首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some recombinant proteins expressed by baculovirus expression vector systems (BEVS) aggregate because the BEVS can produce large amounts of protein late during infection, when post-translational modification and protein quality control mechanisms are inactive. For expression during earlier stages than that driven by the polyhedrin (polh) very late promoter, transfer vectors were generated in which this promoter was replaced with a green fluorescent protein (GFP) gene controlled by a vp39 late promoter modified to contain HR3, one of the homologous DNA regions (HRs) of Bombyx mori nuclear polyhedrosis virus (BmNPV). The rise times of the fluorescence of GFP expressed by using recombinant viruses carrying the modified vp39 promoter were earlier than those associated with either the polh promoter or the native vp39 promoter lacking HR3. In transient expression assays, the vp39 late promoter in transfer vectors behaved like a delayed-early promoter, and was enhanced by HR3, and required IE-1 protein and various viral gene products encoded on both sides of BmNPV polh. When the vp39 promoter with HR3 was used, the aggregation of several foreign proteins expressed by the BEVS was markedly decreased. This study provides a new option for the expression of sufficiently quality-controlled proteins by using the vp39 promoter and HR3 in BEVS early in baculovirus infection, when the infection has caused little damage in the host cells.  相似文献   

2.
Enterovirus 71 (EV71) is responsible for the outbreaks of hand‐foot‐and‐mouth disease in the Asia‐Pacific region. To produce the virus‐like particle (VLP) vaccine, we previously constructed recombinant baculoviruses to co‐express EV71 P1 polypeptide and 3CD protease using the Bac‐to‐Bac® vector system. The recombinant baculoviruses resulted in P1 cleavage by 3CD and subsequent VLP assembly in infected insect cells, but caused either low VLP yield or excessive VLP degradation. To tackle the problems, here we explored various expression cassette designs and flashBAC GOLD? vector system which was deficient in v‐cath and chiA genes. We found that the recombinant baculovirus constructed using the flashBAC GOLD? system was insufficient to improve the EV71 VLP yield. Nonetheless, BacF‐P1‐C3CD, a recombinant baculovirus constructed using the flashBAC GOLDTM system to express P1 under the polh promoter and 3CD under the CMV promoter, dramatically improved the VLP yield while alleviating the VLP degradation. Infection of High FiveTM cells with BacF‐P1‐C3CD enhanced the total and extracellular VLP yield to ≈268 and ≈171 mg/L, respectively, which enabled the release of abundant VLP into the supernatant and simplified the downstream purification. Intramuscular immunization of mice with 5 μg purified VLP induced cross‐protective humoral responses and conferred protection against lethal virus challenge. Given the significantly improved extracellular VLP yield (≈171 mg/L) and the potent immunogenicity conferred by 5 μg VLP, one liter High FiveTM culture produced ≈12,000 doses of purified vaccine, thus rendering the EV71 VLP vaccine economically viable and able to compete with inactivated virus vaccines. Biotechnol. Bioeng. 2015;112: 2005–2015. © 2015 Wiley Periodicals, Inc.
  相似文献   

3.
4.
A stable Tn-5B1-4 insect cell line co-expressing the recombinant GFPuv-beta1,3-N-acetylglucosaminyltransferase 2 (GFPuv-beta3GnT2) protein fused to a melittin signal sequence with a lectin-like molecular chaperone, human calnexin (hCNX) or human calreticulin (hCRT), was constructed. The expression of either of these molecular chaperones is under the control of a weak promoter, OpMNPV IE2, while that of GFPuv-beta3GnT2 is under the control of Bombyx mori actin promoter. This co-expression system was compared between two different insect cell-baculovirus expression systems: (1) co-infection of the recombinant baculovirus containing a molecular chaperone (AcNPV-hCNX or -hCRT) with a recombinant baculovirus containing GFPuv-beta3GnT2 fused with the melittin signal sequence (AcNPV-me-GGT); (2) infection of AcNPV-me-GGT to a stably expressing cell line for either hCNX or hCRT. In the co-infection system, the intracellular GFPuv-beta3GnT2 expression level was low because of the improved secretion level ratio of the fusion protein, due to the chaperone expression. In the case of infection to the stably expressing cell line for a chaperone, the extracellular GFPuv-beta3GnT2 expression level was similar to the intracellular expression level. This suggests that the amount of expressed chaperone is not sufficient to process beta3GnT2. On the other hand, the co-expression system produced an extracellular beta3GnT activity of 22-23 mU/mL, which was approximately 3.5- and 11-fold higher than those of the stable expression of the fusion gene without the chaperone and the conventional BES with the addition of protease, respectively. The secretion level ratio of the fusion protein of this system increased to 82%, which was approximately 1.5-fold that of any other expression system investigated thus far. These results indicate that the ratio of the expression level of the target gene to that of the chaperone gene may be an important factor in maximizing the production of a target protein. The molecular-chaperone-assisted expression system using a stably transformed insect cell line offers promising prospects for the efficient production of recombinant secretory proteins in insect cells.  相似文献   

