首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We determined whether the direction of the acute effect of insulin on hepatic triacylglycerol secretion is dependent on the prior physiological state or on the in vitro experimental system used. The effect of insulin on triacylglycerol secretion was studied using perfused livers isolated from rats under three metabolic conditions: fed normo-insulinaemic, 24-h fasted and fed, streptozotocin-diabetic (insulin-deficient). Insulin acutely activated triacylglycerol secretion (by 43%) in organs from fed, normo-insulinaemic animals, whereas it inhibited triacylglycerol secretion in livers isolated from fasted or insulin-deficient rats (by 30 and 33%, respectively). By contrast, in 24-h-cultured hepatocytes insulin invariably acutely inhibited triacylglycerol secretion irrespective of the metabolic state of the donor animals. It is concluded that the use of perfused livers enables the observation of a switch in the direction of insulin action on hepatic triacylglycerol secretion from stimulatory, in the normo-insulinaemic state, to inhibitory in the fasting or insulin-deficient state. The possible implications of this switch for the relationship between hyperinsulinaemia, increased hepatic very-low-density lipoprotein-triacylglycerol secretion and hypertriglyceridaemia observed in vivo are discussed.  相似文献   

2.
The action of orally administered dexamethasone (0.2 mg kg−1 day−1) on metabolic parameters of adjuvant-induced arthritic rats was investigated. The body weight gain and the progression of the disease were also monitored. Dexamethasone was very effective in suppressing the Freund’s adjuvant-induced paw edema and the appearance of secondary lesions. In contrast, the body weight loss of dexamethasone-treated arthritic rats was more accentuated than that of untreated arthritic or normal rats treated with dexamethasone, indicating additive harmful effects. The perfused livers from dexamethasone-treated arthritic rats presented high content of glycogen in both fed and fasted conditions, as indicated by the higher rates of glucose release in the absence of exogenous substrate. The metabolization of exogenous l-alanine was increased in livers from dexamethasone-treated arthritic rats in comparison with untreated arthritic rats, but there was a diversion of carbon flux from glucose to l-lactate and pyruvate. Plasmatic levels of insulin and glucose were significantly higher in arthritic rats following dexamethasone administration. Most of these changes were also found in livers from normal rats treated with dexamethasone. The observed changes in l-alanine metabolism and glycogen synthesis indicate that insulin was the dominant hormone in the regulation of the liver glucose metabolism even in the fasting condition. The prevalence of the metabolic effects of dexamethasone over those ones induced by the arthritis disease suggests that dexamethasone administration was able to suppress the mechanisms implicated in the development of the arthritis-induced hepatic metabolic changes. It seems thus plausible to assume that those factors responsible for the inflammatory responses in the paws and for the secondary lesions may be also implicated in the liver metabolic changes, but not in the body weight loss of arthritic rats.  相似文献   

3.
The glycogen content of male and female Schistosoma mansoni has been measured in flukes from normally fed hosts and those from fasted hosts. In infections from both the mouse and the hamster, a significant reduction in schistosomal glycogen of males is seen hours after food is withdrawn from the host. Reductions in protein content of the schistosomes were only observed in hamster infections fasted at least 72 hr. The livers of infected mice not only decrease in size during fasting, but there is a concomitant reduction in glycogen per unit wet weight. Comparisons of glycogen:protein ratios of mansonian males, females, and host livers indicate that the fasting-induced loss of liver glycogen is also observed in the male schistosome, but not the female. Studies of both S. mansoni and S. haematobium pairs from fed hosts suggest that the ratio of glycogen:protein contents in the male schistosome correlates with the glycogen:protein ratio of the female partner. Measurements of glucose uptake in vitro suggest that greater uptake rates may be observed in flukes perfused from fasted hosts. In S. japonicum from infected mice, a reduction in male glycogen was also detected as early as after a 6-hr fasting period, but changes in the females were not significant. Unmated male S. japonicum also exhibit a reduction in glycogen levels after fasting, but the quantity of worm glycogen present in these males remains higher than comparable mated males. In mice entrained to a regulated pattern of available food, fluctuations in glycogen content of the male schistosomes were observed, but in the female partners fluctuations were of a smaller magnitude.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
1. The metabolic patterns in the livers of rats of the Wistar, August and Wag strains were evaluated 4, 8, 12 and 24 hr after food withdrawal. 2. In the fed state (4 hr) there were large differences in the liver's contents of ATP, phosphate potential values, glycogen contents and blood FFA. These distinctions disappeared in the fasted state (12 hr). 3. There are large differences between the strains in the dynamics of transition of the liver metabolic patterns from the fed to the starved states. 4. The results obtained show that the three strains of the laboratory animals strongly differ in the organization of the liver energy metabolism.  相似文献   

