首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of the proteasome, the major non-lysosomal proteinase in eukaryotes, is stimulated by two activator complexes, PA700 and PA28. PA700-20 S-PA700 proteasome complexes, generally designated as 26 S proteasomes, degrade proteins, whereas complexes of the type PA28-20 S-PA28 degrade only peptides. We report, for the first time, the in vitro reconstitution of previously identified hybrid proteasomes (PA700-20 S-PA28) from purified PA700-20 S proteasome complexes and PA28 activator. In electron micrographs, the hybrid appears as a corkscrew-shaped particle with a PA700 and a PA28 activator each bound to a terminal alpha-disk of the 20 S core proteasome. The multiple peptidase activities of hybrid proteasomes are not different from those of PA28-20 S-PA28 or PA700-20 S-PA700 complexes.  相似文献   

2.
With the decline in productivity of drug‐development efforts, novel approaches to rational drug design are being introduced and developed. Naturally occurring and synthetic peptides are emerging as novel promising compounds that can specifically and efficiently modulate signaling pathways in vitro and in vivo. We describe sequence‐based approaches that use peptides to mimic proteins in order to inhibit the interaction of the mimicked protein with its partners. We then discuss a structure‐based approach, in which protein‐peptide complex structures are used to rationally design and optimize peptidic inhibitors. We survey flexible peptide docking techniques and discuss current challenges and future directions in the rational design of peptidic inhibitors. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 505–513, 2009. This article was originally published online as an accepted preprint. The “Published Online”date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

3.
Proteasome is a ‘proteolytic factory’ that constitutes an essential part of the ubiquitin‐proteasome pathway. The involvement of proteasome in regulation of all major aspects of cellular physiology makes it an attractive drug target. So far, only inhibitors of the proteasome entered the clinic as anti‐cancer drugs. However, proteasome regulators may also be useful for treatment of inflammatory and neurodegenerative diseases. We established in our previous studies that the peptide Tat2, comprising the basic domain of HIV‐1 Tat protein: R49KKRRQRR56, supplemented with Q66DPI69 fragment, inhibits the 20S proteasome in a noncompetitive manner. Mechanism of Tat2 likely involves allosteric regulation because it competes with the proteasome natural 11S activator for binding to the enzyme noncatalytic subunits. In this study, we performed alanine walking coupled with biological activity measurements and FTIR and CD spectroscopy to dissect contribution of a charge and conformation of Tat2 to its capability to influence peptidase activity of the proteasome. In solution, Tat2 and most of its analogs with a single Ala substitution preferentially adopted a conformation containing PPII/turn structural motifs. Replacing either Asp10 or two or more adjacent Arg/Lys residues induced a random coil conformation, probably by disrupting ionic interactions responsible for stabilization of the peptides ordered structure. The random coil Tat2 analogs lost their capability to activate the latent 20S proteasome. In contrast, inhibitory properties of the peptides more significantly depended on their positive charge. The data provide valuable clues for the future optimization of the Tat2‐based proteasome regulators. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
Proteasomes are responsible for the turnover of most cellular proteins, and thus are critical to almost all cellular activities. A substrate entering the proteasome must first bind to a substrate receptor. Substrate receptors can be classified as ubiquitin receptors and non‐ubiquitin receptors. The intrinsic ubiquitin receptors, including proteasome regulatory particle base subunits 1, 10 and 13 (Rpn1, Rpn10, and Rpn13), determine the capability of the proteasome to recognize a ubiquitin chain, and thus provide selectivity for the 26S proteasome. However, the non‐ubiquitin receptors, including proteasome activator 200 (PA200) and PA28γ, have received great attention due to their remarkable compensatory roles relative to canonical ubiquitin‐mediated proteasomal degradation. Herein we review recent advances in understanding the contributions of these substrate receptors to proteasomal degradation, and introduce their substrates and interacting factors. We also provide insights into their biological functions related to spermatogenesis, immune responses, cellular homeostasis, and tumour development. Finally, we summarize advances in developing small‐molecule inhibitors of these substrate receptors and discuss their potential as drug targets.  相似文献   