5.
6.
In this study, human α-1,4-N-acetylglucosaminyltransferase (α4GnT) fused with GFPuv (GFPuv-α4GnT) was expressed using both a transformed cell system and silkworm larvae. A Tn-pXgp-GFPuv-α4GnT cell line, isolated after expression vector transfection, produced 106 mU/ml of α4GnT activity in suspension culture. When Bombyx mori nucleopolyhedrovirus containing a GFPuv-α4GnT fusion gene (BmNPV-CP /GFPuv-α4GnT) bacmid was injected into silkworm larvae, α4GnT activity in larval hemolymph was 352 mU/ml, which was 3.3-fold higher than that of the Tn-pXgp-GFPuv-α4GnT cell line. With human calnexin (CNX) or human immunoglobulin heavy chain-binding protein (BiP, GRP78) coexpressed under the control of the ie-2 promoter, α4GnT activity in larval hemolymph increased by 1.4–2.0-fold. Moreover, when BmNPV-CP /GFPuv-α4GnT bacmid injection was delayed for 3 h after BmNPV-CP /CNX injection, the α4GnT activity increased significantly to 922 mU/ml, which was 8.7-fold higher than that of the Tn-pXgp-GFPuv-α4GnT cell line. Molecular chaperone assisted-expression in silkworm larvae using the BmNPV bacmid is a promising tool for recombinant protein production. This system could lead to large-scale production of more complex recombinant proteins.  相似文献   

7.
《Gene》1997,190(1):181-189
The baculovirus expression system using the Autographa californica nuclear polyhedrosis virus (AcNPV) has been extensively utilized for high-level expression of cloned foreign genes, driven by the strong viral promoters of polyhedrin (polh) and p10 encoding genes. A parallel system using Bombyx mori nuclear polyhedrosis virus (BmNPV) is much less exploited because the choice and variety of BmNPV-based transfer vectors are limited. Using a transient expression assay, we have demonstrated here that the heterologous promoters of the very late genes polh and p10 from AcNPV function as efficiently in BmN cells as the BmNPV promoters. The location of the cloned foreign gene with respect to the promoter sequences was critical for achieving the highest levels of expression, following the order + 35 > + 1 > − 3 > − 8 nucleotides (nt) with respect to the polh or p10 start codons. We have successfully generated recombinant BmNPV harboring AcNPV promoters by homeologous recombination between AcNPV-based transfer vectors and BmNPV genomic DNA. Infection of BmN cell lines with recombinant BmNPV showed a temporal expression pattern, reaching very high levels in 60–72 h post infection. The recombinant BmNPV harboring the firefly luciferase-encoding gene under the control of AcNPV polh or p10 promoters, on infection of the silkworm larvae led to the synthesis of large quantities of luciferase. Such larvae emanated significant luminiscence instantaneously on administration of the substrate luciferin resulting in ‘glowing silkworms’. The virus-infected larvae continued to glow for several hours and revealed the most abundant distribution of virus in the fat bodies. In larval expression also, the highest levels were achieved when the reporter gene was located at +35 nt of the polh.  相似文献   

