首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims: Escherichia coli has emerged as a viable heterologous host for the production of complex, polyketide natural compounds. In this study, polyketide biosynthesis was compared between different E. coli strains for the purpose of better understanding and improving heterologous production. Methods and Results: Both B and K‐12 E. coli strains were genetically modified to support heterologous polyketide biosynthesis [specifically, 6‐deoxyerythronolide B (6dEB)]. Polyketide production was analysed using a helper plasmid designed to overcome rare codon usage within E. coli. Each strain was analysed for recombinant protein production, precursor consumption, by‐product production, and 6dEB biosynthesis. Of the strains tested for biosynthesis, 6dEB production was greatest for E. coli B strains. When comparing biosynthetic improvements as a function of mRNA stability vs codon bias, increased 6dEB titres were observed when additional rare codon tRNA molecules were provided. Conclusions: Escherichia coli B strains and the use of tRNA supplementation led to improved 6dEB polyketide titres. Significance and Impact of the Study: Given the medicinal potential and growing field of polyketide heterologous biosynthesis, the current study provides insight into host‐specific genetic backgrounds and gene expression parameters aiding polyketide production through E. coli.  相似文献   

2.
Escherichia coli is one of the most used host microorganism for the production of recombinant products, such as heterologous proteins and plasmids. However, genetic, physiological and environmental factors influence the plasmid replication and cloned gene expression in a highly complex way. To control and optimize the recombinant expression system performance, it is very important to understand this complexity. Therefore, the development of rapid, highly sensitive and economic analytical methodologies, which enable the simultaneous characterization of the heterologous product synthesis and physiologic cell behavior under a variety of culture conditions, is highly desirable. For that, the metabolic profile of recombinant E. coli cultures producing the pVAX‐lacZ plasmid model was analyzed by rapid, economic and high‐throughput Fourier Transform Mid‐Infrared (FT‐MIR) spectroscopy. The main goal of the present work is to show as the simultaneous multivariate data analysis by principal component analysis (PCA) and direct spectral analysis could represent a very interesting tool to monitor E. coli culture processes and acquire relevant information according to current quality regulatory guidelines. While PCA allowed capturing the energetic metabolic state of the cell, e.g. by identifying different C‐sources consumption phases, direct FT‐MIR spectral analysis allowed obtaining valuable biochemical and metabolic information along the cell culture, e.g. lipids, RNA, protein synthesis and turnover metabolism. The information achieved by spectral multivariate data and direct spectral analyses complement each other and may contribute to understand the complex interrelationships between the recombinant cell metabolism and the bioprocess environment towards more economic and robust processes design according to Quality by Design framework. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:285–298, 2017  相似文献   

3.
Cell‐free protein synthesis (CFPS) systems allow for robust protein expression with easy manipulation of conditions to improve protein yield and folding. Recent technological developments have significantly increased the productivity and reduced the operating costs of CFPS systems, such that they can compete with conventional in vivo protein production platforms, while also offering new routes for the discovery and production of biotherapeutics. As cell‐free systems have evolved, productivity increases have commonly been obtained by addition of components to previously designed reaction mixtures without careful re‐examination of the essentiality of reagents from previous generations. Here we present a systematic sensitivity analysis of the components in a conventional Escherichia coli CFPS reaction mixture to evaluate their optimal concentrations for production of the immunoglobulin G trastuzumab. We identify eight changes to the system, which result in optimal expression of trastuzumab. We find that doubling the potassium glutamate concentration, while entirely eliminating pyruvate, coenzyme A, NAD, total tRNA, folinic acid, putrescine and ammonium glutamate, results in a highly productive cell‐free system with a 95% reduction in reagent costs (excluding cell‐extract, plasmid, and T7 RNA polymerase made in‐house). A larger panel of other proteins was also tested and all show equivalent or improved yields with our simplified system. Furthermore, we demonstrate that all of the reagents for CFPS can be combined in a single freeze‐thaw stable master mix to improve reliability and ease of use. These improvements are important for the application of the CFPS system in fields such as protein engineering, high‐throughput screening, and biotherapeutics. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:823–831, 2015  相似文献   

