-)-enantiomer residue in all the vegetables.  相似文献   

14.
Etiolated seedlings of wheat ( Triticum aestivum L. cv. Jubilar) were treated with individual isomers of triadimenol in order to determine the biochemical basis for plant growth retardation. The Is, 2R isomer showed the highest activity as a plant growth retardant, followed by the 1R, 2s form. The inhibition of growth was not relieved by exogenous gibberellic acid suggesting a mode of action different from inhibition of gibberelln synthesis. Labelling of sterols with radioactive acetate and methionine demonstrated a strong inhibition of sterol synthesis, most likely at the step of C-14 demethylation of obtusifoliol. The extent of growth inhibition was accompanied with the potency of individual isomers to inhibit sterol synthesis. The inhibition of gibberellin synthesis appears of less importance for growth retardation.  相似文献   

15.
Wang Q  Qiu J  Zhou Z  Cao A  Wang X  Zhu W  Dang Z 《Chirality》2009,21(7):699-703
Diniconazole [(E)-(RS)-1-(2,4,-dichlorophenyl)-4,4-dimethyl-2-(1H-1,2,4-triazole-1-yl)pent-1-en-3-ol)] is a potent triazole fungicide. The enantioselective pharmacokinetics of diniconazole enantiomers in rabbits was studied via intravenous (i.v.) injection. The pharmacokinetics and the enantiomer fraction (EF) were determined using normal high-performance liquid chromatography with diode array detection and a cellulose-tris-(3,5-dimethylphenylcarbamate)-based chiral stationary phase (CDMPC-CSP). The time-concentration curves in plasma were fitted by a two-compartment open mode. The results showed that the concentration of S-diniconazole in plasma decreased faster than that of R-diniconazole, and EFs increased with time after administration of racemic diniconazole (rac-diniconazole). The R-/S-enantiomer ratio of the area under the time-plasma concentration curve (AUC(0-infinity)) after administration was 1.52. The total plasma clearance value of S-enantiomer was 1.57-fold higher than that of the R-diniconazole. These results indicate substantial stereoselectivity in the kinetics of diniconazole enantiomers in rabbit.  相似文献   

16.
Potassium phosphite (KPhi) is widely used as a resistance inducer to protect plants against fungal pathogens. In the present study, the effect of KPhi on the activation of defence-related enzymes and biochemicals in Pseudoperonospora cubensis-challenged cucumber plants was investigated. Cucumber plants were treated with KPhi before or after inoculation with P. cubensis and leaf samples were collected at different time courses for physiological and biochemical assessments. Results revealed that the activity of reactive oxygen species (ROS)-scavenging enzymes like catalase, guaiacol peroxidase, superoxide dismutase and ascorbate peroxidase as well as proline and total carbohydrates contents were significantly increased by KPhi application, while hydrogen peroxide (H2O2) concentration, as a disease damage indicator was reduced. The maximum activity of ROS-scavenging system was achieved 3–4 days after KPhi application. These findings suggest that KPhi application prior to pathogen infection efficiently triggers plant defence responses which may reduce the disease severity.  相似文献   

17.
Yan Wang  Yule Liu 《Autophagy》2013,9(8):1247-1248
Autophagy is an evolutionarily conserved process in eukaryotic cells that functions to degrade cytoplasmic components in the vacuole or lysosome. Previous research indicates that the core molecular machinery of autophagosome formation works well in plants, and plant autophagy plays roles in diverse biological processes such as nutrient recycling, development, immunity and responses to a variety of abiotic stresses. Recently, we reported that autophagy contributed to leaf starch degradation, which had been thought to be a process confined to chloroplasts. This finding demonstrated a previously unidentified pathway of leaf starch depletion and a new role of basal autophagy in plants.  相似文献   

18.
Phytochrome degradation   总被引:18,自引:3,他引:15  
Plants actively modulate the levels of the various phyto-chrome isoforms during their life cycle to optimize light absorption and perception. For phytochrome A (phyA), one of the most influential methods of control is selective turnover of the photoreceptor upon photoconversion from the red-absorbing form (Pr) to the far-red-absorbing form (Pfr). Whereas the Pr form has a half-life of approximately 1 week, the Pfr form is rapidly degraded with a half-life of 1–2 h. The ubiquitin/26S proteasome pathway has been implicated in phyA breakdown. In this proteolytic pathway, multiple ubiquitins are covalently attached to proteins committed for degradation; these ubiquitin-protein conjugates then serve as intermediates in the breakdown of the target protein by the 26S proteasome, a multi-subunit proteolytic complex. In several plant species, ubiquitin-phyA conjugates have been detected in vivo following Pfr formation that show accumulation and decay kinetics expected for Pfr degradation intermediates. Analyses of phyA mutants and phyA/phyB chimeras expressed in transgenic plants have been particularly useful in mapping domains within the chromoprotein that are necessary for Pfr degradation. Several domains have been identified within both the N- and C-terminal portions of the photoreceptor that presumably serve as recognition and/or acceptor sites for ubiquitination  相似文献   

19.
A high proportion of agrochemicals are chiral compounds. Since stereoisomers often show different biological and physiological properties, the biological and metabolic responses to these compounds and their fate in the environment are expected to be different. In this work we investigate a possible stereo and/or enantioselective degradation in soil and plants (sunflower) of the fungicide Metalaxyl (rac-Metalaxyl) and the new compound Metalaxyl-M ((-)-(R)-Metalaxyl) and propose procedures for extraction, cleanup, chromatographic separation of enantiomers, and determination of the R : S ratio by using an HPLC chiral column. The degradation of the two stereoisomers of Metalaxyl proved to be enantioselective and dependent on the media: the (+)-(S)-enantiomer showed a faster degradation in plants, while the (-)-(R)-enantiomer showed a faster degradation in soil. In this study there was no evidence that racemization of Metalaxyl-M took place either in soil or in sunflowers.  相似文献   

20.
Aims: To isolate a fucoidan‐utilizing strain from seawater for sea cucumber fucoidan degradation. Methods and Results: The utilization of sea cucumber fucoidan was monitored by H2SO4–phenol assay for neutral sugar. The bacterium CZ1127 was isolated from seawater and shown to have a relatively large maximum fucoidan‐utilizing rate of 81·5%. CZ1127 was confirmed to belong to the family Flavobacteriaceae by 16S rDNA and physiological analyses. This strain has an ability to utilize fucoidans extracted from various sea cucumbers to different degrees. Both extracellular and intracellular enzymes of CZ1127 could degrade sea cucumber fucoidan, as confirmed by high‐performance size exclusion chromatography. The Mr of sea cucumber fucoidan could be reduced from 792·6 kDa to at least 3·7 kDa by the crude intracellular enzyme of this strain. Conclusions: The marine bacterial strain CZ1127, which belongs to the family Flavobacteriaceae, was found to utilize various sea cucumber fucoidans and furthermore showed promise in sea cucumber fucoidan enzymatic degradation and oligosaccharide preparation. Significance and Impact of the Study: The finding of a novel source can be applied in sea cucumber fucoidan enzymatic degradation. Furthermore, it is the first definite report of a bacterial strain that can utilize the fucoidans from various sea cucumbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号