8.
9.
The human tumor suppressor SMARCB1/INI1/SNF5/BAF47 (SNF5) is a core subunit of the multi-subunit ATP-dependent chromatin remodeling complex SWI/SNF, also known as Brahma/Brahma-related gene 1 (BRM/BRG1)-associated factor (BAF). Experimental studies of SWI/SNF are currently considerably limited by the low cellular abundance of this complex; thus, recombinant protein production represents a key to obtain the SWI/SNF proteins for molecular and structural studies. While the expression of mammalian proteins in bacteria is often difficult, the baculovirus/insect cell expression system can overcome limitations of prokaryotic expression systems and facilitate the co-expression of multiple proteins. Here, we demonstrate that human full-length SNF5 tagged with a C-terminal 3?×?FLAG can be expressed and purified from insect cell extracts in monomeric and dimeric forms. To this end, we constructed a set of donor and acceptor vectors for the expression of individual proteins and protein complexes in the baculovirus/insect cell expression system under the control of a polyhedrin (polh), p10, or a minimal Drosophila melanogaster Hsp70 promoter. We show that the SNF5 expression level could be modulated by the selection of the promoter used to control expression. The vector set also comprises vectors that encode a 3?×?FLAG tag, Twin-Strep tag, or CBP-3?×?FLAG-TEV-ProteinA triple tag to facilitate affinity selection and detection. By gel filtration and split-ubiquitin assays, we show that human full-length SNF5 has the ability to self-interact. Overall, the toolbox developed herein offers the possibility to flexibly select the promoter strength as well as the affinity tag and is suggested to advance the recombinant expression of chromatin remodeling factors and other challenging proteins.  相似文献   

10.
《Gene》1997,190(1):145-150
Promoter function of the putative polyhedrin-encoding gene (polh) of Spodoptera litura nuclear polyhedrosis virus (S1MNPV) was determined by transferring it to the Autographa californica nuclear polyhedrosis virus (AcMNPV) through the AcNPV polh based vector, pVL1393. Three transfer vectors pCBT2, pCBT3 and pCBT4 were constructed by substituting the promoter and the neighbouring sequences of AcNPV in pVL1393 by that of SINPV. The Escherichia coli lacZ gene was placed downstream from the S1NPV polh promoter in the hybrid transfer vector (pCBT) constructs. Co-transfection of Spodoptera frugiperda cells (Sf9) with each of the pCBTlacZ vector and wild-type AcNPV DNAs led to synthesis of β-galactosidase (βGal). The plaque-purified recombinant viruses (S1AcNPV.lacZ) expressing lacZ under the polh promoter of S1NPV are stable. The highest βGal activity was obtained with S1AcNPV4.lacZ. Production of βGal with recombinant virus, S1AcNPV3.lacZ in which S1NPV polh promoter is in the reverse orientation in the AcNPV genome, is 83% of that produced by S1AcNPV4.lacZ. These results indicate that the S1NPV polh promoter is active in the genetic environment of AcNPV; the polh of S1NPV is phylogenetically related to AcNPV like other baculoviruses.  相似文献   

11.
The baculovirus expression vector system (BEVS) is a widely used platform for the production of recombinant eukaryotic proteins. However, the BEVS has limitations in comparison to other higher eukaryotic expression systems. First, the insect cell lines used in the BEVS cannot produce glycoproteins with complex‐type N‐glycosylation patterns. Second, protein production is limited as cells die and lyse in response to baculovirus infection. To delay cell death and lysis, we transformed several insect cell lines with an expression plasmid harboring a vankyrin gene (P‐vank‐1), which encodes an anti‐apoptotic protein. Specifically, we transformed Sf9 cells, Trichoplusia ni High FiveTM cells, and SfSWT‐4 cells, which can produce glycoproteins with complex‐type N‐glycosylation patterns. The latter was included with the aim to increase production of glycoproteins with complex N‐glycans, thereby overcoming the two aforementioned limitations of the BEVS. To further increase vankyrin expression levels and further delay cell death, we also modified baculovirus vectors with the P‐vank‐1 gene. We found that cell lysis was delayed and recombinant glycoprotein yield increased when SfSWT‐4 cells were infected with a vankyrin‐encoding baculovirus. A synergistic effect in elevated levels of recombinant protein production was observed when vankyrin‐expressing cells were combined with a vankyrin‐encoding baculovirus. These effects were observed with various model proteins including medically relevant therapeutic proteins. In summary, we found that cell lysis could be delayed and recombinant protein yields could be increased by using cell lines constitutively expressing vankyrin or vankyrin‐encoding baculovirus vectors. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1496–1507, 2017  相似文献   

