首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Because the presence of sialic acid can extend circulatory lifetime, a high degree of sialylation is often a desirable feature of therapeutic glycoproteins. In this study, the incomplete intracellular sialylation of interferon-gamma (IFN-gamma), produced by Chinese hamster ovary cell culture, was minimized by supplementing the culture medium with N-acetylmannosamine (ManNAc), a direct intracellular precursor for sialic acid synthesis. By introducing 20 mM ManNAc into the culture medium, incompletely sialylated biantennary glycan structures were reduced from 35% to 20% at the Asn97 glycosylation site. This effect was achieved without affecting cell growth or product yield. The intracellular pool of CMP-sialic acid, the nucleotide sugar substrate for sialyltransferase, was also extracted and quantified by HPLC. Feeding of 20 mM ManNAc increased this intracellular pool of CMP-sialic acid by nearly thirtyfold compared with unsupplemented medium. When radiolabeled ManNAc was used to trace the incorporation of the precursor, it was found that supplemental ManNAc was exclusively incorporated into IFN-gamma as sialic acid and that, at 20 mM ManNAc feeding, nearly 100% of product sialylation originated from the supplemental precursor.  相似文献   

2.
3.
The chemical additive sodium butyrate (NaBu) has been applied in cell culture media as a direct and convenient method to increase the protein expression in Chinese hamster ovary (CHO) and other mammalian cells. In this study, we examined an alternative chemical additive, 1,3,4‐O‐Bu3ManNAc, for its effect on recombinant protein production in CHO. Supplementation with 1,3,4‐O‐Bu3ManNAc for two stable CHO cell lines, expressing human erythropoietin or IgG, enhanced protein expression for both products with negligible impact on cell growth, viability, glucose utilization, and lactate accumulation. In contrast, sodium butyrate treatment resulted in a ~20% decrease in maximal viable cell density and ~30% decrease in cell viability at the end of cell cultures compared to untreated or 1,3,4‐O‐Bu3ManNAc treated CHO cell lines for both products. While NaBu treatment enhanced product yields more than the 1,3,4‐O‐Bu3ManNAc treatment, the NaBu treated cells also exhibited higher levels of caspase 3 positive cells using microscopy analysis. Furthermore, the mRNA levels of four cell apoptosis genes (Cul2, BAK, BAX, and BCL2L11) were up‐regulated more in sodium butyrate treated wild‐type, erythropoietin, or IgG expressing CHO‐K1 cell lines while most of the mRNA levels of apoptosis genes in 1,3,4‐O‐Bu3ManNAc treated cell lines remained equal or increased only slightly compared to the levels in untreated CHO cell lines. Finally, lectin blot analysis revealed that the 1,3,4‐O‐Bu3ManNAc‐treated cells displayed higher relative sialylation levels on recombinant EPO, consistent with the effect of the ManNAc component of this additive, compared to control while NaBu treatment led to lower sialylation levels than control, or 1,3,4‐O‐Bu3ManNAc‐treatment. These findings demonstrate that 1,3,4‐O‐Bu3ManNAc has fewer negative effects on cell cytotoxicity and apoptosis, perhaps as a result of a more deliberate uptake and release of the butyrate compounds, while simultaneously increasing the expression of multiple recombinant proteins, and improving the glycosylation characteristics when applied at comparable molarity levels to NaBu. Thus, 1,3,4‐O‐Bu3ManNAc represents a highly promising media additive alternative in cell culture for improving protein yields without sacrificing cell mass and product quality in future bioproduction processes.
  相似文献   

4.
One of the goals of recombinant glycoprotein production is to achieve consistent glycosylation. Although many studies have examined the changes in the glycosylation quality of recombinant protein with culture, very little has been done to examine the underlying changes in glycosylation gene expression as a culture progresses. In this study, the expression of 24 genes involved in N‐glycosylation were examined using quantitative RT PCR to gain a better understanding of recombinant glycoprotein glycosylation during production processes. Profiling of the N‐glycosylation genes as well as concurrent analysis of glycoprotein quality was performed across the exponential, stationary and death phases of a fed‐batch culture of a CHO cell line producing recombinant human interferon‐γ (IFN‐γ). Of the 24 N‐glycosylation genes examined, 21 showed significant up‐ or down‐regulation of gene expression as the fed‐batch culture progressed from exponential, stationary and death phase. As the fed‐batch culture progressed, there was also an increase in less sialylated IFN‐γ glycoforms, leading to a 30% decrease in the molar ratio of sialic acid to recombinant IFN‐γ. This correlated with decreased expression of genes involved with CMP sialic acid synthesis coupled with increased expression of sialidases. Compared to batch culture, a low glutamine fed‐batch strategy appears to need a 0.5 mM glutamine threshold to maintain similar N‐glycosylation genes expression levels and to achieve comparable glycoprotein quality. This study demonstrates the use of quantitative real time PCR method to identify possible “bottlenecks” or “compromised” pathways in N‐glycosylation and subsequently allow for the development of strategies to improve glycosylation quality. Biotechnol. Bioeng. 2010;107: 516–528. © 2010 Wiley Periodicals, Inc.  相似文献   

