首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study compares the density and tissue-specific distribution of 5-methyl cytosine (5mC) in genomic DNA from human fetuses with or without neural tube defects (NTD) and examines whether low maternal serum folate is a possible correlate and/or risk factor for NTD. The results demonstrate significant hypomethylation of brain genomic DNA in NTD fetuses relative to controls (P<.01), as well as relative hypermethylation of skin and heart in NTD fetuses. In normal fetuses, the level of 5mC in liver genomic DNA decreased from fetal week 18 to 28 and increased over the same developmental period in kidney genomic DNA, but these trends were absent in genomic DNA from NTD fetuses. Mean maternal serum folate was significantly lower in NTD fetuses than in controls (P<.01), and maternal serum folate correlated with density of 5mC in genomic brain DNA from NTD fetuses (r=0.610). The results indicate that aberrant DNA methylation in NTD may be due to maternal folate deficiency and may be involved in the pathogenesis of NTD in humans.  相似文献   

2.
Folate deficiency is implicated in the causation of neural tube defects (NTDs). The preventive effect of periconceptional folic acid supplement use is partially explained by the treatment of a deranged folate-dependent one carbon metabolism, which provides methyl groups for DNA-methylation as an epigenetic mechanism. Here, we hypothesize that variations in DNA-methylation of genes implicated in the development of NTDs and embryonic growth are part of the underlying mechanism. In 48 children with a neural tube defect and 62 controls from a Dutch case-control study and 34 children with a neural tube defect and 78 controls from a Texan case-control study, we measured the DNA-methylation levels of imprinted candidate genes (IGF2-DMR, H19, KCNQ1OT1) and non-imprinted genes (the LEKR/CCNL gene region associated with birth weight, and MTHFR and VANGL1 associated with NTD). We used the MassARRAY EpiTYPER assay from Sequenom for the assessment of DNA-methylation. Linear mixed model analysis was used to estimate associations between DNA-methylation levels of the genes and a neural tube defect. In the Dutch study group, but not in the Texan study group we found a significant association between the risk of having an NTD and DNA methylation levels of MTHFR (absolute decrease in methylation of −0.33% in cases, P-value = 0.001), and LEKR/CCNL (absolute increase in methylation: 1.36% in cases, P-value = 0.048), and a borderline significant association for VANGL (absolute increase in methylation: 0.17% in cases, P-value = 0.063). Only the association between MTHFR and NTD-risk remained significant after multiple testing correction. The associations in the Dutch study were not replicated in the Texan study. We conclude that the associations between NTDs and the methylation of the MTHFR gene, and maybe VANGL and LEKKR/CNNL, are in line with previous studies showing polymorphisms in the same genes in association with NTDs and embryonic development, respectively.  相似文献   

3.
Down syndrome (DS, also known as trisomy 21) most often results from chromosomal nondisjunction during oogenesis. Numerous studies sustain a causal link between global DNA hypomethylation and genetic instability. It has been suggested that DNA hypomethylation might affect the structure and dynamics of chromatin regions that are critical for chromosome stability and segregation, thus favouring chromosomal nondisjunction during meiosis. Maternal global DNA hypomethylation has not yet been analyzed as a potential risk factor for chromosome 21 nondisjunction. This study aimed to asses the risk for DS in association with maternal global DNA methylation and the impact of endogenous and exogenous factors that reportedly influence DNA methylation status. Global DNA methylation was analyzed in peripheral blood lymphocytes by quantifying LINE-1 methylation using the MethyLight method. Levels of global DNA methylation were significantly lower among mothers of children with maternally derived trisomy 21 than among control mothers (P = 0.000). The combination of MTHFR C677T genotype and diet significantly influenced global DNA methylation (R2 = 4.5%, P = 0.046). The lowest values of global DNA methylation were observed in mothers with MTHFR 677 CT+TT genotype and low dietary folate. Although our findings revealed an association between maternal global DNA hypomethylation and trisomy 21 of maternal origin, further progress and final conclusions regarding the role of global DNA methylation and the occurrence of trisomy 21 are facing major challenges.  相似文献   

