首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Application of a biosensor for monitoring of ethanol   总被引:4,自引:0,他引:4  
An alcohol biosensor for the measurement of ethanol has been developed. It comprises an alcohol oxidase/chitosan immobilized eggshell membrane and a commercial oxygen sensor. Ethanol determination is based on the depletion of dissolved oxygen content upon exposure to ethanol solution. The decrease in oxygen level was monitored and related to the ethanol concentration. The biosensor response depends linearly on ethanol concentration between 60 microM and 0.80 mM with a detection limit of 30 microM (S/N=3) and 1 min response time. In the optimization studies of the enzyme biosensor the most suitable enzyme and chitosan amounts were found to be 1.0 mg and 0.30% (w/v), respectively. The phosphate buffer (pH 7.4, 25 mM) and room temperature (20-25 degrees C) were chosen as the optimum working conditions. In the characterization studies of the ethanol biosensor some parameters such as interference effects, operational and storage stability were studied in detail. The biosensor was also tested with various wine samples. The results of this newly developed biosensor were comparable to the results obtained by a gas chromatographic method.  相似文献   

2.
Different branchs of industry need to use ethanol in their production and some progress and not only the industry also to determine ethanol sensitively, accurately, fast and economical is very important. For the sensitive determination of ethanol a new amperometric biosensor based on Candida tropicalis cells, which contains alcohol oxidase enzyme, immobilized in gelatin by using glutaraldehyde was developed. In the study, before the microbial biosensor construction C. tropicalis cells were activated and cultured in a culture medium. By using gelatine and glutaraldehyde (0.1%) C. tropicalis cells obtained in logarithmic phase were immobilized and fixed on a pretreated teflon membrane of a dissolved oxygen probe. Ethanol determination is based on the assay of the differences on the respiration activity of the cells on the oxygenmeter in the absence and the presence of ethanol. The microbial biosensor response was depend linearly on ethanol concentration between 0.5 and 7.5 mM with 2 min response time. In the optimization studies of the microbial biosensor the most suitable microorganism amount were found as 4.42 mg cm(-2) and also phosphate buffer (pH:7.5; 50 mM) and 30 degrees C were obtained as the optimum working conditions. In the characterization studies of the microbial biosensor some parameters such as substrate specificity, interference effects of some substances on the biosensor response, operational and storage stability were carried out.  相似文献   

3.
This article deals with the use of pyranose oxidase (PyOx) and glucose oxidase (GOx) enzymes in amperometric biosensor design and their application in monitoring fermentation processes with the combination of flow injection analysis (FIA). The amperometric studies were carried out at -0.7 V by following the oxygen consumption due to the enzymatic reactions for both batch and FIA modes. Optimization studies (enzyme amounts and pH) and analytical parameters such as linearity, repeatability, effect of interference, storage, and operational stabilities have been studied. Under optimized conditions, for the PyOx-based biosensor, linear graph was obtained from 0.025 to 0.5 mM glucose in phosphate buffer (50 mM) at pH 7.0 with the equation of y = 3.358x + 0.028 and R(2) = 0.998. Linearity was found to be 0.01-1.0 mM in citrate buffer (50 mM and pH 4.0) with the equation of y = 1.539x + 0.181 and R(2) = 0.992 for the GOx biosensor. Finally, these biosensor configurations were further evaluated in a conventional flow injection system. Results from batch experiments provide a guide to design sensitive, stable, and interference-free biosensors for FIA mode. Biosensor stability, dynamic range, and repeatability were also studied in FIA conditions, and the applicability for the determination of glucose in fermentation medium could be successfully demonstrated. The FIA-combined glucose biosensor was used for the offline monitoring of yeast fermentation. The obtained results correlated well with HPLC measurements.  相似文献   