4.
Liver‐directed gene therapy has become a promising treatment for many liver diseases. In this study, we constructed a multi‐functional targeting molecule, which maintains targeting, endosome‐escaping, and DNA‐binding abilities for gene delivery. Two single oligonucleotide chains of Melittin (M) were synthesized. The full‐length cDNA encoding anti‐hepatic asialoglycoprotein receptor scFv C1 (C1) was purified from C1/pIT2. The GAL4 (G) gene was amplified from pSW50‐Gal4 by polymerase chain reaction. M, C1 and G were inserted into plasmid pGC4C26H to product the recombinant plasmid pGC‐C1MG. The fused gene C1MG was subsequently subcloned into plasmid pET32c to product the recombinant plasmid C1MG/pET32c and expressed in Escherichia coli BL21. The scFv‐Mel‐Gal4 triple fusion protein (C1MG) was purified with a Ni2+ chelating HiTrap HP column. The fusion protein C1MG of roughly 64 kD was expressed in inclusion bodies; 4.5 mg/ml C1MG was prepared with Ni2+ column purification. Western blot and immunohistochemistry showed the antigen‐binding ability of C1MG to the cell surface of the liver‐derived cell line and liver tissue slices. Hemolysis testing showed that C1MG maintained membrane‐disrupting activity. DNA‐binding capacity was substantiated by luciferase assay, suggesting that C1MG could deliver the DNA into cells efficiently on the basis of C1MG. Successful expression of C1MG was achieved in E. coli, and C1MG recombinant protein confers targeting, endosome‐escaping and DNA‐binding capacity, which makes it probable to further study its liver‐specific DNA delivery efficacy in vivo. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
E. coli Nissle 1917 (EcN) has long been used as an over‐the‐counter probiotic and has shown potential to be used as a live biotherapeutic. It contains two stably replicating cryptic plasmids, pMUT1, and pMUT2, the function of which is unclear but the presence of which may increase the metabolic burden on the cell, particularly in the context of added recombinant plasmids. In this work, we present a clustered regularly interspaced short palindromic repeats‐Cas9‐based method of curing cryptic plasmids, producing strains cured of one or both plasmids. We then assayed heterologous protein production from three different recombinant plasmids in wild‐type and cured EcN derivatives and found that production of reporter proteins was not significantly different across strains. In addition, we replaced pMUT2 with an engineered version containing an inserted antibiotic resistance reporter gene and demonstrated that the engineered plasmid was stable over 90 generations without selection. These findings have broad implications for the curing of cryptic plasmids and for stable heterologous expression of proteins in this host. Specifically, curing of cryptic plasmids may not be necessary for optimal heterologous expression in this host.  相似文献   

6.
A composite plasmid was constructed using the broad‐host‐range vector pRK293 and the plasmid pPM9, the latter one harbouring a gene encoding the Nap A acid phosphatase from M. morganii. The recombinant construction was transformed and expressed in E. coli MC1061. Transformant clones were selected and characterized, showing that the relative orientation of both original plasmids with respect to each other affected the expression of the gene, with one of the plasmids (pT4) expressing significantly lower values of activity than the opposite orientation construction (pT5). Zymograms developed to detect acid phosphatase activity also corroborated the gene expression in the E. coli host. The genetic constructions (pT4 and pT5) were transferred to B. cepacia IS‐16 by conjugation. The same effect of the original plasmid orientation in the construction was corroborated in the B. cepacia IS‐16 strain. Compared with the strain lacking the recombinant plasmid, no signifi‐cant improvement of cell‐bound enzymatic activity was achieved by the exconjugant harbouring pT5. However, a significant increase in the extracellular enzyme activity was detected in the recombinant strains. Nometabolic load due to the presence of the recombinant plasmid was detected in both E. coli and Burkholderia hosts.  相似文献   

