首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The widespread use of the mobile phone has initiated many studies on the possible adverse effects of a high frequency electromagnetic field (EMF), which is used in mobile phones. A low frequency EMF is reported to suppress melatonin synthesis. The aim of this study was to clarify the effects on melatonin synthesis in rats after short term exposure to a 1439 MHz time division multiple access (TDMA) EMF. The average specific absorption ratio (SAR) of the brain was 7.5 W/kg, and the average SARs of the whole body were 1.9 and 2.0 W/kg for male and female rats, respectively. A total of 208 male and female rats were investigated. After acclimatization to a 12 h light-dark (LD) cycle, serum and pineal melatonin levels together with pineal serotonin level under a dark condition (less than 1 lux) were examined by radioimmunoassay. No significant differences in melatonin and serotonin levels were observed between the exposure, sham, and cage control groups. These results suggest that short term exposure to a 1439 MHz TDMA EMF, which is about four times stronger than that emitted by mobile phones, does not alter melatonin and serotonin synthesis in rats. Further investigations on the effects of long term exposure are warranted.  相似文献   

2.
We investigated the effects of exposure to a 1439 MHz TDMA (Time Division Multiple Access) field, as used in cellular phones, on the permeability of the blood-brain barrier (BBB), on the morphological changes of the brain, and on body-mass fluctuations. Male Sprague-Dawley (SD) rats were divided into three groups of eight rats each. The rats in the EM(+) group, which had their heads arrayed in a circle near the central antenna of an exposure system, were exposed to a 1439 MHz field for one hour a day. The rats in EM(-) group were also in the exposure system, however, without high-frequency electromagnetic wave (HF-EMW) exposure. The animals in the control group were neither placed in the system nor exposed to HF-EMWs. The exposure period was two or four weeks. The energy dose rate peaked at 2 W/kg in the brain; the average over the whole body was 0.25 W/kg. The changes in the permeability of BBB were investigated by Evans blue injection method and by immunostaining of serum albumin. HF-EMWs had no effect on the permeability of BBB. The morphological changes in the cerebellum were investigated by assessing the degeneration of Purkinje cells and the cell concentration in the granular layer. No significant changes were observed in the groups of rats exposed to HF-EMWs for two or four weeks. Averaged body masses were not affected by HF-EMWs exposure. In conclusion, a 1439 MHz TDMA field did not induce observable changes in the permeability of the BBB, morphological changes in the cerebellums, or body mass changes in rats, as evaluated by the conventional methods.  相似文献   

3.
Increasing cell phone use calls for clarification of the consequences of long term exposure to electromagnetic fields (EMF). We investigated the effects of EMF on the testes of 12-week-old rats as well as possible protective effects of luteolin on testis tissue. Twenty-four Wistar albino rats were randomly divided into four groups: control, EMF, luteolin, and EMF + luteolin. The number of Leydig cells, primary spermatocytes and spermatids were reduced in the EMF group compared to the control group. In the EMF + luteolin group, the number of Leydig cells, primary spermatocytes and spermatids was significantly greater than the EMF group. We found an increase in superoxide dismutase (SOD) activity in the EMF group compared to the control group. In the EMF group, we found decreased wet weight of testes and serum testosterone levels compared to the control group. Decreased SOD enzyme activity, and increased serum testosterone levels and weight of the testes were observed in the EMF + luteolin group compared to the EMF group. EMF also affected sperm morphology. We found that in rat testis repeated exposure to 900 MHz EMF caused changes in testicular tissue and that the antioxidant, luteolin, substantially reduced the deleterious effects of EMF.  相似文献   