5.
Thiol proteinase inhibitors are crucial to proper functioning of all living tissues consequent to their cathepsin regulatory and myriad important biologic properties. Equilibrium denaturation of dimeric goat pancreas thiol proteinase inhibitor (PTPI), a cystatin superfamily variant has been studied by monitoring changes in the protein's spectroscopic and functional characteristics. Denaturation of PTPI in guanidine hydrochloride and urea resulted in altered intrinsic fluorescence emission spectrum, diminished negative circular dichroism, and loss of its papain inhibitory potential. Native like spectroscopic properties and inhibitory activity are only partially restored when denaturant is diluted from guanidine hydrochloride unfolded samples demonstrating that process is partially reversible. Coincidence of transition curves and dependence of transition midpoint (3.2M) on protein concentration in guanidine hydrochloride‐induced denaturation are consistent with a two‐state model involving a native like dimer and denatured monomer. On the contrary, urea‐induced unfolding of PTPI is a multiphasic process with indiscernible intermediates. The studies demonstrate that functional conformation and stability are governed by both ionic and hydrophobic interactions. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 708–717, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

6.
Collagen, which is used as a biomaterial, is the most abundant protein in mammals. We have previously reported that a dendrimer modified with collagen model peptides, (Gly‐Pro‐Pro)5, formed a collagen‐like triple‐helical structure, showing thermal reversibility. In this study, various collagen‐mimic dendrimers of different generations and at different binding ratios were synthesized, to investigate the relationship between the peptide clustering effect and the higher order structure formation. The formation of the higher order structure was influenced by the binding ratios of the peptide to the dendrimer, but was not influenced by the dendrimer generation. A spacer, placed between the dendrimer terminal group and the peptide, negatively contributed to the formation of the higher order structure. The collagen model peptides were also attached to poly(allylamine) (PAA) and poly‐L ‐lysine (poly(Lys)) to compare them with the collagen‐mimic dendrimers. The PAA‐based collagen‐mimic compound, bearing more collagen model peptides than the dendrimer, exhibited a thermally stable higher order structure. In contrast, this was not observed for the collagen‐mimic polymers based on poly(Lys). Therefore, dendrimers and vinyl polymers act as a scaffold for collagen model peptides and subsequently induce higher order structures. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 640–648, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

7.
The 20S proteasome is an intriguingly large complex that acts as a proteolytic catalytic machine. Accumulating evidence indicates the existence of multiple factors capable of regulating the proteasome function. They are classified into two different categories, one type of regulator is PA700 or PA28 that is reversibly associated with the 20S proteasome to form enzymatically active proteasomes and the other type including a 300-kDa modulator and PI31 indirectly influences proteasome activity perhaps by promoting or suppressing the assembly of the 20S proteasome with PA700 or PA28. Thus, there have been documented two types of proteasomes composed of a core catalytic proteasome and a pair of symmetrically disposed PA700 or PA28 regulatory particle. Moreover, the recently-identified proteasome containing both PA28 and PA700 appears to play a significant role in the ATP-dependent proteolytic pathway in cells, as can the 26S proteasome which is known as a eukaryotic ATP-dependent protease.  相似文献   

8.
The reaction of histidine‐containing polypeptides with toxic and essential metals and the molecular mechanism of complexation has yet to be determined, particularly with respect to the conformational changes of the interacting macromolecules. Therefore, a system of oligopeptides containing histidine residues in various positions of Ala or Gly sequences has been designed and used in heavy metal comparatively binding experiments. The role of spacing residues (Gly and Ala repeats) in selecting the various conformations was investigated. The newly synthesized peptides and metal ion adducts have been characterized by Fourier transform infrared spectroscopy (FTIR) as well as electrospray ion trap mass spectrometry (ESI–MS) and circular dichroism (CD). The analysis of CD‐spectra of the four peptides in water revealed that the secondary structure depends much on the position of each amino acid in the peptide backbone. Our peptides system reveals various binding mechanisms of metal ions to peptides depending on the position of histidine residue and the corresponding conformations of Ala or Gly sequences. Biological and medical consequences of conformational changes of metal‐bound peptides are further discussed. Thus, the binding of heavy metals to four peptides may serve as a model system with respect to the conformational consequences of the metal addition on the amino acid repeats situated in prion protein. © 2010 Wiley Periodicals, Inc. Biopolymers 93:497–508, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