7.
Despite efforts to develop concepts for efficient antibody fragment (Fab) production in Escherichia coli (E. coli) and the high degree of similarity within this protein class, a generic platform technology is still not available. Indeed, feasible production of new Fab candidates remains challenging. In this study, a setup that enables direct characterization of host cell response to Fab expression by utilizing genome‐integrated (GI) systems is established. Among the multitude of factors that influence Fab expression, the variable domain, the translocation mechanism, the host strain, as well as the copy number of the gene of interest (GOI) are varied. The resulting 32 production clones are characterized in carbon‐limited microbioreactor cultivations with yields of 0–7.4 mg Fab per gram of cell dry mass. Antigen‐binding region variations have the greatest effect on Fab yield. In most cases, the E. coli HMS174(DE3) strain performs better than the BL21(DE3) strain. Translocation mechanism variations mainly influence leader peptide cleavage efficiency. Plasmid‐free systems, with a single copy of the GOI integrated into the chromosome, reach Fab yields in the range of 80–300% of plasmid‐based counterparts. Consequently, the GI Fab production clones could greatly facilitate direct analyses of systems response to different impact factors under varying production conditions.  相似文献   

8.

Aims

A novel chimeric‐truncated form of tissue‐type plasminogen activator (t‐PA) with improved fibrin affinity and resistance to PAI was successfully produced in CHO expression system during our previous studies. Considering advantages of prokaryotic expression systems, the aim in this study was to produce the novel protein in Escherichia coli (BL21) strain and compare the protein potency in batch and fed‐batch processes.

Methods and Results

The expression cassette for the novel t‐PA was prepared in pET‐28a(+). The E. coli expression procedure was compared in traditional batch and newly developed fed batch, EnBase® Flo system. The protein was purified in soluble format, and potency results were identified using Chromolize t‐PA Assay Kit. The fed‐batch fermentation mode, coupled with a Ni‐NTA affinity purification procedure under native condition, resulted in higher amounts of soluble protein, and about a 30% of improvement in the specific activity of the resulted recombinant protein (46·66 IU mg?1) compared to traditional batch mode (35·8 IU mg?1).

Conclusions

Considering the undeniable advantages of expression in the prokaryotic expression systems such as E. coli for recombinant protein production, applying alternative methods of cultivation is a promising approach. In this study, fed‐batch cultivation methods showed the potential to replace miss‐folded formats of protein with proper folded, soluble form with improved potency.

Significance and Impact of the Study

Escherichia coli expression of recombinant proteins still counts for nearly 40% of marketed biopharmaceuticals. The major drawback of this system is the lack of appropriate post‐translational modifications, which may cause potency loss/decline. Therefore, applying alternative methods of cultivation as investigated here is a promising approach to overcome potency decrease problem in this protein production system.  相似文献   

9.
An efficient rapid protein expression system is crucial to support early drug development. Transient gene expression is an effective route, and to facilitate the use of the same host cells as for subsequent stable cell line development, we have created a high‐yielding Chinese hamster ovary (CHO) transient expression system. Suspension‐adapted CHO‐K1 host cells were engineered to express the gene encoding Epstein‐Barr virus (EBV) nuclear antigen‐1 (EBNA‐1) with and without the coexpression of the gene for glutamine synthetase (GS). Analysis of the transfectants indicated that coexpression of EBNA‐1 and GS enhanced transient expression of a recombinant antibody from a plasmid carrying an OriP DNA element compared to EBNA‐1‐only transfectants. This was confirmed with the retransfection of an EBNA‐1‐only cell line with a GS gene. The retransfected cell lines showed an increase in transient expression when compared with that of the EBNA‐1‐only parent. The transient expression process for the best CHO transient cell line was further developed to enhance protein expression and improve scalability by optimizing the transfection conditions and the cell culture process. This resulted in a scalable CHO transient expression system that is capable of expressing 2 g/L of recombinant proteins such as antibodies. This system can now rapidly provide gram amounts of recombinant antibody to supply preclinical development studies that has comparable product quality to antibody produced from a stably transfected CHO cell line. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:132–141, 2014  相似文献   