5.
Despite the positive effects of mild hypothermic conditions on monoclonal antibody (mAb) productivity (qmAb) during mammalian cell culture, the impact of reduced culture temperature on mAb Fc‐glycosylation and the mechanism behind changes in the glycan composition are not fully established. The lack of knowledge about the regulation of dynamic intracellular processes under mild hypothermia restricts bioprocess optimization. To address this issue, a mathematical model that quantitatively describes Chinese hamster ovary (CHO) cell behavior and metabolism, mAb synthesis and mAb N‐linked glycosylation profile before and after the induction of mild hypothermia is constructed. Results from this study show that the model is capable of representing experimental results well in all of the aspects mentioned above, including the N‐linked glycosylation profile of mAb produced under mild hypothermia. Most importantly, comparison between model simulation results for different culture temperatures suggests the reduced rates of nucleotide sugar donor production and galactosyltransferase (GalT) expression to be critical contributing factors that determine the variation in Fc‐glycan profiles between physiological and mild hypothermic conditions in stable CHO transfectants. This is then confirmed using experimental measurements of GalT expression levels, thereby closing the loop between the experimental and the computational system. The identification of bottlenecks within CHO cell metabolism under mild hypothermic conditions will aid bioprocess optimization, for example, by tailoring feeding strategies to improve NSD production, or manipulating the expression of specific glycosyltransferases through cell line engineering. Biotechnol. Bioeng. 2017;114: 1570–1582. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals Inc.  相似文献   

6.
N,N'‐diacetylbacillosamine is a novel sugar that plays a key role in bacterial glycosylation. Three enzymes are required for its biosynthesis in Campylobacter jejuni starting from UDP‐GlcNAc. The focus of this investigation, PglE, catalyzes the second step in the pathway. It is a PLP‐dependent aminotransferase that converts UDP‐2‐acetamido‐4‐keto‐2,4,6‐trideoxy‐d ‐glucose to UDP‐2‐acetamido‐4‐amino‐2,4,6‐trideoxy‐d ‐glucose. For this investigation, the structure of PglE in complex with an external aldimine was determined to a nominal resolution of 2.0 Å. A comparison of its structure with those of other sugar aminotransferases reveals a remarkable difference in the manner by which PglE accommodates its nucleotide‐linked sugar substrate.  相似文献   

7.
Compared with N‐linked glycosylation, the analysis of O‐GalNAc glycosylation is extremely challenging due to the high structure diversity of glycans and lack of glycosidases to release O‐GalNAc glycans. In this work, a glycoform simplification strategy by combining HILIC enrichment with chemical de‐sialylation to characterize O‐GalNAc glycosylation of human serum is presented. This method is first validated by using the bovine fetuin as the test sample. It is found that more than 90% of the sialic acid residues can be removed from bovine fetuin by the acid‐assisted de‐sialylation method, which significantly simplifies the glycan structure and improves identification sensitivity. Indeed, the number of identified peptide backbones increases nearly one fold when this strategy is used. This method is further applied to analyze the human serum sample, where 185 O‐GalNAc modified peptide sequences corresponding to 94 proteins with high confidence (FDR (false detection rate) <1%) are identified. This straight forward strategy can significantly reduce the variations of glycan structures, and is applicable to analysis of other biological samples with high complexity.  相似文献   