12.
As an important insect immune response, apoptosis plays a critical role in the interaction between baculoviruses and insect hosts. Previous reports have identified inhibitor of apoptosis (IAP) proteins in both insects and baculoviruses, but the relationship between these proteins is still not clearly understood. Here, we found that insect IAP proteins were clustered with baculovirus IAP3, suggesting that the baculovirus iap3 gene might be derived from the Lepidoptera or Diptera. We demonstrated that Bombyx mori inhibitor of apoptosis (Bmiap) gene had an inhibitory effect on apoptosis in silkworm cells. Further analysis of the effects of Bmiap genes on the proliferation of B. mori nucleopolyhedrovirus (BmNPV) showed that both the Bmiap and BmNPV iap genes increased BmNPV proliferation after BmNPV infected silkworm cells. Our results also indicated that BmNPV IAP1 and IAP2 directly interacted with BmIAP in silkworm cells, implying that the Bmiap gene might be hijacked by BmNPV iap genes during BmNPV infection. Taken together, our results provide important insights into the functional relationships of iap genes, and improve our knowledge of apoptosis in baculoviruses and insect hosts.  相似文献   

13.
Silkworm (Bombyx mori) larvae are widely used to express exogenous proteins. Moreover, some silkworm pupal proteins can be used as drug‐loading materials for selfexpressed oral tolerance drugs. However, several proteins expressed in silkworm pupae cause severe allergic reactions in humans and animals. Interestingly, some baculovirus vectors have been shown to alter the host gene and its expression in insect cells, but this has not been confirmed in silkworm. Here, we analyzed the effects of infection with an empty B. mori baculovirus (BmNPV) vector on silkworm pupal protein expression. Using a proteomics approach, the allergens thiol peroxiredoxin (Jafrac1), 27‐kDa glycoprotein (p27k), arginine kinase, and paramyosin as well as 32 additional differentially expressed proteins were identified. Downregulation of the messenger RNA expression of the four known allergens was observed after BmNPV infection; subsequent changes in protein expression were confirmed by the western blot analysis using polyclonal antibodies prepared with recombinant proteins of the four allergens. Collectively, these data indicate that the four known allergens of silkworm pupae can be reduced by infection ith an empty BmNPV vector to increase the safety of silkworm pupa‐based exogenous protein expression and drug delivery of oral pharmaceuticals. In addition, the four recombinant allergen proteins may contribute to the diagnosis of allergic diseases of silkworm pupa.  相似文献   

14.
The baculovirus–insect cell expression system has been used to produce functional recombinant proteins. The antigen GA733 is a cell‐surface glycoprotein highly expressed on most human colorectal carcinoma cells. Conditions for the expression of GA733 fused to the human immunoglobulin IgG Fc fragment (GA733‐Fc) were optimized in the baculovirus expression system. Several variable factors were adjusted to optimize expression, including the cell line (Sf9 and High Five), multiplicity of infection (MOI) value (0.05, 0.1, 0.5, 1 and 3), post‐infection time (48, 72 and 96 h) and harvested sample (cell culture media (CM) or cell lysate (CL)). In addition, two pFastBac Dual vectors carrying the GA733‐Fc gene were constructed to express GA733‐Fc with or without an endoplasmic reticulum (ER) retention sequence KDEL and used to generate recombinant baculoviruses. Western blot showed that expression depended on the conditions used to express the recombinant proteins. The protein production level and secretion capability differed in each cell line. In Sf9 cells, the highest expression in the CM and CL was obtained with GA733‐Fc at 96 h post‐infection at 0.1 MOI and with GA733‐FcK at 96 h post‐infection at 3 MOI, respectively. In High Five cells, the highest expression in the CM and CL was obtained with GA733‐Fc at 48 h post‐infection at 1 MOI and with GA733‐FcK at 48 h post‐infection at 3 MOI, respectively. These results suggest that the MOI value, post‐infection time and subcellular localization affect expression, and that these conditions can be modified to optimize protein expression in the baculovirus–insect cell system.  相似文献   

15.
AcNPV (Autographa californica nuclear polyhedrosis virus) and BmNPV(Bombyx mori nuclear polyhedrosis virus) are two principal insectbaculovirus expression systems, each having different characteristics. AcNPV has a wider host range and can infect a series of cell lines thus making it suitable for cell suspension culture expression, but the small size of the host insect,A. californica, makes AcNPV less suitable for large scale protein synthesis. In contrast, BmNPV can only infect the silkworm,Bombyx mori, which is wellknown for its easy rearing and large size. These characteristics make the BmNPV system especially suitable for largescale industrial expression. To utilize the advantages of both AcNPV and BmNPV, we tried to expand their host range through homologous recombination and successfully constructed a hybrid baculovirus of AcNPV and BmNPV, designated as HyNPV The hybrid baculovirus can infect the hosts of both AcNPV and BmNPV. Taking the human basic fibroblast growth factor (bFGF) gene as an application example, we constructed a recombinant, HyNPV-bFGF. This construct is able to express the bFGF protein both in silkworm larvae and in commonuse cell lines, sf21, sf9 and High-five. Moreover, to reduce the loss of recombinant protein due to degradation by proteases that are simultaneously expressed by the baculovirus, we knocked out the cysteinase gene coding for one of the most important baculovirus proteases. This knockout mutation improves the production efficiency of the bFGF recombinant protein.  相似文献   