10.
Because of many advantages, the yeast Saccharomyces cerevisiae is increasingly being employed for expression of recombinant proteins. Usually, hybrid plasmids (shuttle vectors) are employed as carriers to introduce the foreign DNA into the yeast host. Unfortunately, the transformed host often suffers from some kind of instability, tending to lose or alter the foreign plasmid. Construction of stable plasmids, and maintenance of stable expression during extended culture, are some of the major challenges facing commercial production of recombinant proteins. This review examines the factors that affect plasmid stability at the gene, cell, and engineering levels. Strategies for overcoming plasmid loss, and the models for predicting plasmid instability, are discussed. The focus is on S. cerevisiae, but where relevant, examples from the better studied Escherichia coli system are discussed. Compared to free suspension culture, immobilization of cells is particularly effective in improving plasmid retention, hence, immobilized systems are examined in some detail. Immobilized cell systems combine high cell concentrations with enhanced productivity of the recombinant product, thereby offering a potentially attractive production method, particularly when nonselective media are used. Understanding of the stabilizing mechanisms is a prerequisite to any substantial commercial exploitation and improvement of immobilized cell systems.  相似文献   

11.
Three popular expression host systems Escherichia coli, Pichia pastoris and Drosophila S2 were analyzed techno‐economically using HIV‐1 Nef protein as the model product. On scale of 100 mg protein, the labor costs corresponded to 52–83% of the manufacturing costs. When analyzing the cost impact of the different phases (strain/cell line construction, bioreactor production, and primary purification), we found that with the microbial host systems the strain construction phase was most significant generating 56% (E. coli) and 72% (P. pastoris) of the manufacturing costs, whereas with the Drosophila S2 system the cell line construction and bioreactor production phases were equally significant (46 and 47% of the total costs, respectively). With different titers and production goal of 100 mg of Nef protein, the costs of P. pastoris and Drosophila S2 systems were about two and four times higher than the respective costs of the E. coli system. When equal titers and bioreactor working volumes (10 L) were assumed for all three systems, the manufacturing costs of the bioreactor production of the P. pastoris and Drosophila S2 systems were about two and 2.5 times higher than the respective costs of the E. coli system. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

12.
Converting renewable feedstocks to aromatic compounds using engineered microbes offers a robust approach for sustainable, environment‐friendly, and cost‐effective production of these value‐added products without the reliance on petroleum. In this study, rationally designed E. coli–E. coli co‐culture systems were established for converting glycerol to 3‐hydroxybenzoic acid (3HB). Specifically, the 3HB pathway was modularized and accommodated by two metabolically engineered E. coli strains. The co‐culture biosynthesis was optimized by using different cultivation temperatures, varying the inoculum ratio between the co‐culture strains, recruitment of a key pathway intermediate transporter, strengthening the critical pathway enzyme expression, and adjusting the timing for inducing pathway gene expression. Compared with the E. coli mono‐culture, the optimized co‐culture showed 5.3‐fold improvement for 3HB biosynthesis. This study demonstrated the applicability of modular co‐culture engineering for addressing the challenges of aromatic compound biosynthesis.  相似文献   