9.
Many studies have examined consensus sequences required for protein‐glycosaminoglycan interactions. Through the synthesis of helical heparin binding peptides, this study probes the relationship between spatial arrangement of positive charge and heparin binding affinity. Peptides with a linear distribution of positive charge along one face of the α‐helix had the highest affinity for heparin. Moving the basic residues away from a single face resulted in drastic changes in heparin binding affinity of up to three orders of magnitude. These findings demonstrate that amino acid sequences, different from the known heparin binding consensus sequences, will form high affinity protein‐heparin binding interactions when the charged residues are aligned linearly. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 290–298, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

10.
Synthetic peptides corresponding to the sixth transmembrane segment (TMS6) of secondary‐active transporter MntH (Proton‐dependent Manganese Transporter) from Escherichia coli and its two mutations in the functionally important conserved histidine residue were used as a model for structure–function study of MntH. The secondary structure of the peptides was estimated in different environments using circular dichroism spectroscopy. These peptides interacted with and adopted helical conformations in lipid membranes. Electrophysiological experiments demonstrated that TMS6 was able to form multi‐state ion channels in model biological membranes. Electrophysiological properties of these weakly cation‐selective ion channels were strongly dependent on the surrounding pH. Manganese ion, as a physiological substrate of MntH, enhanced the conductivity of TMS6 channels, influenced the transition between closed and open states, and affected the peptide conformations. Moreover, functional properties of peptides carrying two different mutations of His211 were analogous to in vivo functional characteristics of Nramp/MntH proteins mutated at homologous residues. Hence, a single functionally important TMS can retain some of the functional properties of the full‐length protein. These findings could contribute to understanding the structure–function relationship at the molecular level. However it remains unclear to what extent the peptide‐specific channel activity represents a functional aspect of the full‐length membrane carrier protein. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 718–726, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

11.
Is linker DNA bent in the 30‐nm chromatin fiber at physiological conditions? We show here that electrostatic interactions between linker DNA and histone tails including salt condensation and release may bend linker DNA, thus affecting the higher order organization of chromatin. © 2005 Wiley Periodicals, Inc. Biopolymers 81: 20–28, 2006 This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

12.
Human immunodeficiency virus type 1 integrase (IN) is an essential enzyme in the life cycle of this virus and also an important target for the study of anti‐HIV drugs. In this work, the binding modes of the wild type IN core domain and the two mutants, that is, W132G and C130S, with the 4‐hydroxycoumarin compound NSC158393 were evaluated by using the “relaxed complex” molecular docking approach combined with molecular dynamics (MD) simulations. Based on the monomer MD simulations, both of the two substitutions affect not only the stability of the 128–136 peptides, but also the flexibility of the functional 140s loop. In principle, NSC158393 binds the 128–136 peptides of IN; however, the specific binding modes for the three systems are various. According to the binding mode of NSC158393 with WT, NSC158393 can effectively interfere with the stability of the IN dimer by causing a steric hindrance around the monomer interface. Additionally, through the comparative analysis of the MD trajectories of the wild type IN and the IN‐NSC158393 complex, we found that NSC15893 may also exert its inhibitory function by diminishing the mobility of the function loop of IN. Three key binding residues, that is, W131, K136, and G134, were discovered by energy decomposition calculated with the Molecular Mechanics Generalized Born Surface Area method. Characterized by the largest binding affinity, W131 is likely to be indispensable for the ligand binding. All the above results are consistent with experiment data, providing us some helpful information for understanding the mechanism of the coumarin‐based inhibitors. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 700–709, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