4.
Abstract

A new amperometric sensor has been fabricated for sensitive and rapid quantification of ethanol. The biosensor assembly was prepared by covalently immobilizing alcohol oxidase (AOX) from Pichia pastoris onto chemically modified surface of polyvinylchloride (PVC) beaker with glutaraldehyde as a coupling agent followed by immobilization of horseradish peroxidase (HRP), silver nanoparticles (AgNPs), chitosan (CHIT), carboxylated multi-walled carbon nanotubes (c-MWCNTs) and nafion (Nf) nanocomposite onto the surface of Au electrode (working electrode). Owing to properties such as chemical inertness, light weight, weather resistance, corrosion resistance, toughness and cost-effectiveness, PVC membrane has attracted a growing interest as a support for enzyme immobilization in the development of biosensors. The amperometric biosensor displayed optimum response within 8?s at pH 7.5 and 35°C temperature. A linear response to alcohol in the range of 0.01mM–50?mM and 0.0001?µM as a minimum limit of detection was displayed by the proposed biosensor with excellent storage stability (190?days) at 4°C. The sensitivity of the sensor was found to be 155?µA mM?1?cm?2. A good correlation (R2?=?0.99) was found between alcohol level in commercial samples as evaluated by standard ethanol assay kit and the current biosensor which validates its performance.  相似文献   

5.
A new method for rapid determination of ethanol was developed, using alcohol dehydrogenase as recognition element for the SIRE (sensors based on injection of the recognition element) Biosensor, which is an amperometric biosensor. The method was simple, fast, accurate, specific and cost-effective. The recognition element solution used was stable at least for 24 h in room temperature, and at least one month when lyophilised. The optimal potential versus the silver wire electrode, the optimal pH of the buffer and the optimal temperature of the water bath was determined to be +950 mV, 8.1 and 308 K, respectively. The optimal concentrations of alcohol dehydrogenase, BSA and NAD(+) were determined to be 200 U/ml, 20 mg/ml and 15 mM, respectively. The total analysis time was between 50 s and 4 min per analysis, depending on the concentration range. The linear range was 0-12.5 mM. The detection limit was less than 0.1 mM. The repeatability (%R.S.D.) was 3-5% (n=10). The reproducibility was 5-8% (n=5). Methanol gave no signal at all, but higher alcohols, such as propanol, pentanol and hexanol, gave significant signals, decreasing with increasing length of the carbon chain. The price for one measurement was calculated to be 0.052 euro. The results from measurements with the biosensor were compared to those from an established analysis kit for ethanol. The results correlated well (R(2)=0.9874). The concentration of ethanol in different alcoholic beverages was investigated and correlated well with the concentrations given by the manufacturers.  相似文献   

6.
Different branches of industry need to use phenolic compounds (PCs) in their production, so determination of PCs sensitively, accurately, rapidly, and economically is very important. For the sensitive determination of PCs, some biosensors based on pure polyphenol oxidase, plant tissue and microorganisms were developed before. But there has been no study to develop a microbial phenolic compounds biosensor based on Lactobacillus species, which contain polyphenol oxidase enzyme. In this study, we used different forms of Lactobacillus species as enzyme sources of biosensor and compared biosensor performances of these forms for determination of PCs. For this purpose, we used lyophilized Lactobacillus cells (containing L. bulgaricus, L. acidophilus, Streptococcus thermophilus), pure L. acidophilus, pure L. bulgaricus, and L. acidophilus- and L. bulgaricus adapted to catechol in Lactobacilli MRS Broth. The most suitable form was determined and optimization studies of the biosensor were carried out by using this form. For preparing the bioactive layer of the biosensor, the Lactobacillus cells were immobilized in gelatin by using glutaraldehyde. In the study, we used catechol as a substrate. Phenolic compound determination is based on the assay of the differences on the respiration activity of the cells on the oxygen meter in the absence and the presence of catechol. The microbial biosensor response depends directly on catechol concentration between 0.5 and 5.0 mM with 18 min response time. In the optimization studies of the microbial biosensor the most suitable microorganism amount was found to be 10 mg, and also phosphate buffer (pH 8.0; 50 mM) and 37.5 °C were obtained as the optimum working conditions. In the characterization studies of the microbial biosensor some parameters such as substrate specificity on the biosensor response and operational and storage stability were examine. Furthermore, the determination of PC levels in synthetic wastewater, industrial wastewater, and milk products was investigated by using the developed biosensor under optimum conditions.  相似文献   