13.
α‐Haemolysin (HlyA) from uropathogenic Escherichia coli has been demonstrated to be a significant virulence factor for ascending urinary tract infections. Once the E. coli reach the well‐vascularised kidneys, there is a high risk of bacteraemia and a subsequent septic host response. Despite this, HlyA has the potential to accelerate the host response both directly and via its ability to facilitate adenosine triphosphate release from cells. It has not been settled whether HlyA aggravates bacteraemia into a septic state. To address this, we used an E. coli strain in a model of acute urosepsis that was either transfected with a plasmid containing the full HlyA operon or one with deletion in the HlyA gene. Here, we show that HlyA accelerates the host response to E. coli in the circulation. Mice exposed to HlyA‐producing E. coli showed massively increased proinflammatory cytokines, a substantial fall in circulating thrombocytes, extensive haematuria, and intravascular haemolysis. This was not seen in mice exposed to either E. coli that do not secrete HlyA or vehicle controls. Consistent with the massive host response to the bacteria, the mice exposed to HlyA‐producing E. coli died exceedingly early, whereas mice exposed to E. coli without HlyA production and vehicle controls survived the entire observation period. These data allow us to conclude that HlyA is a virulence factor that accelerates a state of bacteraemia into fulminant sepsis in a mouse model.  相似文献   

14.
The production of recombinant proteins usually reduces cell fitness and the growth rate of producing cells. The growth disadvantage favors faster-growing non-producer mutants. Therefore, continuous bioprocessing is hardly feasible in Escherichia coli due to the high escape rate. The stability of E. coli expression systems under long-term production conditions and how metabolic load triggered by recombinant gene expression influences the characteristics of mutations are investigated. Iterated fed-batch-like microbioreactor cultivations are conducted under production conditions. The easy-to-produce green fluorescent protein (GFP) and a challenging antigen-binding fragment (Fab) are used as model proteins, and BL21(DE3) and BL21Q strains as expression hosts. In comparative whole-genome sequencing analyses, mutations that allowed cells to grow unhindered despite recombinant protein production are identified. A T7 RNA polymerase expression system is only conditionally suitable for long-term cultivation under production conditions. Mutations leading to non-producers occur in either the T7 RNA polymerase gene or the T7 promoter. The host RNA polymerase-based BL21Q expression system remains stable in the production of GFP in long-term cultivations. For the production of Fab, mutations in lacI of the BL21Q derivatives have positive effects on long-term stability. The results indicate that adaptive evolution carried out with genome-integrated E. coli expression systems in microtiter cultivations under industrial-relevant production conditions is an efficient strain development tool for production hosts.  相似文献   

15.
The antimicrobial peptide fowlicidin‐2 identified in chicken is a member of the cathelicidins family. The mature fowlicidin‐2 possesses high antibacterial efficacy and lipopolysaccharide (LPS) neutralizing activity, and also represents an excellent candidate as an antimicrobial agent. In the present study, the recombinant fowlicidin‐2 was successfully produced by Escherichia coli (E. coli) recombinant expression system. The gene encoding fowlicidin‐2 with the codon preference of E. coli was designed through codon optimization and synthesized in vitro. The gene was then ligated into the plasmid pET‐32a(+), which features fusion protein thioredoxin at the N‐terminal. The recombinant plasmid was transformed into E. coli BL21(DE3) and cultured in Luria‐Bertani (LB) medium. After isopropyl‐β‐D‐thiogalactopyranoside (IPTG) induction, the fowlicidin‐2 fusion protein was successfully expressed as inclusion bodies. The inclusion bodies were dissolved and successfully released the peptide in 70% formic acid solution containing cyanogen bromide (CNBr) in a single step. After purification by reverse‐phase high‐performance liquid chromatography (RP‐HPLC), ~6.0 mg of fowlicidin‐2 with purity more than 97% was obtained from 1 litre of bacteria culture. The recombinant peptide exhibited high antibacterial activity against the Gram‐positive and Gram‐negative bacteria, and even drug‐resistant strains. This system could be used to rapidly and efficiently produce milligram quantities of a battery of recombinant antimicrobial peptides as well as for large‐scale production. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:369–374, 2015  相似文献   