8.
Botrytis cinerea is a model plant‐pathogenic fungus that causes grey mould and rot diseases in a wide range of agriculturally important crops. A previous study has identified two enzymes and corresponding genes (bcdh, bcer) that are involved in the biochemical transformation of uridine diphosphate (UDP)‐glucose, the major fungal wall nucleotide sugar precursor, to UDP‐rhamnose. We report here that deletion of bcdh, the first biosynthetic gene in the metabolic pathway, or of bcer, the second gene in the pathway, abolishes the production of rhamnose‐containing glycans in these mutant strains. Deletion of bcdh or double deletion of both bcdh and bcer has no apparent effect on fungal development or pathogenicity. Interestingly, deletion of the bcer gene alone adversely affects fungal development, giving rise to altered hyphal growth and morphology, as well as reduced sporulation, sclerotia production and virulence. Treatments with wall stressors suggest the alteration of cell wall integrity. Analysis of nucleotide sugars reveals the accumulation of the UDP‐rhamnose pathway intermediate UDP‐4‐keto‐6‐deoxy‐glucose (UDP‐KDG) in hyphae of the Δbcer strain. UDP‐KDG could not be detected in hyphae of the wild‐type strain, indicating fast conversion to UDP‐rhamnose by the BcEr enzyme. The correlation between high UDP‐KDG and modified cell wall and developmental defects raises the possibility that high levels of UDP‐KDG result in deleterious effects on cell wall composition, and hence on virulence. This is the first report demonstrating that the accumulation of a minor nucleotide sugar intermediate has such a profound and adverse effect on a fungus. The ability to identify molecules that inhibit Er (also known as NRS/ER) enzymes or mimic UDP‐KDG may lead to the development of new antifungal drugs.  相似文献   

9.
The addition of sialic acid residues to glycoproteins can affect important protein properties including biological activity and in vivo circulatory half-life. For sialylation to occur, the donor sugar nucleotide cytidine monophospho-sialic acid (CMP-SA) must be generated and enzymatically transferred to an acceptor oligosaccharide. However, examination of insect cells grown in serum-free medium revealed negligible native levels of the most common sialic acid nucleotide, CMP-N-acetylneuraminic acid (CMP-Neu5Ac). To increase substrate levels, the enzymes of the metabolic pathway for CMP-SA synthesis have been engineered into insect cells using the baculovirus expression system. In this study, a human CMP-sialic acid synthase cDNA was identified and found to encode a protein with 94% identity to the murine homologue. The human CMP-sialic acid synthase (Cmp-Sas) is ubiquitously expressed in human cells from multiple tissues. When expressed in insect cells using the baculovirus vector, the encoded protein is functional and localizes to the nucleus as in mammalian cells. In addition, co-expression of Cmp-Sas with the recently cloned sialic acid phosphate synthase with N-acetylmannosamine feeding yields intracellular CMP-Neu5Ac levels 30 times higher than those observed in unsupplemented CHO cells. The absence of any one of these three components abolishes CMP-Neu5Ac production in vivo. However, when N-acetylmannosamine feeding is omitted, the sugar nucleotide form of deaminated Neu5Ac, CMP-2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (CMP-KDN), is produced instead, indicating that alternative sialic acid glycoforms may eventually be possible in insect cells. The human CMP-SAS enzyme is also capable of CMP-N-glycolylneuraminic acid (CMP-Neu5Gc) synthesis when provided with the proper substrate. Engineering the CMP-SA metabolic pathway may be beneficial in various cell lines in which CMP-Neu5Ac production limits sialylation of glycoproteins or other glycans.  相似文献   

10.
Nucleotide sugars are considered as bottleneck and expensive substrates for enzymatic glycan synthesis using Leloir‐glycosyltransferases. Synthesis from cheap substrates such as monosaccharides is accomplished by multi‐enzyme cascade reactions. Optimization of product yields in such enzyme modules is dependent on the interplay of multiple parameters of the individual enzymes and governed by a considerable time effort when convential analytic methods like capillary electrophoresis (CE) or HPLC are applied. We here demonstrate for the first time multiplexed CE (MP‐CE) as fast analytical tool for the optimization of nucleotide sugar synthesis with multi‐enzyme cascade reactions. We introduce a universal separation method for nucleotides and nucleotide sugars enabling us to analyze the composition of six different enzyme modules in a high‐throughput format. Optimization of parameters (T, pH, inhibitors, kinetics, cofactors and enzyme amount) employing MP‐CE analysis is demonstrated for enzyme modules for the synthesis of UDP‐α‐D‐glucuronic acid (UDP‐GlcA) and UDP‐α‐D‐galactose (UDP‐Gal). In this way we achieve high space‐time‐yields: 1.8 g/L?h for UDP‐GlcA and 17 g/L?h for UDP‐Gal. The presented MP‐CE methodology has the impact to be used as general analytical tool for fast optimization of multi‐enzyme cascade reactions.  相似文献   