5.
The nature of the pentose pathway in liver   总被引:2,自引:0,他引:2  
[2-14C]Glucose, [3,4-14C]glucose, [5-14C]glucose, [4,5,6-14C]glucose, and [1-14C]ribose were perfused through livers of rats. The rats were fed or fasted and refed. In one experiment the liver perfused was regenerating and in another phenazine methosulfate was in the perfusate. Perfusion was for 30 or 90 min. Glucose from each perfusate and liver glucose-6-P and glycogen were isolated, purified, and degraded. The distributions of 14C in the carbons of the glucoses from the glycogens are similar to the distributions from the glucose 6-phosphates. The distributions of 14C are in accord with metabolism of glucose by the classical pentose pathway and not by the L-type pathway that has been proposed to function in liver.  相似文献   

6.
Hepatic glycogen metabolism was studied in rats during the period of transition from the fed to fasted states. Glycogenic activity was measured in vivo based on the incorporation of [14C]glucose into liver glycogen. Its changes were almost parallel to the changes in glucogen synthase activity. Progressive accumulation of liver glycogen that occurred in the fed state was associated with a proportional increase in glycogenic activity. Within 4 h after the cessation of food intake, glycogenic activity showd a precipitous fall from the peak to its nadir without significant changes in glycogen content. Meanwhile, the glucose concentration in the portal vein decreased. Upon further development of fasting, glycogenic activity displayed a progressive regain, reciprocally as glycogen contents gradually decreased. The precipitous fall of glycogenic activity during the transition from the fed to fasted states was associated with a transient increase in plasma glucagon, and was partly overcome by the injection of anti-glucagon serum. It is concluded that the fall of portal venous concentration of glucose and secretion of glucagon act as a signal to initiate liver glycogen metabolism characteristics of the fasted or postabsorptive state.  相似文献   

7.
The relative contribution to basal, glucagon- and nerve stimulation-enhanced glucose output of glycogenolysis (glucose output in the presence of the gluconeogenic inhibitor mercaptopicolinate) and gluconeogenesis (difference in glucose output in the absence and presence of the inhibitor) was investigated in perfused livers from fed rats with high and from fasted animals with low levels of glycogen. 1) Basal glucose output in both states was due only to gluconeogenesis. 2) Glucagon-enhanced glucose output was due about equally to glycogenolysis and gluconeogenesis in the fed state, but predominantly to gluconeogenesis (80%) in the fasted state. 3) Nerve stimulation-increased glucose output was due mainly to glycogenolysis (65%) in the fed state and about equally to both processes in the fasted state. The results suggest that under basal conditions of normal demands the liver supplies glucose only via gluconeogenesis and thus spares its glycogen stores, and that in situations of enhanced demands signalled by an increase in glucagon or sympathetic tone the liver liberates glucose mainly via glycogenolysis.  相似文献   

8.
The aim of the present study was to evaluate whether the PDC and GS activities at the transition from fasted into fed state are consistent with indirect pathway for glycogen synthesis, as suggested previously. Refeeding of glucose given to rats after 72 hr of starvation did not reactivate PDC in the liver; however, the PDC activity in the muscle was increased. In comparison to PDC, glucose refeeding leads to an opposite effect on GS in both liver and muscle as evidenced by the immediate increase in the active form of GS. The low activity of liver PDC restricts 3-carbon flux through the Krebs cycle and enables their transfer to the gluconeogenic pathway for glycogen synthesis. In contrast, an immediate activation of muscle PDC following refeeding indicates that 3-carbon flux will be oxidized in the citric acid cycle, which thereby eliminates the indirect pathway for glycogen synthesis in this tissue. Glucose infusion increased plasma lactate, insulin, and glycogen content in the liver and muscle to the same extent as observed in the fed rats. The results are in agreement with the suggestion that at the transition from fasted to fed state, liver glycogen synthesis occurs mainly from 3-carbon precursors.  相似文献   