16.
Industrial plasmid DNA manufacturing processes are needed to meet the quality, economy, and scale requirements projected for future commercial products. We report development of a modified plasmid fermentation copy number induction profile that increases gene vaccination/therapy vector yields up to 2,600 mg/L. We determined that, in contrast to recombinant protein production, secretion of the metabolic byproduct acetate into the media had only a minor negative effect on plasmid replication. We also investigated the impact of differences in epigenetic dcm methylase‐directed cytosine methylation on plasmid production, transgene expression, and immunogenicity. While Escherichia coli plasmid production yield and quality are unaffected, dcm− versions of CMV and CMV‐HTLV‐I R promoter plasmids had increased transgene expression in human cells. Surprisingly, despite improved expression, dcm− plasmid is less immunogenic. Our results demonstrate that it is critical to lock the plasmid methylation pattern (i.e., production strain) early in product development and that dcm− strains may be superior for gene therapy applications wherein reduced immunogenicity is desirable and for in vitro transient transfection applications such as AAV production where improved expression is beneficial. Biotechnol. Bioeng. 2011;108: 354–363. © 2010 Wiley Periodicals, Inc.  相似文献   

17.
18.
Snakin‐1 (SN‐1) is a cysteine‐rich plant antimicrobial peptide and the first purified member of the snakin family. SN‐1 shows potent activity against a wide range of microorganisms, and thus has great biotechnological potential as an antimicrobial agent. Here, we produced recombinant SN‐1 in Escherichia coli by a previously developed coexpression method using an aggregation‐prone partner protein. Our goal was to increase the productivity of SN‐1 via the enhanced formation of insoluble inclusion bodies in E. coli cells. The yield of SN‐1 by the coexpression method was better than that by direct expression in E. coli cells. After refolding and purification, we obtained several milligrams of functionally active SN‐1, the identity of which was verified by MALDI‐TOF MS and NMR studies. The purified recombinant SN‐1 showed effective antimicrobial activity against test organisms. Our studies indicate that the coexpression method using an aggregation‐prone partner protein can serve as a suitable expression system for the efficient production of functionally active SN‐1. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1520–1528, 2017  相似文献   

19.
Heterologous production of naringenin, a valuable flavonoid with various biotechnological applications, was well studied in the model organisms such as Escherichia coli or Saccharomyces cerevisiae. In this study, a synergistic co‐culture system was developed for the production of naringenin from xylose by engineering microorganism. A long metabolic pathway was reconstructed in the co‐culture system by metabolic engineering. In addition, the critical gene of 4‐coumaroyl‐CoA ligase (4CL) was simultaneously integrated into the yeast genome as well as a multi‐copy free plasmid for increasing enzyme activity. On this basis, some factors related with fermentation process were considered in this study, including fermented medium, inoculation size and the inoculation ratio of two microbes. A yield of 21.16 ± 0.41 mg/L naringenin was produced in this optimized co‐culture system, which was nearly eight fold to that of the mono‐culture of yeast. This is the first time for the biosynthesis of naringenin in the co‐culture system of S. cerevisiae and E. coli from xylose, which lays a foundation for future study on production of flavonoid.  相似文献   

20.
Summary Murine interleukin-3 (Mu IL-3) cDNA was previously expressed inEscherichia coli using atac promoter and a constitutive high copy number plasmid vector. We found that significant increases in expression levels could be realized by using thetac promoter for the expression of Mu IL-3 in a plasmid vector possessing a temperature-inducible runaway-replicon. In contrast, use of anlpp promoter under similar conditions did not result in an increase in the Mu IL-3 expression level. Significant differences were observed when the expression levels of IL-3 were monitored in variousE. coli hosts having different genetic backgrounds. A mutant ofE. coli which lacks the protease La was found to increase the level of IL-3 produced. This report describes the effect of a specific protease-deficientE. coli host strain, as well as the effect of different promoters and plasmid replicons on the expression levels and stability of a heterologous gene product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号