11.
Uridine diphosphate N ‐ acetylglucosamine (UDP‐GlcNAc) 2‐epimerase catalyzes the interconversion of UDP‐GlcNAc to UDP‐N‐acetylmannosamine (UDP‐ManNAc), which is used in the biosynthesis of cell surface polysaccharides in bacteria. Biochemical experiments have demonstrated that mutation of this enzyme causes changes in cell morphology and the thermoresistance of the cell wall. Here, we present the crystal structures of Methanocaldococcus jannaschii UDP‐GlcNAc 2‐epimerase in open and closed conformations. A comparison of these crystal structures shows that upon UDP and UDP‐GlcNAc binding, the enzyme undergoes conformational changes involving a rigid‐body movement of the C‐terminal domain. We also present the crystal structure of Bacillus subtilis UDP‐GlcNAc 2‐epimerase in the closed conformation in the presence of UDP and UDP‐GlcNAc. Although a structural overlay of these two closed‐form structures reveals that the substrate‐binding site is evolutionarily conserved, some areas of the allosteric site are distinct between the archaeal and bacterial UDP‐GlcNAc 2‐epimerases. This is the first report on the crystal structure of archaeal UDP‐GlcNAc 2‐epimerase, and our results clearly demonstrate the changes between the open and closed conformations of this enzyme. Proteins 2014; 82:1519–1526. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
LIGHT recruits and activates naive T cells in the islets at the onset of diabetes. IFN‐γ secreted by activated T lymphocytes is involved in beta cell apoptosis. However, whether LIGHT sensitizes IFNγ‐induced beta cells destruction remains unclear. In this study, we used the murine beta cell line MIN6 and primary islet cells as models for investigating the underlying cellular mechanisms involved in LIGHT/IFNγ – induced pancreatic beta cell destruction. LIGHT and IFN‐γ synergistically reduced MIN6 and primary islet cells viability; decreased cell viability was due to apoptosis, as demonstrated by a significant increase in Annexin V+ cell percentage, detected by flow cytometry. In addition to marked increases in cytochrome c release and NF‐κB activation, the combination of LIGHT and IFN‐γ caused an obvious decrease in expression of the anti‐apoptotic proteins Bcl‐2 and Bcl‐xL, but an increase in expression of the pro‐apoptotic proteins Bak and Bax in MIN6 cells. Accordingly, LIGHT deficiency led to a decrease in NF‐κB activation and Bak expression, and peri‐insulitis in non‐obese diabetes mice. Inhibition of NF‐κB activation with the specific NF‐κB inhibitor, PDTC (pyrrolidine dithiocarbamate), reversed Bcl‐xL down‐regulation and Bax up‐regulation, and led to a significant increase in LIGHT‐ and IFN‐γ‐treated cell viability. Moreover, cleaved caspase‐9, ‐3, and PARP (poly (ADP‐ribose) polymerase) were observed after LIGHT and IFN‐γ treatment. Pretreatment with caspase inhibitors remarkably attenuated LIGHT‐ and IFNγ‐induced cell apoptosis. Taken together, our results indicate that LIGHT signalling pathway combined with IFN‐γ induces beta cells apoptosis via an NF‐κB/Bcl2‐dependent mitochondrial pathway.  相似文献   

13.
Large-scale transient expression in mammalian cells is a rapid protein production technology often used to shorten overall timelines for biotherapeutics drug discovery. In this study we demonstrate transient expression in a Chinese hamster ovary (CHO) host (ExpiCHO-S™) cell line capable of achieving high recombinant antibody expression titers, comparable to levels obtained using human embryonic kidney (HEK) 293 cells. For some antibodies, ExpiCHO-S™ cells generated protein materials with better titers and improved protein quality characteristics (i.e., less aggregation) than those from HEK293. Green fluorescent protein imaging data indicated that ExpiCHO-S™ displayed a delayed but prolonged transient protein expression process compared to HEK293. When therapeutic glycoproteins containing non-Fc N-linked glycans were expressed in transient ExpiCHO-S™, the glycan pattern was unexpectedly found to have few sialylated N-glycans, in contrast to glycans produced within a stable CHO expression system. To improve N-glycan sialylation in transient ExpiCHO-S™, we co-transfected galactosyltransferase and sialyltransferase genes along with the target genes, as well as supplemented the culture medium with glycan precursors. The authors have demonstrated that co-transfection of glycosyltransferases combined with medium addition of galactose and uridine led to increased sialylation content of N-glycans during transient ExpiCHO-S™ expression. These results have provided a scientific basis for developing a future transient CHO system with N-glycan compositions that are similar to those profiles obtained from stable CHO protein production systems. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2724, 2019  相似文献   