9.
Zhang F  Xu X  Zhou B  He Z  Zhai Q 《PloS one》2011,6(11):e27553
Food availability regulates basal metabolism and progression of many diseases, and liver plays an important role in these processes. The effects of food availability on digital gene expression profile, physiological and pathological functions in liver are yet to be further elucidated. In this study, we applied high-throughput sequencing technology to detect digital gene expression profile of mouse liver in fed, fasted and refed states. Totally 12162 genes were detected, and 2305 genes were significantly regulated by food availability. Biological process and pathway analysis showed that fasting mainly affected lipid and carboxylic acid metabolic processes in liver. Moreover, the genes regulated by fasting and refeeding in liver were mainly enriched in lipid metabolic process or fatty acid metabolism. Network analysis demonstrated that fasting mainly regulated Drug Metabolism, Small Molecule Biochemistry and Endocrine System Development and Function, and the networks including Lipid Metabolism, Small Molecule Biochemistry and Gene Expression were affected by refeeding. In addition, FunDo analysis showed that liver cancer and diabetes mellitus were most likely to be affected by food availability. This study provides the digital gene expression profile of mouse liver regulated by food availability, and demonstrates the main biological processes, pathways, gene networks and potential hepatic diseases regulated by fasting and refeeding. These results show that food availability mainly regulates hepatic lipid metabolism and is highly correlated with liver-related diseases including liver cancer and diabetes.  相似文献   

10.
The effect of inhibition of glycogen phosphorylase by 1,4-dideoxy-1,4-imino-d-arabinitol on rates of gluconeogenesis, gluconeogenic deposition into glycogen, and glycogen recycling was investigated in primary cultured hepatocytes, in perfused rat liver, and in fed or fasted rats in vivo clamped at high physiological levels of plasma lactate. 1,4-Dideoxy-1,4-imino-d-arabinitol did not alter the synthesis of glycerol-derived glucose in hepatocytes or lactate-derived glucose in perfused liver or fed or fasted rats in vivo. Thus, 1,4-dideoxy-1,4-imino-d-arabinitol inhibited hepatic glucose output in the perfused rat liver (0.77 +/- 0.19 versus 0.33 +/- 0.09, p < 0.05), whereas the rate of lactate-derived gluconeogenesis was unaltered (0.22 +/- 0.09 versus 0.18 +/- 0.08, p = not significant) (1,4-dideoxy-1,4-imino-d-arabinitol versus vehicle, micromol/min * g). Overall, the data suggest that 1,4-dideoxy-1,4-imino-d-arabinitol inhibited glycogen breakdown with no direct or indirect effects on the rates of gluconeogenesis. Total end point glycogen content (micromol of glycosyl units/g of wet liver) were similar in fed (235 +/- 19 versus 217 +/- 22, p = not significant) or fasted rats (10 +/- 2 versus 7 +/- 2, p = not significant) with or without 1,4-dideoxy-1,4-imino-d-arabinitol, respectively. The data demonstrate no glycogen cycling under the investigated conditions and no effect of 1,4-dideoxy-1,4-imino-d-arabinitol on gluconeogenic deposition into glycogen. Taken together, these data also suggest that inhibition of glycogen phosphorylase may prove beneficial in the treatment of type 2 diabetes.  相似文献   

11.
Plasma glucose, lactate and acetoacetate, brain glycogen and acetoacetate, and liver acetoacetate, glycogen and lactate in fed rainbow trout exhibited daily changes. However, no daily changes were observed in the activities of the brain enzymes glycogen synthetase, 6-phosphofructo 1-kinase, and lactate dehydrogenase. Depending on the length of the previous fasting period most daily changes observed in the metabolic parameters of fed fish disappeared, except for liver acetoacetate levels, which displayed daily changes in both fed and fasted fish. These results suggest that feeding is an important factor regulating most daily changes in the brain and liver carbohydrate and ketone body metabolism of rainbow trout.  相似文献   