16.
The successful production of recombinant protein for biochemical, biophysical, and structural biological studies critically depends on the correct expression organism. Currently, the most commonly used expression organisms for structural studies are Escherichia coli (~70% of all PDB structures) and the baculovirus/ insect cell expression system (~5% of all PDB structures). While insect cell expression is frequently successful for large eukaryotic proteins, it is relatively expensive and time‐consuming compared to E. coli expression. Frequently the decision to carry out a baculovirus project means restarting cloning from scratch. Here we describe an integrated system that allows simultaneous cloning into E. coli and baculovirus expression vectors using the same PCR products. The system offers a flexible array of N‐ and C‐terminal affinity, solubilization and utility tags, and the speed allows expression screening to be completed in E. coli, before carrying out time and cost‐intensive experiments in baculovirus. Importantly, we describe a means of rapidly generating polycistronic bacterial constructs based on the hugely successful biGBac system, making InteBac of particular interest for researchers working on recombinant protein complexes.  相似文献   

17.
The silkworm Bombyx mori is an important lepidopteran model insect in which many kinds of natural mutants have been identified.However,molecular mechanisms of most of these mutants remain to be explored.Here we report the identification of a gene Bm-app is responsible for the silkworm minute wing(mw)mutation which exhibits exceedingly small wings during pupal and adult stages.Compared with the wild type silkworm,relative messenger RNA expression of Bm-app is significantly decreased in the ul 1 mutant strain which shows mw phenotype.A 10 bp insertion in the putative promoter region of the Bm-app gene in mw mutant strain was identified and the dual luciferase assay revealed that this insertion decreased Bm-app promoter activity.Furthermore,clustered regularly interspaced short palindromic repeats/RNA-guided Cas9 nucleases-mediated depletion of the Bm-app induced similar wing defects which appeared in the mw mutant,demonstrating that Bm-app controls wing development in B.mori.Bm-app encodes a palmitoyltransferase and is responsible for the palmitoylation of selected cytoplasmic proteins,indicating that it is required for cell mitosis and growth during wing development.We also discuss the possibility that Bm-app regulates wing development through the Hippo signaling pathway in B.mori.  相似文献   

18.
Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) is a major pathogen of the economic insect silkworm, Bombyx mori. Virus‐encoded microRNAs (miRNAs) have been proven to play important roles in host–pathogen interactions. In this study we identified a BmCPV‐derived miRNA‐like 21 nt small RNA, BmCPV‐miR‐1, from the small RNA deep sequencing of BmCPV‐infected silkworm larvae by stem‐loop quantitative real‐time PCR (qPCR) and investigated its functions with qPCR and lentiviral expression systems. Bombyx mori inhibitor of apoptosis protein (BmIAP) gene was predicted by both target prediction software miRanda and Targetscan to be one of its target genes with a binding site for BmCPV‐miR‐1 at the 5′ untranslated region. It was found that the expression of BmCPV‐miR‐1 and its target gene BmIAP were both up‐regulated in BmCPV‐infected larvae. At the same time, it was confirmed that BmCPV‐miR‐1 could up‐regulate the expression of BmIAP gene in HEK293T cells with lentiviral expression systems and in BmN cells by transfecting mimics. Furthermore, BmCPV‐miR‐1 mimics could up‐regulate the expression level of BmIAP gene in midgut and fat body in the silkworm. In the midgut of BmCPV‐infected larvae, BmCPV‐miR‐1 mimics could be further up‐regulated and inhibitors could lower the virus‐mediated expression of BmIAP gene. With the viral genomic RNA segments S1 and S10 as indicators, BmCPV‐miR‐1 mimics could up‐regulate and inhibitors down‐regulate their replication in the infected silkworm. These results implied that BmCPV‐miR‐1 could inhibit cell apoptosis in the infected silkworm through up‐regulating BmIAP expression, providing the virus with a better cell circumstance for its replication.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号