14.
Epithelial ovarian cancer is one of the most fatal gynecological malignancies in adult women. As studies on protein N‐glycosylation have extensively reported aberrant patterns in the ovarian cancer tumor microenvironment, obtaining spatial information will uncover tumor‐specific N‐glycan alterations in ovarian cancer development and progression. matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is employed to investigate N‐glycan distribution on formalin‐fixed paraffin‐embedded ovarian cancer tissue sections from early‐ and late‐stage patients. Tumor‐specific N‐glycans are identified and structurally characterized by porous graphitized carbon‐liquid chromatography‐electrospray ionization‐tandem mass spectrometry (PGC‐LC‐ESI‐MS/MS), and then assigned to high‐resolution images obtained from MALDI‐MSI. Spatial distribution of 14 N‐glycans is obtained by MALDI‐MSI and 42 N‐glycans (including structural and compositional isomers) identified and structurally characterized by LC‐MS. The spatial distribution of oligomannose, complex neutral, bisecting, and sialylated N‐glycan families are localized to the tumor regions of late‐stage ovarian cancer patients relative to early‐stage patients. Potential N‐glycan diagnostic markers that emerge include the oligomannose structure, (Hex)6 + (Man)3(GlcNAc)2, and the complex neutral structure, (Hex)2 (HexNAc)2 (Deoxyhexose)1 + (Man)3(GlcNAc)2. The distribution of these markers is evaluated using a tissue microarray of early‐ and late‐stage patients.  相似文献   

15.
Human sex hormone binding globulin (hSHBG) is a serum glycoprotein central to the transport and targeted delivery of sex hormones to steroid‐sensitive tissues. Several molecular mechanisms of action of hSHBG, including the function of its attached glycans remain unknown. Here, we perform a detailed site‐specific characterization of the N‐ and O‐linked glycosylation of serum‐derived hSHBG. MS‐driven glycoproteomics and glycomics combined with exoglycosidase treatment were used in a bottom‐up and top‐down manner to determine glycosylation sites, site‐specific occupancies and monosaccharide compositions, detailed glycan structures, and the higher level arrangement of glycans on intact hSHBG. It was found that serum‐derived hSHBG is N‐glycosylated at Asn351 and Asn367 with average molar occupancies of 85.1 and 95.3%, respectively. Both sites are occupied by the same six sialylated and partly core fucosylated bi‐ and triantennary N‐Glycoforms with lactosamine‐type antennas of the form (±NeuAcα6)Galβ4GlcNAc. N‐Glycoforms of Asn367 were slightly more branched and core fucosylated than Asn351 N‐glycoforms due probably to a more surface‐exposed glycosylation site. The N‐terminal Thr7 was fully occupied by the two O‐linked glycans NeuAcα3Galβ3(NeuAcα6)GalNAc (where NeuAc is N‐acetylneuraminic acid and GalNAc is N‐acetylgalactosamine) and NeuAcα3Galβ3GalNAc in a 1:6 molar ratio. Electrophoretic analysis of intact hSHBG revealed size and charge heterogeneity of the isoforms circulating in blood serum. Interestingly, the size and charge heterogeneity were shown to originate predominantly from differential Asn351 glycan occupancies and N‐glycan sialylation that may modulate the hSHBG activity. To date, this work represents the most detailed structural map of the heterogeneous hSHBG glycosylation, which is a prerequisite for investigating the functional aspects of the hSHBG glycans.  相似文献   