13.
By generating peptides from intracellular antigens which are then presented to T cells, the ubiquitin/26S proteasome system plays a central role in the cellular immune response. The proteolytic properties of the proteasome are adapted to the requirements of the immune system by proteasome components whose synthesis is under the control of interferon-γ. Among these are three subunits with catalytic sites that are incorporated into the enzyme complex during its de novo synthesis. Thus, the proteasome assembly pathway and the formation of immunoproteasomes play a critical regulatory role in the regulation of the proteasome's catalytic properties. In addition, interferon-γ also induces the synthesis of the proteasome activator PA28 which, as part of the so-called hybrid proteasome, exerts a more selective function in antigen presentation. Consequently, the combination of a number of regulatory events tunes the proteasome system to gain maximal efficiency in the generation of peptides with regard to their quality and quantity.  相似文献   

14.
Amyloid fibrils are considered to play causal roles in the pathogenesis of amyloid‐related degenerative diseases such as Alzheimer's disease, type II diabetes mellitus, the transmissible spongiform encephalopathies, and prion disease. The mechanism of fibril formation is still hotly debated and remains an important open question. In this study, we utilized molecular dynamics (MD) simulation to analyze the stability of hexamer for eight class peptides. The MD results suggest that VEALYL and MVGGVV‐1 are the most stable ones, then SNQNNY, followed by LYQLEN, MVGGVV‐2, VQIVYK, SSTSAA, and GGVVIA. The statistics result indicates that hydrophobic residues play a key role in stabilizing the zipper interface. Single point and two linkage mutants of MVGGVV‐1 confirmed that both Met1 and Val2 are key hydrophobic residues. This is consistent with the statistics analysis. The stability results of oligomer for MVGGVV‐1 suggest that the intermediate state should be trimer (3‐0) and tetramer (2‐2). These methods can be used in stabilization study of other amyloid fibril. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 578–586, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

15.
The proteasome and MHC class I antigen processing   总被引:9,自引:0,他引:9  
By generating peptides from intracellular antigens, which are then presented to T cells, the ubiquitin/26S proteasome system plays a central role in the cellular immune response. Under the control of interferon-gamma the proteolytic properties of the proteasome are adapted to the requirements of the immune system. Interferon-gamma induces the formation of immunoproteasomes and the synthesis of the proteasome activator PA28. Both alter the proteolytic properties of the proteasome complex and enhance proteasomal function in antigen presentation. Thus, a combination of several of regulatory events tunes the proteasome system for maximal efficiency in the generation of MHC class I antigens.  相似文献   

16.
Here we describe the features of a peptide that was selected from the human immunodeficiency virus Type 1 (HIV‐1) Integrase (IN) peptide library which interacts with both, the viral Rev and IN proteins. Because of its ability to stimulate the IN enzymatic activity this peptide was designated INS (IN stimulatory). Modification of its amino acid sequence revealed that replacement of its C‐terminal lysine by glutamic acid (INS K188E) converts it from a stimulatory peptide to an inhibitory one. Both peptides promoted the dissociation of a previously described complex formed between Rev and IN whose formation results in IN inactivation. INS and INS K188E penetrated HIV‐1‐infected cells and caused stimulation and inhibition of viral genome integration, respectively. Using cultured cells infected with a ΔRev HIV revealed that INS can directly activate the viral IN. These results suggest that the stimulatory effect of INS in wild‐type virus‐infected cells is due to a dual effect: it dissociates the inactive Rev‐IN complex and directly activates the free IN. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 740–751, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