4.
Previous studies have indicated that there is no consensus on the effects of extremely low‐frequency electromagnetic (ELF‐EMF) exposure on the cardiovascular system. This study aimed to explore the short‐term effect of ELF‐EMF exposure on heart rate (HR) and HR variability (HRV). The sample consisted of 34 healthy males aged 18–27 years. The participants were randomly assigned to the EMF (n = 17) or the Sham group (n = 17). We employed a double‐blind repeated‐measures design consisting of three 5 min experimental periods. The chest region of each individual in the EMF group was exposed to 50 Hz, 28 μT, linear polarized, continuous EMF during the EMF exposure period. HR and HRV data were recorded continuously by using a photoplethysmography sensor. Within‐subject statistical analysis indicated a significant HR deceleration in both the EMF and Sham groups. However, the standard deviation of the NN intervals (SDNN), root mean square of successive differences (RMSSD), low‐frequency (LF), and high‐frequency (HF) powers increased only in the EMF group and remained stable in the Sham group. We also compared the same HRV indices measured during the EMF and Sham periods between the two experimental groups. The between‐subject analysis results demonstrated significantly higher SDNN, RMSSD, LF, and HF values in the EMF group than in the Sham group. The LF/HF ratio did not change significantly within and between groups. On the basis of these results, we concluded that short‐term exposure of the chest region to ELF‐EMF could potentially enhance parasympathetic predominance during the resting condition. Bioelectromagnetics. 2021;42:60–75. © 2020 Bioelectromagnetics Society.  相似文献   

5.
The present study was designed to evaluate whether gestational exposure to an EMF targeting the head region, similar to that from cellular phones, might affect embryogenesis in rats. A 1.95‐GHz wide‐band code division multiple access (W‐CDMA) signal, which is one applied for the International Mobile Telecommunication 2000 (IMT‐2000) system and used for the freedom of mobile multimedia access (FOMA), was employed for exposure to the heads of four groups of pregnant CD(SD) IGS rats (20 per group) for gestational days 7–17. The exposure was performed for 90 min/day in the morning. The spatial average specific absorption rate (SAR) for individual brains was designed to be 0.67 and 2.0 W/kg with peak brain SARs of 3.1 and 7.0 W/kg for low (group 3) and high (group 4) exposures, respectively, and a whole‐body average SAR less than 0.4 W/kg so as not to cause thermal effects due to temperature elevation. Control and sham exposure groups were also included. At gestational day 20, all dams were killed and fetuses were taken out by cesarean section. There were no differences in maternal body weight gain. No adverse effects of EMF exposure were observed on any reproductive and embryotoxic parameters such as number of live (243–271 fetuses), dead or resorbed embryos, placental weights, sex ratios, weights or external, visceral or skeletal abnormalities of live fetuses. Bioelectromagnetics 30:205–212, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

6.
Possible effects of 1439 MHz electromagnetic near field (EMF) exposure on the blood-brain barrier (BBB) were investigated using immature (4 weeks old) and young (10 weeks old) rats, equivalent in age to the time when the BBB development is completed and the young adult, respectively. Alteration of BBB related genes, such as those encoding p-glycoprotein, aquaporin-4, and claudin-5, was assessed at the protein and mRNA levels in the brain after local exposure of the head to EMF at 0, 2, and 6 W/kg specific energy absorption rates (SARs) for 90 min/day for 1 or 2 weeks. Although expression of the 3 genes was clearly decreased after administration of 1,3-dinitrobenzene (DNB) as a positive control, when compared with the control values, there were no pathologically relevant differences with the EMF at any exposure levels at either age. Vascular permeability, monitored with reference to transfer of FITC-dextran, FD20, was not affected by EMF exposure. Thus, these findings suggest that local exposure of the head to 1439 MHz EMF exerts no adverse effects on the BBB in immature and young rats.  相似文献   

7.
The original article to which this Erratum was published in J. Cell. Physiol. 198:324–332, 2004 It has been recently established that low‐frequency electromagnetic field (EMFs) exposure induces biological changes and could be associated with increased incidence of cancer, while the issue remains unresolved as to whether high‐frequency EMFs can have hazardous effect on health. Epidemiological studies on association between childhood cancers, particularly leukemia and brain cancer, and exposure to low‐ and high‐frequency EMF suggested an etiological role of EMFs in inducing adverse health effects. To investigate whether exposure to high‐frequency EMFs could affect in vitro cell survival, we cultured acute T‐lymphoblastoid leukemia cells (CCRF‐CEM) in the presence of unmodulated 900 MHz EMF, generated by a transverse electromagnetic (TEM) cell, at various exposure times. We evaluated the effects of high‐frequency EMF on cell growth rate and apoptosis induction, by cell viability (MTT) test, FACS analysis and DNA ladder, and we investigated pro‐apoptotic and pro‐survival signaling pathways possibly involved as a function of exposure time by Western blot analysis. At short exposure times (2–12 h), unmodulated 900 MHz EMF induced DNA breaks and early activation of both p53‐dependent and ‐independent apoptotic pathways while longer continuous exposure (24–48 h) determined silencing of pro‐apoptotic signals and activation of genes involved in both intracellular (Bcl‐2) and extracellular (Ras and Akt1) pro‐survival signaling. Overall our results indicate that exposure to 900 MHz continuous wave, after inducing an early self‐defense response triggered by DNA damage, could confer to the survivor CCRF‐CEM cells a further advantage to survive and proliferate. J. Cell. Physiol. 198: 324–332, 2004. © 2003 Wiley‐Liss, Inc.  相似文献   