16.
17.
Phosphoglycolate phosphatase from human red blood cells   总被引:1,自引:0,他引:1  
The nucleotide profile of rat liver Golgi vesicles isolated using sucrose gradients has been determined by high-pressure liquid chromatography. The nucleotide composition of this Golgi preparation, probably modified by osmotic shock, differs from that of liver supernatant fraction and from isolated rough microsomes. The major nucleotides present in the Golgi have been tentatively identified as uridine diphosphate and a peak containing uridine monophosphate plus cytidine monophosphate at 1.6 and 0.5 nmol/mg protein, respectively. In order to minimize osmotic shock, we have modified the isolation of Golgi using D2O-sucrose gradients. Intact Golgi from these gradients were extracted directly and analyzed. Higher levels of nucleotides were found in the unshocked preparation, and the profile was also altered, although it was still distinct from that of liver supernatant. Four major peaks were found, tentatively identified as uridine monophosphate plus cytidine monophosphate, adenosine monophosphate, UDP, and uridine diphosphogalactose plus uridine diphosphoglucose, at 6.4, 6.4, 6.1, and 3.3 nmol/mg protein. These results indicate that the membrane of the Golgi apparatus is not freely permeable to nucleotides but that selective mechanisms exist for the uptake or exclusion of specific nucleotides from this organelle. The fact that UDP is selectively retained in shocked Golgi vesicles may indicate the presence of a binding protein which would prevent interference of Golgi function by UDP, a highly inhibitory product of galactosyltransferase.  相似文献   

18.
Lectin array is becoming important in profiling targeted glycan/glycoprotein, but weak interaction between lectin and glycan causes low sensitivity of the approach. This study aims to develop a bead‐based lectin array for improving the sensitivity of glycosylation profiling. Lectins are chemically coupled to fluorescent dye coated microbeads, and glycan‐lectin recognition is carried out three dimensionally. The performance of this platform was evaluated, and the LOD of lectin Ricinus communis agglutinin 120 (RCA120) was 50 pg/mL (1 pM) of asialofetuin, providing the bead‐based lectin microarray with the highest sensitivity among the reported lectin microarrays. Furthermore, multiplexed assay was performed, which allowed the simultaneous detection of multiple carbohydrate epitopes in a single reaction vessel. The glycosylation patterns of hepatocellular carcinoma associated immunoglobulin G were analyzed, and increased (α‐1,6) core fucosylation and (α‐2,6) sialylation patterns were observed, which may provide significant clinical evidence for disease diagnosis.  相似文献   

19.
Recombinant monoclonal antibodies (MAbs) are increasingly being used for therapeutic use and correct glycosylation of these MAbs is essential for their correct function. Glycosylation profiles are host cell‐ and antibody class‐dependent and can change over culture time and environmental conditions. Therefore, rapid monitoring of glycan addition/status is of great importance for process validity. We describe two workflows of generally applicability for glycan profiling of purified and gel‐purified MAbs produced in NS0 and CHO cells, in which small‐scale antibody purification and buffer exchange is combined with PNGase F glycan cleavage and graphite HyperCarb desalting. MALDI‐ToF mass spectrometry is used for sensitive detection of glycan forms, with the ability to confirm glycan structures by selective ion fragmentation. Both workflows are rapid, technically simple and amenable to automation, and use in multi‐well formats. Biotechnol. Bioeng. 2010;107: 902–908. © 2010 Wiley Periodicals, Inc.  相似文献   

20.
Previous studies have reported that insect cell lines lack the capacity to generate endogenously the nucleotide sugar, CMP-Neu5Ac, required for sialylation of glycoconjugates. In this study, the biosynthesis of this activated form of sialic acid completely from endogenous metabolites is demonstrated for the first time in insect cells by expressing the mammalian genes required for the multistep conversion of endogenous UDP-GlcNAc to CMP-Neu5Ac. The genes for UDP-GlcNAc-2-epimerase/ManNAc kinase (EK), sialic acid 9-phosphate synthase (SAS), and CMP-sialic acid synthetase (CSAS) were coexpressed in insect cells using baculovirus expression vectors, but the CMP-Neu5Ac and precursor Neu5Ac levels synthesized were found to be lower than those achieved with ManNAc supplementation due to feedback inhibition of the EK enzyme by CMP-Neu5Ac. When sialuria-like mutant EK genes, in which the site for feedback regulation has been mutated, were used, CMP-Neu5Ac was synthesized at levels more than 4 times higher than that achieved with the wild-type EK and 2.5 times higher than that achieved with ManNAc feeding. Addition of N-acetylglucosamine (GlcNAc), a precursor for UDP-GlcNAc, to the media increased the levels of CMP-Neu5Ac even more to a level 7.5 times higher than that achieved with ManNAc supplementation, creating a bottleneck in the conversion of Neu5Ac to CMP-Neu5Ac at higher levels of UDP-GlcNAc. The present study provides a useful biochemical strategy to synthesize and enhance the levels of the sialylation donor molecule, CMP-Neu5Ac, a critical limiting substrate for the generation of complex glycoproteins in insect cells and other cell culture systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号