12.
1. Vasopressin (anti-diuretic hormone, [8-arginine]vasopressin) stimulated the breakdown of glycogen in perfused livers of fed rats, at concentrations (50-600muunits/ml) that have been reported in the blood of intact rats, especially during acute haemorrhagic shock. 2. In perfused livers from starved rats, vasopressin (30-150muunits/ml) stimulated gluconeogenesis from a mixture of lactate, pyruvate and glycerol. 3. Vasopressin prevented accumulation of liver glycogen in the perfused liver of starved rats, or in starved intact rats. 4. The action of vasopressin on hepatic carbohydrate metabolism thus resembles that of glucagon; the minimum effective circulating concentrations of these hormones are of the same order (100pg/ml). 5. The stimulation of hepatic glucose output by vasopressin is discussed in connexion with the release of glucose and water from the liver.  相似文献   

13.
The effect of fasting on energy utilization during running or swimming was studied in adult male Wistar rats. Compared with fed rats, fasted animals displayed a decreased contribution of carbohydrates in energy supply, with decreased liver and muscle glycogen contents and decreased rate of glycogen breakdown. This was compensated by an enhanced rate of beta-oxidation. In addition, fasting induced an exaggerated sympathoadrenal response during exercise, reflected by a greater epinephrine plasma level and a higher norepinephrine turnover rate in both liver and soleus. Nevertheless, endurance capacity was similar in fasted and fed animals. These results contrast with the impairment of endurance observed in fasting humans but also with the improvement of endurance in rats previously reported by Dohm et al. (J. Appl. Physiol. 55: 830-833, 1983). These data suggest that the metabolic responses to exercise subsequent to food deprivation depend not only on the considered species but also, in the same species (rat), on the age of the animals and the duration of the fast. These factors probably determine the hormonal secretion and substrate utilization during prolonged exercise in fasting conditions.  相似文献   

14.
Fisetin is a flavonoid dietary ingredient found in the smoke tree (Cotinus coggyria) and in several fruits and vegetables. The effects of fisetin on glucose metabolism in the isolated perfused rat liver and some glucose‐regulating enzymatic activities were investigated. Fisetin inhibited glucose, lactate, and pyruvate release from endogenous glycogen. Maximal inhibitions of glycogenolysis (49%) and glycolysis (59%) were obtained with the concentration of 200 µM. The glycogenolytic effects of glucagon and dinitrophenol were suppressed by fisetin 300 µM. No significant changes in the cellular contents of AMP, ADP, and ATP were found. Fisetin increased the cellular content of glucose 6‐phosphate and inhibited the glucose 6‐phosphatase activity. Gluconeogenesis from lactate and pyruvate or fructose was inhibited by fisetin 300 µM. Pyruvate carboxylation in isolated intact mitochondria was inhibited (IC50 = 163.10 ± 12.28 µM); no such effect was observed in freeze‐thawing disrupted mitochondria. It was concluded that fisetin inhibits glucose release from the livers in both fed and fasted conditions. The inhibition of pyruvate transport into the mitochondria and the reduction of the cytosolic NADH‐NAD+ potential redox could be the causes of the gluconeogenesis inhibition. Fisetin could also prevent hyperglycemia by decreasing glycogen breakdown or blocking the glycogenolytic action of hormones. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
1. A technique for perfusion of the mouse liver has been developed, and aspects of carbohydrate metabolism have been investigated in the perfused liver of normal and genetically obese mice, homozygous for the recessive gene ob. 2. Rates of gluconeogenesis in perfused mouse liver were faster than those reported for slices of mouse liver, particularly from lactate and pyruvate. 3. The rate of glycogen breakdown to glucose, but not to lactate, was faster in liver from fed obese mice. 4. The capacity for glycogen synthesis from glucose was enhanced in liver from 20h-starved obese mice. 5. The capacity for gluconeogenesis from a number of substrates was not significantly altered in livers from fed or starved obese mice when compared with that of lean mice. 6. These results suggest that the liver contributes to the hyperglycaemia of the obese mice by increased glycogenolysis, and that liver glycogen in obese mice is maintained by synthesis from dietary glucose.  相似文献   