8.
The present study investigated the possible effects of the electromagnetic field (EMF) emitted by an ordinary GSM mobile phone (902.4 MHz pulsed at 217 Hz) on brainstem auditory processing. Auditory brainstem responses (ABR) were recorded in 17 healthy young adults, without a mobile phone at baseline, and then with a mobile phone on the ear under EMF‐off and EMF‐on conditions. The amplitudes, latencies, and interwave intervals of the main ABR components (waves I, III, V) were compared among the three conditions. ABR waveforms showed no significant differences due to exposure, suggesting that short‐term exposure to mobile phone EMF did not affect the transmission of sensory stimuli from the cochlea up to the midbrain along the auditory nerve and brainstem auditory pathways. Bioelectromagnetics 31:48–55, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
The effects of electromagnetic fields (EMFs) on living organisms are recently a focus of scientific interest, as they may influence everyday life in several ways. Although the neural effects of EMFs have been subject to a considerable number of investigations, the results are difficult to compare since dissimilar exposure protocols have been applied on different preparations or animals. In the present series of experiments, whole rats or excised rat brain slices were exposed to a reference level‐intensity (250–500 µT, 50 Hz) EMF in order to examine the effects on the synaptic efficacy in the central nervous system. Electrophysiological investigation was carried out ex vivo, on neocortical and hippocampal slices; basic synaptic functions, short‐ and long‐term plasticity and seizure susceptibility were tested. The most pronounced effect was a decrease in basic synaptic activity in slices treated directly ex vivo observed as a diminution in amplitude of evoked potentials. On the other hand, following whole‐body exposure an enhanced short‐ and long‐term synaptic facilitation in hippocampal slices and increased seizure susceptibility in neocortical slices was also observed. However, these effects seem to be transient. We can conclude that ELF‐EMF exposure exerts significant effects on synaptic activity, but the overall changes may strongly depend on the synaptic structure and neuronal network of the affected region together with the specific spatial parameters and constancy of EMF. Bioelectromagnetics 30:631–640, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
The pathological effects of exposure to an electromagnetic field (EMF) during childhood and adolescence may be greater than those from exposure during adulthood. We investigated possible pathological changes in the cerebellum of adolescent rats exposed to 900 MHz EMF daily for 25 days. We used three groups of six 21-day-old male rats as follows: unexposed control group (Non-EG), sham-exposed group (Sham-EG) and an EMF-exposed group (EMF-EG). EMF-EG rats were exposed to EMF in an EMF cage for 1 h daily from postnatal days 21 through 46. Sham-EG rats were placed in the EMF cage for 1 h daily, but were not subjected to EMF. No procedures were performed on the Non-EG rats. The cerebellums of all animals were removed on postnatal day 47, sectioned and stained with cresyl violet for histopathological and stereological analyses. We found significantly fewer Purkinje cells in the EMF-EG group than in the Non-EG and Sham-EG groups. Histopathological evaluation revealed alteration of normal Purkinje cell arrangement and pathological changes including intense staining of neuron cytoplasm in the EMF-EG group. We found that exposure to continuous 900 MHz EMF for 1 h/day during adolescence can disrupt cerebellar morphology and reduce the number of Purkinje cells in adolescent rats.  相似文献   