17.
Proteasomes perform the majority of proteolysis that occurs in the cytosol and nucleus of eukaryotic cells and, thereby, perform crucial roles in cellular regulation and homeostasis. Isolated proteasomes are inactive because substrates cannot access the proteolytic sites. PA28 and PA200 are activators that bind to proteasomes and stimulate the hydrolysis of peptides. Several protein inhibitors of the proteasome have also been identified, and the properties of these activators and inhibitors have been characterized biochemically. By contrast, their physiological roles--which have been reported to include production of antigenic peptides, proteasome assembly and DNA repair--are controversial. In this article, we briefly review the biochemical data and discuss the possible biological roles of PA28, PA200 and proteasome inhibitors.  相似文献   

18.
A protein that greatly stimulates the multiple peptidase activities of the 20 S proteasome (also known as macropain, the multicatalytic protease complex, and 20 S protease) has been purified from bovine red blood cells and from bovine heart. The activator protein was a single polypeptide with an apparent molecular weight of 28,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and had a native molecular weight of approximately 180,000. This protein, which we have termed PA28, regulated all three of the putatively distinct peptidase activities displayed by each of two functionally different forms of the proteasome. This regulation usually included both an increase in the maximal reaction velocity and a decrease in the concentration of substrate required for half-maximal velocity and indicated that PA28 acted as a positive allosteric effector of the proteasome. PA28 failed, however, to stimulate the hydrolysis of large protein substrates such as casein and lysozyme. These results suggested that the hydrolysis of protein substrates occurred at a site or sites distinct from those that hydrolyzed small peptides and that the regulation of the two processes could be uncoupled. Evidence for direct binding of PA28 to the proteasome was obtained by glycerol density gradient centrifugation. PA28 may play an important regulatory role in intracellular proteolytic pathways mediated by the proteasome.  相似文献   

19.
Hepatitis C virus (HCV) core protein plays an important role in the formation of the viral nucleocapsid and a regulatory protein involved in hepatocarcinogenesis. In this study, we have identified proteasome activator PA28gamma (11S regulator gamma) as an HCV core binding protein by using yeast two-hybrid system. This interaction was demonstrated not only in cell culture but also in the livers of HCV core transgenic mice. These findings are extended to human HCV infection by the observation of this interaction in liver specimens from a patient with chronic HCV infection. Neither the interaction of HCV core protein with other PA28 subtypes nor that of PA28gamma with other Flavivirus core proteins was detected. Deletion of the PA28gamma-binding region from the HCV core protein or knockout of the PA28gamma gene led to the export of the HCV core protein from the nucleus to the cytoplasm. Overexpression of PA28gamma enhanced the proteolysis of the HCV core protein. Thus, the nuclear retention and stability of the HCV core protein is regulated via a PA28gamma-dependent pathway through which HCV pathogenesis may be exerted.  相似文献   

20.
Modulators of the activation of the proteasome by PA28 (11S Reg)   总被引:3,自引:0,他引:3  
The degradation of chromogenic substrates and oligopeptides by the 20S proteasome is markedly enhanced and the generation of antigens for presentation by the MHC class-I system is facilitated by combination with an activator protein known as PA28 or 11S reg. We have described the properties of a PA28-proteasome modulator, N-benzyloxycarbonyl-Ile-Glu(O-t-Bu)-Ala-leucinol which shifts the pathway of peptide hydrolysis by the activated proteasome to products terminating in an acidic amino acid at the expense of products terminating in a hydrophobic amino acid. We now report that piperazinyl phenothiazines and several other antipsychotic drugs modulate the PA28-20S activated proteasome in an opposite manner. Fluphenazine, trifluoperazine and prochlorperazine antagonize the peptidylglutamyl peptide bond hydrolyzing activity of the activated proteasome much more strongly than the chymotrypsinlike activity. The chicken ovalbumin immunodominant epitope SIINFEKL is degraded by the activated proteasome to SIINFE and SIINF in approximately equimolar amounts. Piperazinyl phenothiazines promote formation of SIINF whereas Psi-ol promotes formation of SIINFE. PA28- proteasome modulators by modifying the profile of peptides produced by the activated proteasome, may either enhance or suppress the immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号