7.
Cholesterol determination in body is important in diagnosis of diseases like coronary heart disease, arteriosclerosis, diabetes, and obstructive jaundice. This research aims at developing fluorimetric cholesterol biosensors based on self-assembled mesoporous alginate-silica (Algilica) microspheres. For preparing the biosensor, Pt-(II)-octaethylporphine (PtOEP; oxygen sensitive metalloporphyrin) dye has been loaded in the Algilica microspheres using the solvent-mediated precipitation method. Cholesterol oxidase (ChOx) was then covalently conjugated to PtOEP/Algilica microspheres using EDC and NHS reagents. PtOEP dye and enzyme encapsulation, activity and stability were then analyzed. Layer-by-layer self-assembly was finally performed using PAH and PSS polyelectrolytes to minimize leaching of the biosensor components. The prepared biosensor exhibited linearity over a range of 0.77-2.5 mM O(2) (K(SV) : 0.097/mM of O(2) ) obtained using from Stern-Volmer plots. The biosensor response to standard cholesterol displayed a linear analytical range from 1.25 to 10 mM of cholesterol with regression coefficient of 0.996 (1.25-3.75 mM), 0.976 (1.25-6 mM), and 0.959 (1.25-10 mM) and response time of 10 min. Thus, the prepared cholesterol biosensor shows great potential in the diagnosis of hypercholesterolemia.  相似文献   

8.
A fluorescent glucose biosensor was constructed by immobilizing glucose oxidase on a bamboo inner shell membrane with glutaraldehyde as a cross-linker. The detection scheme was based on the depletion of dissolved oxygen content upon exposure to glucose solution with a concomitant increase in the fluorescence intensity of an oxygen transducer, tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(Pi) ditetrakis(4-chlorophenyl)borate. The enzyme immobilization, effect of pH, temperature and ionic strength have been studied in detail. The biosensor exhibited repeatable response to a 2.0 mM glucose solution with a relative standard deviation of 3.0% (n = 10). It showed good storage stability and maintained 95% of its initial response after it had been kept at 4 degrees C for 8 months. The biosensor has a linear response range of 0.0-0.6 mM glucose with a detection limit of 58 microM (S/N = 3). Common potential interferants in samples do not pose any significant interference on the response of the glucose biosensor. It was successfully applied to the determination of glucose content in some commercial wines and medical glucose injections.  相似文献   

9.
A new amperometric microbial biosensor based on Saccharomyces cerevisiae NRRL-12632 cells, which had been induced for lysine oxidase enzyme and immobilized in gelatin by a cross-linking agent was developed for the sensitive determination of L-lysine amino acid. To construct the microbial biosensor S. cerevisiae cells were activated and cultured in a suitable culture medium. By using gelatine (8.43 mg cm(-2)) and glutaraldehyde (0.25%), cells obtained in the logarithmic phase of the growth curve at the end of a 14 h period were immobilized and fixed on a pretreated oxygen sensitive Teflon membrane of a dissolved oxygen probe. The assay procedure of the microbial biosensor is based on the determination of the differences of the respiration activity of the cells on the oxygenmeter in the absence and the presence of L-lysine. According to the end point measurement technique used in the experiments it was determined that the microbial biosensor response depended linearly on L-lysine concentrations between 1.0 and 10.0 microM with a 1 min response time. In optimization studies of the microbial biosensor, the most suitable microorganism quantities were found to be 0.97x10(5)CFU cm(-2). In addition phosphate buffer (pH 7.5; 50 mM) and 30 degrees C were obtained as the optimum working conditions. In characterization studies of the microbial biosensor some parameters such as substrate specificity, interference effects of some substances on the microbial biosensor responses, reproducibility of the biosensor and operational and storage stability were investigated.  相似文献   