11.
There is still uncertainty whether extremely low frequency electromagnetic fields (ELF‐EMF) can induce health effects like immunomodulation. Despite evidence obtained in vitro, an unambiguous association has not yet been established in vivo. Here, mice were exposed to ELF‐EMF for 1, 4, and 24 h/day in a short‐term (1 week) and long‐term (15 weeks) set‐up to investigate whole body effects on the level of stress regulation and immune response. ELF‐EMF signal contained multiple frequencies (20–5000 Hz) and a magnetic flux density of 10 μT. After exposure, blood was analyzed for leukocyte numbers (short‐term and long‐term) and adrenocorticotropic hormone concentration (short‐term only). Furthermore, in the short‐term experiment, stress‐related parameters, corticotropin‐releasing hormone, proopiomelanocortin (POMC) and CYP11A1 gene‐expression, respectively, were determined in the hypothalamic paraventricular nucleus, pituitary, and adrenal glands. In the short‐term but not long‐term experiment, leukocyte counts were significantly higher in the 24 h‐exposed group compared with controls, mainly represented by increased neutrophils and CD4 ± lymphocytes. POMC expression and plasma adrenocorticotropic hormone were significantly lower compared with unexposed control mice. In conclusion, short‐term ELF‐EMF exposure may affect hypothalamic‐pituitary‐adrenal axis activation in mice. Changes in stress hormone release may explain changes in circulating leukocyte numbers and composition. Bioelectromagnetics. 37:433–443, 2016. © 2016 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.  相似文献   

12.
UMTS communication devices are becoming common in everyday use. This could raise public concern about their possible detrimental effects on human health. The aim of this study, in the framework of the EMF nEAR Project, was to evaluate possible influence of UMTS electromagnetic fields (EMF) exposure on cochlear outer hair cells' (OHCs) functionality in laboratory animals. Forty‐eight male Sprague–Dawley rats were locally exposed (right ear) or sham‐exposed to a controlled UMTS EMF, frequency of 1946 MHz, at SAR level of 10 W/kg, 2 h a day, 5 days a week, for 4 weeks. A group of 12 rats treated with kanamycin (KM) was also included as positive control. Rats were tested by recording Distortion Product Otaoacoustic Emissions (DPOAEs), a non‐invasive test capable of assessing the status of the OHCs in the inner ear. DPOAEs were performed before, during (one or three times a week) and after (1‐week) exposure to the EMF. The analysis of the data shows that no statistically significant differences were found between the audiological signals recorded from the different experimental groups. The ototoxic effect of KM has been confirmed. Bioelectromagnetics 30:385–392, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
A sub‐acute electromagnetic field (EMF) biological effect study was carried out on rats exposed in the Transverse ElectroMagnetic exposure chamber at 171 MHz Continuous Wave (CW). The experiments involved three exposure levels (15, 25, and 35 V/m) for 15 days with triplicate parallel sham‐exposed controls in each series. All exposure conditions were simulated for the evaluation of the electromagnetic energy distribution and specific absorption rate (SAR) in the rat phantoms. Studies have shown a biphasic biological response depending on time and absorbed electromagnetic energy. Under low SAR, approximately 0.006 W/kg, EMF exposure leads to the stimulation of adrenal gland activity. This process is accompanied by an initial increase of daily excretion of corticosterone and Na+, which is seen as a higher Na+/K+ ratio, followed by a decrease of these parameters over time. It is possible that EMF exposure causes a stress response in animals, which is seen as an increased adrenal activity. Bioelectromagnetics. 2019;40:578–587. © 2019 Bioelectromagnetics Society.  相似文献   