4.
Folic acid deficiency during pregnancy is believed to be a high‐risk factor for neural tube defects (NTDs). Disturbed epigenetic modifications, including miRNA regulation, have been linked to the pathogenesis of NTDs in those with folate deficiency. However, the mechanism by which folic acid‐regulated miRNA influences this pathogenesis remains unclear. It is believed that DNA methylation is associated with dysregulated miRNA expression. To clarify this issue, here we measured the methylation changes of 22 miRNAs in 57 human NTD cases to explore whether such changes are involved in miRNA regulation in NTD cases through folate metabolism. In total, eight of the 22 miRNAs tested reduced their methylation modifications in NTD cases, which provide direct evidence of the roles of interactions between DNA methylation and miRNA level in these defects. Among the findings, there was a significant association between folic acid concentration and hsa‐let‐7 g methylation level in NTD cases. Hypomethylation of hsa‐let‐7 g increased its own expression level in both NTD cases and cell models, which indicated that hsa‐let‐7 g methylation directly regulates its own expression. Overexpression of hsa‐let‐7 g, along with its target genes, disturbed the migration and proliferation of SK‐N‐SH cells, implying that hsa‐let‐7 g plays important roles in the prevention of NTDs by folic acid. In summary, our data suggest a relationship between aberrant methylation of hsa‐let‐7 g and disturbed folate metabolism in NTDs, implying that improvements in nutrition during early pregnancy may prevent such defects, possibly via the donation of methyl groups for miRNAs.  相似文献   

5.
The effects of chronic arsenic exposure mode on DNA methylation and skin lesion type are unclear. These relationships were investigated in an arsenic-contaminated area of southern Thailand. Cases with arsenical skin lesions (n = 131) and lesion-free controls (n = 163) were selected from an arsenic-contaminated sub-district, as well as 105 controls from a non-contaminated area. Type and severity of skin lesions and salivary global DNA methylation (LINE-1) were determined. Arsenic exposure was characterized as occupational, domestic and current (toe-nail arsenic). Associations were explored using logistic regression. Cases and controls had lower LINE-1 methylation and higher toenail arsenic than external controls (74.65% and 74.61% vs 76.05%, p < 0.001 for each). Cases were more likely to have been exposed domestically (ORtotal 1.76, 95% ci 1.00, 3.11; and 2.22, 95% ci 1.22, 4.03; Ptrend = 0.005 for exposure <36 and ≥36 years). More severe spotty hyperpigmentation was related to higher LINE-1 methylation (Ptrend=0.006). LINE-1 methylation was positively associated with toenail arsenic only among non-symptomatic exposed subjects (OR 1.31, 95% ci 1.06, 1.64; p = 0.014). Exposure to an arsenic-contaminated environment results in global DNA hypomethylation. However, among symptomatic subjects, increased global DNA methylation was associated with increased severity of spotty hyperpigmentation.  相似文献   

6.
7.
Methionine synthase (MTR) and methylenetetrahydrofolate reductase (MTHFR) enzymes are involved in the metabolism of methyl groups, and thus have an important role in the maintenance of proper DNA methylation level. In our study we aimed to evaluate the effect of the polymorphism A2756G (rs1805087) in the MTR gene on the level of human leukocyte genomic DNA methylation. Since the well-studied polymorphism C677T (rs1801133) in the MTHFR gene has already been shown to affect DNA methylation, we aimed to analyze the effect of MTR A2756G independently of the MTHFR C677T polymorphism. For this purpose, we collected the groups of 80 subjects with the MTR 2756AA genotype and 80 subjects with the MTR 2756GG genotype, having equal numbers of individuals with the MTHFR 677CC and the MTHFR 677TT genotypes, and determined the level of DNA methylation in each group. Individuals homozygous for the mutant MTR 2756G allele showed higher DNA methylation level than those harboring the MTR 2756AA genotype (5.061 ± 1.761% vs. 4.501 ± 1.621%, P = 0.0391). Individuals with wild-type MTHFR 677СC genotype displayed higher DNA methylation level than the subjects with mutant MTHFR 677TT genotype (5.103 ± 1.767% vs. 4.323 ± 1.525%, P = 0.0034). Our data provide evidence that the MTR A2756G polymorphism increases the level of DNA methylation and confirm the previous reports that the MTHFR C677T polymorphism is associated with DNA hypomethylation.  相似文献   