10.
A biofunctional hybrid nanocomposite of carbon nanofiber (CNF) with water-soluble iron(III) meso-tetrakis(N-methylpyridinum-4-yl) porphyrin (FeTMPyP) was designed via non-covalent interaction for preparation of highly sensitive ethanol biosensor. The prepared nanocomposite showed good dispersion in water and was characterized with steady-state electronic absorption spectroscopy and scanning electron microscope. The nanocomposite combined the good conductivity of CNF and the excellent catalytic activity of both CNF and FeTMPyP toward the reduction of dissolved oxygen, producing a method for amperometric detection of oxygen ranging from 6.5 nM to 6.4 microM at a low overpotential. The nanocomposite modified electrode was further used for assembly of alcohol oxidase to construct an amperometric biosensor for ethanol. The biosensor showed rapid and highly sensitive response to ethanol with a linear range from 2.0 microM to 112 microM. The immobilized alcohol oxidase also showed its direct electrochemistry. The biofunctional nanocomposite provides a new way to not only construct the highly sensitive biosensors but also mimic the catalytic activity of enzyme in the life process.  相似文献   

11.
A new amperometric whole cell biosensor based on Saccharomyces cerevisiae immobilized in gelatin was developed for selective determination of vitamin B1 (thiamine). The biosensor was constructed by using gelatin and crosslinking agent glutaraldehyde to immobilize S. cerevisiae cells on the Teflon membrane of dissolved oxygen (DO) probe used as the basic electrode system combined with a digital oxygen meter. The cells were induced by vitamin B1 in the culture medium, and the cells used it as a carbon source in the absence of glucose. So, when the vitamin B1 solution is injected into the whole cell biosensor system, an increase in respiration activity of the cells results from the metabolic activity and causes a decrease in the DO concentration of interval surface of DO probe related to vitamin B1 concentration. The response time of the biosensor is 3 min, and the optimal working conditions of the biosensor were carried out as pH 7.0, 50mM Tris-HCl, and 30 degrees C. A linear relationship was obtained between the DO concentration decrease and vitamin B1 concentration between 5.0 x 10(-3) and 10(-1) microM. In the application studies of the biosensor, sensitive determination of vitamin B1 in the vitamin tablets was investigated.  相似文献   

12.
A biosensor based on mushroom tissue homogenate for detecting some phenolic compounds (PCs) and usage of the biosensor for quantifying certain substances that inhibit the polyphenol oxidase activity in mushroom (Agaricus bisporus) tissue homogenate is described. The mushroom tissue homogenate was immobilized to the top of a Clark-type oxygen electrode with gelatin and glutaraldehyde. Optimization of the experimental parameters was done by buffer system, pH, buffer concentration, and temperature. Besides, the detection range of eight phenolic compounds were obtained with the help of the calibration graphs. Thermal stability, storage stability, and repeatability of the biosensor were also investigated. A linear response was observed from 20 x 10(-3) to 200 x 10(-3) mM phenol. The biosensor retained approximately 74% of its original activity after 25 days of storage at 4 degrees C. In repeatability studies, variation coefficient (C.V.) and standard deviation (S.D.) were calculated as 2.44% and +/-0.002, respectively. Inhibition studies revealed that the proposed biosensor was applicable for monitoring benzoic acid and thiourea in soft drinks and fruit juices.  相似文献   