14.
The aim of this study was to assess the influence of cisplatin and an extremely low frequency electromagnetic field (ELF‐EMF) on antioxidant enzyme activity and the lipid peroxidation ratio, as well as the level of DNA damage and reactive oxygen species (ROS) production in AT478 carcinoma cells. Cells were cultured for 24 and 72 h in culture medium with cisplatin. Additionally, the cells were irradiated with 50 Hz/1 mT ELF‐EMF for 16 min using a solenoid as a source of the ELF‐EMF. The amount of ROS, superoxide dismutase (SOD) isoenzyme activity, glutathione peroxidase (GSH‐Px) activity, DNA damage, and malondialdehyde (MDA) levels were assessed. Cells that were exposed to cisplatin exhibited a significant increase in ROS and antioxidant enzyme activity. The addition of ELF‐EMF exposure to cisplatin treatment resulted in decreased ROS levels and antioxidant enzyme activity. A significant reduction in MDA concentrations was observed in all of the study groups, with the greatest decrease associated with treatment by both cisplatin and ELF‐EMF. Cisplatin induced the most severe DNA damage; however, when cells were also irradiated with ELF‐EMF, less DNA damage occurred. Exposure to ELF‐EMF alone resulted in an increase in DNA damage compared to control cells. ELF‐EMF lessened the effects of oxidative stress and DNA damage that were induced by cisplatin; however, ELF‐EMF alone was a mild oxidative stressor and DNA damage inducer. We speculate that ELF‐EMF exerts differential effects depending on the exogenous conditions. This information may be of value for appraising the pathophysiologic consequences of exposure to ELF‐EMF. Bioelectromagnetics 33:641–651, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
The production of spindle disturbances in a human–hamster hybrid (AL) cell line by an electromagnetic field (EMF) with field strength of 90 V/m at a frequency of 900 MHz was studied in greater detail. The experimental setup presented allows investigating whether either the electrical (E) and/or the magnetic (H) field component of EMF can be associated with the effectiveness of the spindle‐disturbing potential. Therefore, both field components of a transversal electromagnetic field (TEM) wave have been separated during exposure of the biological system. This procedure should give more insight on understanding the underlying mechanisms of non‐thermal effects of EMF. A statistical comparison of the proportions of the fractions of ana‐ and telophases with spindle disturbances, obtained for five different exposure conditions with respect to unexposed controls (sham condition), showed that only cells exposed to the H‐field component of the EMF were not different from the control. Therefore, the results of the present study indicate that an exposure of cells to EMF at E‐field strengths of 45 and 90 V/m, as well as to the separated E component of the EMF, induces significant spindle disturbances in ana‐ and telophases of the cell cycle. Bioelectromagnetics 32:291–301, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
The continuously increasing usage of cell phones has raised concerns about the adverse effects of microwave radiation (MWR) emitted by cell phones on health. Several in vitro and in vivo studies have claimed that MWR may cause various kinds of damage in tissues. The aim of this study is to examine the possible effects of exposure to low‐intensity MWR on DNA and oxidative damage in the livers of rats. Eighteen Sprague–Dawley male rats were divided into three equal groups randomly (n = 6). Group 1 (Sham‐control): rats were kept under conditions the same as those of other groups, except for MWR exposure. Group 2: rats exposed to 1800 MHz (SAR: 0.62 W/kg) at 0.127 ± 0.04 mW/cm2 power density, and Group 3: rats exposed to 2,100 MHz (SAR: 0.2 W/kg) at 0.038 ± 0.03 mW/cm2 power density. Microwave application groups were exposed to MWR 2 h/day for 7 months. At the end of the exposure period, the rats were sacrificed and DNA damage, malondialdehyde (MDA), 8‐hydroxydeoxyguanosine (8‐OHdG), and total oxidant‐antioxidant parameter analyses were conducted in their liver tissue samples. It was found that 1800 and 2100 MHz low‐intensity MWR caused a significant increase in MDA, 8‐OHdG, total oxidant status, oxidative stress index, and comet assay tail intensity (P < 0.05), while total antioxidant status levels (P < 0.05) decreased. The results of our study showed that whole‐body exposure to 1800 and 2100 MHz low‐intensity MWR emitted by cell phones can induce oxidative stress by altering oxidant‐antioxidant parameters and lead to DNA strand breaks and oxidative DNA damage in the liver of rats. Bioelectromagnetics. 2021;42:76–85. © 2020 Bioelectromagnetics Society  相似文献   