8.
BACKGROUND: Measures for prevention of neural tube defects (NTDs) have been recommended for many years in China, but the compliance with these measures is unsatisfactory. This study aims to compare the effect differences between planned pregnancy and unplanned pregnancy in the compliance with these measures and analyze the interactions between pregnancy planning and these measures for NTD prevention. METHODS: A 1:1 matched case‐control study was conducted. We randomly selected 349 women who delivered or gestated babies/fetuses with NTDs in the last two years in two provinces and matched them with 349 women who delivered babies without obvious birth defects as controls. RESULTS: In the case group, 99 women reported that they had planned their pregnancies, accounting for 28.4%, and the proportion who received preconception examinations and took folic acid prior to conception was 13.8 and 8.6%, respectively. According to the multivariate analysis, health education (odds ratio [OR], 0.350), preconception examinations (OR, 0.497) and folic acid consumption prior to conception (OR, 0.257) all had preventative effects on NTDs (for all, p < 0.05). In both groups, the proportions of women who received preconception examinations and reported folic acid intake were much higher for those who reported planning their pregnancies compared to women with an unplanned pregnancy (for all, p < 0.01); and for NTD prevention, synergistic interactions existed between pregnancy planning and the other preventive measures. CONCLUSION: Folic acid consumption prior to conception, preconception examinations, and health education have preventive effects on NTDs. Pregnancy planning can significantly promote compliance with these preventive behaviors. In addition, there are synergistic interactions between pregnancy planning and these measures. Birth Defects Research (Part A), 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Vitrification is increasingly used in assisted reproductive technology (ART) laboratories worldwide, and potential vitrification‐induced risks require further exploration. The effect of vitrification on changes in DNA methylation and imprinting disorders was investigated in E9.5 mouse fetuses and placentas. Fetus and placental tissues were collected from the natural mating (nautural conception [NC]) group, in vitro culture (IVC) group and vitrified embryo transfer (VET) group. The fetal crown‐rump length at E9.5 in both the IVC (0.210 ± 0.059 mm) and VET (0.205 ± 0.048 mm) groups was significantly reduced compared with the NC group (0.288 ± 0.083 mm). The global methylation levels of fetuses were decreased in the IVC group compared with the NC group and it was increased after vitrification compared with IVC (p < 0.05), similar to what was observed in the NC group (p > 0.05). The changes could be attributed to the disorders of DNA methyltransferases and ten‐eleven translocations. In the IVC and VET fetuses, a majority of maternally expressed genes were upregulated, which repressed fetal growth. Furthermore, vitrification led to a change in the methylation level of KvDMR1, which resulted in the disturbance of gene imprinting. According to our results, vitrification could contribute to increased methylation compared with IVC and contributes to a gene imprinting disorder rather than recovery. Despite the routine use of embryo vitrification in clinical settings, the effect that this procedure may have on genomic imprinting deserves much greater attention.  相似文献   

10.

Background

Methylenetetrahydrofolate reductase (MTHFR) is a critical enzyme in folate metabolism and is involved in DNA methylation, DNA synthesis, and DNA repair. In addition, it is a possible risk factor in neural tube defects (NTDs). The association of the C677T polymorphism in the MTHFR gene and NTD susceptibility has been widely demonstrated, but the results remain inconclusive. In this study, we performed a meta-analysis with 2429 cases and 3570 controls to investigate the effect of the MTHFR C677T polymorphism on NTDs.

Methods

An electronic search of PubMed and Embase database for papers on the MTHFR C677T polymorphism and NTD risk was performed. All data were analysed with STATA (version 11). Odds ratios (ORs) with 95% confidence intervals (CIs) were estimated to assess the association. Sensitivity analysis, test of heterogeneity, cumulative meta-analysis, and assessment of bias were performed in our meta-analysis.

Results

A significant association between the MTHFR C677T polymorphism and NTD susceptibility was revealed in our meta-analysis ( TT versus CC: OR  = 2.022, 95% CI: 1.508, 2.712; CT+TT versus CC: OR  = 1.303, 95% CI: 1.089, 1.558; TT versus CC+CT: OR  = 1.716, 95% CI: 1.448, 2.033; 2TT+CT versus 2CC+CT: OR  = 1.330, 95% CI: 1.160, 1.525). Moreover, an increased NTD risk was found after stratification of the MTHFR C677T variant data by ethnicity and source of controls.