16.
This paper describes multinuclear NMR investigations on the isolated perfused mouse liver to optimize its recovery after cold preservation and normothermic reperfusion. The recovery of livers from fed is better than that from 24 h fasted animals. This better recovery is not due to a higher glycogen content before cold preservation. The recovery of livers from fasted animals is specifically enhanced by the presence of 8 mM alanine in the rinsing solution after cold preservation and in the perfusate of reperfusion. This property is not due to the ability of alanine to compensate for the lack of endogenous substrates since the amount, before cold preservation, of these substrates, is not significantly different in livers from fed and fasted animals. Furthermore, the beneficial effect of alanine is not due to an enhancement of the pyruvate dehydrogenase (PDH) activity in livers from fasted animals. In fact these livers have indeed a smaller PDH activity than the livers from fed animals but dichloroacetate, a known PDH activator has a rather deleterious effect on the recovery of fed and fasted livers. Furthermore alanine protects the fasted livers against this effect. So the beneficial effect of alanine should be due to other causes. Furthermore, we have found on a parallel model of rat isolated perfused liver, that the recovery of steatotic livers which is lower than that of normal fed livers is enhanced by a known vasodilator, pentoxifylin but not by alanine. So alanine does not either play its role through its action on microcirculation. The interaction of alanine with some membrane sodium transporters like that already reported for another protective aminoacid, glycine, is thus possible. A novel NMR method of (23)Na observation in living cells or organs should be of great interest to investigate this hypothesis.  相似文献   

17.
The metabolism of glucose to glycogen in the liver of fasted and well-fed rats was investigated with 13C nuclear magnetic resonance spectroscopy using [1,2-(13)C2]glucose as the main substrate. The unique spectroscopic feature of this molecule is the 13C-13C homonuclear coupling leading to characteristic doublets for the C-1 and C-2 resonances of glucose and its breakdown products as long as the two 13C nuclei remain bonded together. The doublet resonances of [1,2-(13)C2]glucose thus provide an ideal marker to follow the fate of this exogenous substrate through the metabolic pathways. [1,2-(13)C2]Glucose was injected intraperitoneally into anesthetized rats and the in vivo 13C-NMR measurements of the intact animals revealed the transformation of the injected glucose into liver glycogen. Glycogen was extracted from the liver and high resolution 13C-NMR spectra were obtained before and after hydrolysis of glycogen. Intact [1,2-13C2]glucose molecules give rise to doublet resonances, natural abundance [13C]glucose molecules produce singlet resonances. From an analysis of the doublet-to-singlet intensities the following conclusions were derived. (i) In fasted rats virtually 100% of the glycosyl units in glycogen were 13C-NMR visible. In contrast, the 13C-NMR visibility of glycogen decreased to 30-40% in well-fed rats. (ii) In fed rats a minimum of 67 +/- 7% of the exogenous [1,2-(13)C2]glucose was incorporated into the liver glycogen via the direct pathway. No contribution of the indirect pathway could be detected. (iii) In fasted rats externally supplied glucose appeared to be consumed in different metabolic processes and less [1,2-(13)C2]glucose was found to be incorporated into glycogen (13 +/- 1%). However, the observation of [5,6-(13)C2]glucose in liver glycogen provided evidence for the operation of the so-called indirect pathway of glycogen synthesis. The activity of the indirect pathway was at least 9% but not more than 30% of the direct pathway. (vi) The pentose phosphate pathway was of little significance for glucose but became detectable upon injection of [1-(13)C]ribose.  相似文献   

18.
The degree of coupling of oxidative phopshorylation q was determined in isolated perfused livers and in livers in vivo from fed and fasted rats. This determination of q was based on a simple nonequilibrium-thermodynamic representation of the major reactions of cytosolic adenine nucleotides, and made use of the measured cytosolic concentrations of adenine nucleotides, phosphate, and lactate/pyruvate ratios in extracted livers. The deviations of the measured values from the theoretically predicted ones at different mass action ratios of the adenylate kinase reaction showed that the basic assumptions of the model, including linearity between flows and thermodynamic forces, were fulfilled in intact liver within the experimental error. The degree of coupling was higher in livers from fed rats than in livers from fasted rats. In particular, the determined values of q were close to the theoretical degrees of coupling qecp and qecf which allow maximization of output power and output flow of oxidative phosphorylation for fed and fasted states, respectively, at optimal efficiency and minimal energy costs. This finding indicates that conductance matching between the load and phosphorylation is fulfilled in vivo. Moreover, it was found that fatty acids lower the degree of coupling in a concentration-dependent manner. This suggested that in livers in the fasted state q is decreased due to elevated fatty-acid levels. Thus fatty acids could act as metabolic regulators of the degree of coupling, enabling the cell to optimize efficiency of oxidative phosphorylation under different metabolic regimes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号