13.
A biosensor based on pyruvate oxidase (POX) enzyme was developed for the investigation of the effect of thiamine (vitamin B(1)) molecule on the activity of the enzyme. The biosensor was prepared with a chemical covalent immobilization method on the dissolved oxygen (DO) probe by using gelatin and cross-linking agent, glutaraldehyde. POX catalyzes the degradation of pyruvate to acetylphosphate, CO(2) and H(2)O(2) in the presence of phosphate and oxygen. Thiamine is an activator for POX enzyme and determination method of the biosensor was based on this effect of thiamine on the activity of the enzyme. The biosensor responses showed increases in the presence of thiamine. Increases in the biosensor responses were related to thiamine concentration. Thiamine determination is based on the assay of the differences on the biosensor responses on the oxygenmeter in the absence and the presence of thiamine. The biosensor response depend linearly on thiamine concentration between 0.025 and 0.5 microM with 2 min response time. In the optimization studies of the biosensor the most suitable enzyme amount was found as 2.5 U cm(-2) and also phosphate buffer (pH 7.0; 50 mM) and 35 degrees C were obtained as the optimum working conditions. In the characterization studies of the biosensor some parameters such as activator and interference effects of some substances on the biosensor response and reproducibility were carried out.  相似文献   

14.
The amperometric biosensor for ethanol determination based on alcohol oxidase immobilised by the method of electrochemical polymerization has been developed. The industrial screen-printed platinum electrodes were used as transducers for creation of amperometric alcohol biosensor. Optimal conditions for electrochemical deposition of an active membrane with alcohol oxidase has been determined. Biosensors are characterised by good reproducibility and operational stability with minimal detection limit of ethanol 8 x 10(-5) M. The good correlation of results for ethanol detection in wine and during wine fermentation by using the developed amperometric biosensor with the data obtained by the standard methods was shown (r = 0.995).  相似文献   

15.
Rat liver microsomes oxidized ethanol two to three times faster than propanol when incubated with either an NADPH- or an H2O2-generating system. In addition, solubilized, purified microsomal subfractions were found to contain protein with an electrophoretic mobility identical to rat liver catalase on SDS polyacrylamide gels, suggesting that the separation of catalase from cytochrome P-450 and other microsomal components may not be feasible. These data support the postulate that catalase is responsible for NADPH-dependent microsomal ethanol oxidation. Direct read-out techniques for pyridine nucleotides, the catalase-H2O2 complex, and cytochrome P-450 were utilized to evaluate the specificity of inhibitors of alcohol dehydrogenase (4-methylpyrazole; 4 mM) and catalase (aminotriazole; 1.0 g/kg) qualitatively in perfused rat livers. 4-Methylpyrazole and aminotriazole are specific inhibitors for alcohol dehydrogenase and catalase, respectively, under these conditions. Neither inhibitor nor a combination of them altered the mixed function oxygen of p-nitroanisole to p-nitrophenol as observed by oxygen uptake and product formation. When ethanol utilization was measured over the concentration range 20-80 mM in perfused liver, a concentration dependence was observed. At low concentrations of ethanol, ethanol oxidation was almost totally abolished by 4-methylpyrazole; however, the contribution of 4-methylpyrazole-insensitive ethanol uptake increased as a function of ethanol concentration. At 80 mM ethanol, ethanol utilization was nearly 50% methylpyrazole-insensitive. This portion of ethanol oxidation, however, was abolished by aminotriazole. The data indicate that alcohol dehydrogenase and catalase-H2O2 are responsible for hepatic ethanol oxidation. At low ethanol concentrations (less than 20 mM), alcohol dehydrogenase is predominant; however, at higher ethanol concentrations (up to 80 mM), the contribution of catalase-H2O2 to overall ethanol utilization is significant. No evidence that the endoplasmic reticulum is involved in ethanol metabolism in the perfused liver emerged from these studies.  相似文献   

16.
A ferricyanide mediated microbial biosensor for ethanol detection was prepared by surface modification of a glassy carbon electrode. The selectivity of the whole Gluconobacter oxydans cell biosensor for ethanol determination was greatly enhanced by the size exclusion effect of a cellulose acetate (CA) membrane. The use of a CA membrane increased the ethanol to glucose sensitivity ratio by a factor of 58.2 and even the ethanol to glycerol sensitivity ratio by a factor of 7.5 compared with the use of a dialysis membrane. The biosensor provides rapid and sensitive detection of ethanol with a limit of detection of 0.85 microM (S/N=3). The selectivity of the biosensor toward alcohols was better compared to previously published enzyme biosensors based on alcohol oxidase or alcohol dehydrogenases. The biosensor was successfully used in an off-line monitoring of ethanol during batch fermentation by immobilized Saccharomyces cerevisiae cells with an initial glucose concentration of 200 g l(-1).  相似文献   