17.
Abstract

The growing spread of mobile phone use is raising concerns about the effect on human health of the electromagnetic field (EMF) these devices emit. The purpose of this study was to investigate the effects on rat pup heart tissue of prenatal exposure to a 900 megahertz (MHz) EMF. For this purpose, pregnant rats were divided into experimental and control groups. Experimental group rats were exposed to a 900?MHz EMF (1?h/d) on days 13–21 of pregnancy. Measurements were performed with rats inside the exposure box in order to determine the distribution of EMF intensity. Our measurements showed that pregnant experimental group rats were exposed to a mean electrical field intensity of 13.77?V/m inside the box (0.50?W/m2). This study continued with male rat pups obtained from both groups. Pups were sacrificed on postnatal day 21, and the heart tissues were extracted. Malondialdehyde, superoxide dismutase and catalase values were significantly higher in the experimental group rats, while glutathione values were lower. Light microscopy revealed irregularities in heart muscle fibers and apoptotic changes in the experimental group. Electron microscopy revealed crista loss and swelling in the mitochondria, degeneration in myofibrils and structural impairments in Z bands. Our study results suggest that exposure to EMF in the prenatal period causes oxidative stress and histopathological changes in male rat pup heart tissue.  相似文献   

18.
This study explored the influence of triclosan (TCS) in the absence and presence of sodium fluoride (NaF) on estrogenic activity and thyroid function of adolescent female rats. The results indicated that the individual exposure to TCS evoked a significant decline in T3 and T4 but the levels of estradiol, FSH, and LH were significantly elevated beside marked up regulation of calbindin‐D9k and estrogen α mRNA expression. On the other hand, the single exposure to NaF causes insignificant changes in thyroid hormones, but evoked a trend toward an increase in both estradiol and LH levels. No significant differences in the TSH level were recorded among the experimental groups. The joint exposure to TCS and NaF induced a significant improvement in thyroid and reproductive hormone levels. Overall, these findings revealed that exposure to TCS resulted in significant endocrine and reproductive alterations in immature female rats, while TCS + NaF coexposure resulted in lessening most effects.  相似文献   

19.
We investigated changes in thymic tissue of male rats exposed to a 900 megahertz (MHz) electromagnetic field (EMF) on postnatal days 22–59. Three groups of six 21-day-old male Sprague-Dawley rats were allocated as: control (CG), sham (SG) and EMF (EMFG) groups. No procedure was performed on the CG rats. SG rats were placed in a Plexiglas cage for 1 h every day between postnatal days 22 and 59 without exposure to EMF. EMFG rats were placed in the same cage for the same periods as the SG rats and were exposed to 900 MHz EMF. Rats were sacrificed on postnatal day 60. Sections of thymus were stained for histological assessment. Oxidant/antioxidant parameters were investigated biochemically. Malondialdehyde (MDA) levels in EMFG increased compared to the other groups. Extravascular erythrocytes were observed in the medullary/corticomedullary regions in EMFG sections. We found that 900 MHz EMF applied for 1 h/day on postnatal days 22–59 can increase tissue MDA and histopathological changes in male rat thymic tissue.  相似文献   

20.
The pathological effects of exposure to an electromagnetic field (EMF) during adolescence may be greater than those in adulthood. We investigated the effects of exposure to 900 MHz EMF during adolescence on male adult rats. Twenty-four 21-day-old male rats were divided into three equal groups: control (Cont-Gr), sham (Shm-Gr) and EMF-exposed (EMF-Gr). EMF-Gr rats were placed in an EMF exposure cage (Plexiglas cage) for 1 h/day between postnatal days 21 and 59 and exposed to 900 MHz EMF. Shm-Gr rats were placed inside the Plexiglas cage under the same conditions and for the same duration, but were not exposed to EMF. All animals were sacrificed on postnatal day 60 and the hearts were extracted for microscopic and biochemical analyses. Biochemical analysis showed increased levels of malondialdehyde and superoxide dismutase, and reduced glutathione and catalase levels in EMF-Gr compared to Cont-Gr animals. Hematoxylin and eosin stained sections from EMF-Gr animals exhibited structural changes and capillary congestion in the myocardium. The percentage of apoptotic myocardial cells in EMF-Gr was higher than in either Shm-Gr or Cont-Gr animals. Transmission electron microscopy of myocardial cells of EMF-Gr animals showed altered structure of Z bands, decreased myofilaments and pronounced vacuolization. We found that exposure of male rats to 900 MHz EMF for 1 h/day during adolescence caused oxidative stress, which caused structural alteration of male adolescent rat heart tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号