17.
An enzyme electrode for on-line determination of ethanol and methanol   总被引:1,自引:0,他引:1  
Since a stable alcohol oxidase with a high specific activity is not commercially available, we propose to produce and purify this enzyme from a strain of the yeast Hansenula polymorpha. This alcohol oxidase was immobilized into a gelatin matrix and its activity was estimated by a pO(2) sensor. The enzyme electrode obtained was then used in a continuous flow system to measure methanol or ethanol concentrations. The sample oxygen content dependence of the signal was minimized by the support properties. Measuring time for each sample were less than two minutes including response data treatment and rinsing step. The enzyme electrode response was set for ethanol from 0.5mM to 15mM and for methanol from 10mM to 300mM. On repeated use, the electrode signal for 10mM of ethanol was stable for at least 500 assays. Analysis have been performed in different beverages such as wine and beer, and the results compared to those obtained with classical methods of analysis.  相似文献   

18.
A new xanthine (X) biosensors based on a hybrid nanocomposite containing multi-walled carbon nanotubes (MWCNT), Pt nanoparticles (PtNP) and gold nanoparticle (AuNP) was presented. X biosensor was fabricated by dropping AuNP/PtNP/MWCNT onto xanthine oxidase (XO) modified glassy carbon paste electrode (GCPE). Resulted XO/AuNP/PtNP/MWCNT/GCPE biosensor showed two linearity between 2.0 and 50 µM and 0.25 and 6.0 mM for X. RSD value was calculated as 2.46 (n = 5). Finally, the biosensor was applied to the X detection in synthetic serum samples and good recovery value was obtained.  相似文献   

19.
In this study, an amperometric biosensor based on cucumber tissue homogenate was developed for the determination of glutathione. Cucumber (Cucumis sativus L.) tissue homogenate was used as the biological material. The cucumber tissue homogenate was cross-linked with gelatine using glutaraldehyde and fixed on a pretreated teflon membrane. The principle of the measurements was based on the determination of the decrease in the differentiation of oxygen level which had been caused by the inhibition of ascorbate oxidase in the biological material by glutathione. Determinations were carried out by standard curves which were obtained by the measurement of the decrease in the consumed oxygen level related to glutathione concentration. Optimization and characterization studies of the biosensor were carried out and a linearity in the gamma-L-glutamyl-L-cysteinyl-glycine (GSH) concentration range 0.1-2 microM was obtained when 600 microM ascorbic acid was used as a substrate. The repeatability experiments (n = 7) revealed that for 1.5 microM GSH, the average value (x), standard deviation (S.D.) and variation coefficient (C.V.) were 1.517 microM, 4.72 x 10(-5) 3.11%, respectively. The biosensor useful lifetime was at least 2 months. The results of some plant samples analyzed with the presented biosensor agreed well with the spectrophotometric method (Ellman's reagent) used as a reference.  相似文献   

20.
A disposable amperometric biosensor for the measurement of ethanol has been developed. It comprises a screen-printed carbon electrode doped with 5% cobalt phthalocyanine (CoPC-SPCE), and coated with alcohol oxidase; a permselective membrane on the surface acts as a barrier to interferents. The measurement of ethanol is based on the signal produced by H2O2, the product of the enzymatic reaction. Optimisation studies were performed using amperometry in stirred solution and the magnitude of the signal was found to be dependent on pH, enzyme loading, type of membrane and applied potential. The same technique was used to evaluate the biosensor for the determination of ethanol in samples. The results obtained compared well with the manufacturers specifications. In order to test the possibility of using the devices in the field, chronoamperometry was also used to determine ethanol in the same beer samples. The precision and recovery data again indicated that the biosensor should give reliable results under the conditions described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号