Conclusion

The results suggested the maternal MTHFR C677T polymorphism is a genetic risk factor for NTDs. Further functional studies to investigate folate-related gene polymorphisms, periconceptional multivitamin supplements, complex interactions, and the development of NTDs are warranted.  相似文献   

11.
DNA methylation is thought to be involved in the etiology of neural tube defects (NTDs). However, the exact mechanism between DNA methylation and NTDs remains unclear. Herein, we investigated the change of methylation in mouse model of NTDs associated with folate dysmetabolism by use of ultraperformance liquid chromatography tandem mass spectrometry (UPLC/MS/MS), liquid chromatography-electrospray ionization tandem mass spectrometry (LC-MS/MS), microarray, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and Real time quantitative PCR. Results showed that NTD neural tube tissues had lower concentrations of 5-methyltetrahydrofolate (5-MeTHF, P = 0.005), 5-formyltetrahydrofolate (5-FoTHF, P = 0.040), S-adenosylmethionine (SAM, P = 0.004) and higher concentrations of folic acid (P = 0.041), homocysteine (Hcy, P = 0.006) and S-adenosylhomocysteine (SAH, P = 0.045) compared to control. Methylation levels of genomic DNA decreased significantly in the embryonic neural tube tissue of NTD samples. 132 differentially methylated regions (35 low methylated regions and 97 high methylated regions) were selected by microarray. Two genes (Siah1b, Prkx) in Wnt signal pathway demonstrated lower methylated regions (peak) and higher expression in NTDs (P<0.05; P<0.05). Results suggest that DNA hypomethylation was one of the possible epigenetic variations correlated with the occurrence of NTDs induced by folate dysmetabolism and that Siah1b, Prkx in Wnt pathway may be candidate genes for NTDs.  相似文献   

12.
Neural tube defects (NTDs) are a spectrum of severe congenital malformations of fusion failure of the neural tube during early embryogenesis. Evidence on aberrant DNA methylation in NTD development remains scarce, especially when exposure to environmental pollutant is taken into consideration. DNA methylation profiling was quantified using the Infinium HumanMethylation450 array in neural tissues from 10 NTD cases and 8 non-malformed controls (stage 1). Subsequent validation was performed using a Sequenom MassARRAY system in neural tissues from 20 NTD cases and 20 non-malformed controls (stage 2). Correlation analysis of differentially methylated CpG sites in fetal neural tissues and polycyclic aromatic hydrocarbons concentrations in fetal neural tissues and maternal serum was conducted. Differentially methylated CpG sites of neural tissues were further validated in fetal mice with NTDs induced by benzo(a)pyrene given to pregnant mice. Differentially hypermethylated CpG sites in neural tissues from 17 genes and 6 pathways were identified in stage 1. Subsequently, differentially hypermethylated CpG sites in neural tissues from 6 genes (BDKRB2, CTNNA1, CYFIP2, MMP7, MYH2, and TIAM2) were confirmed in stage 2. Correlation analysis showed that methylated CpG sites in CTNNA1 and MYH2 from NTD cases were positively correlated to polycyclic aromatic hydrocarbon level in fetal neural tissues and maternal serum. The correlation was confirmed in NTD-affected fetal mice that were exposed to benzo(a)pyrene in utero. In conclusion, hypermethylation of the CTNNA1 and MYH2 genes in tight junction pathway is associated with the risk for NTDs, and the DNA methylation aberration may be caused by exposure to benzo(a)pyrene.  相似文献   

13.
14.
Xinong Saanen (= 305) and Guanzhong (= 317) dairy goats were used to detect SNPs in the caprine MTHFR 3′‐UTR by DNA sequencing. One novel SNP (c.*2494G>A) was identified in the said region. Individuals with the AA genotype had greater milk protein levels than did those with the GG genotype at the c.*2494 G>A locus in both dairy goat breeds (< 0.05). Functional assays indicated that the MTHFR:c.2494G>A substitution could increase the binding activity of bta‐miR‐370 with the MTHFR 3′‐UTR. In addition, we observed a significant increase in the MTHFR protein level of AA carriers relative to that of GG carriers. These altered levels of MTHFR protein may account for the association of the SNP with milk protein level.  相似文献   

15.
Neural tube defects (NTDs) are common birth defects of complex etiology. Though family- and population-based studies have confirmed a genetic component, the responsible genes for NTDs are still largely unknown. Based on the hypothesis that folic acid prevents NTDs by stimulating methylation reactions, epigenetic factors, such as DNA methylation, are predicted to be involved in NTDs. Homeobox (HOX) genes play a role in spinal cord development and are tightly regulated in a spatiotemporal and collinear manner, partly by epigenetic modifications. We have quantified DNA methylation for the different HOX genes by subtracting values from a genome-wide methylation analysis using leukocyte DNA from 10 myelomeningocele (MMC) patients and 6 healthy controls. From the 1575 CpGs profiled for the 4 HOX clusters, 26 CpGs were differentially methylated (P-value < 0.05; β-difference > 0.05) between MMC patients and controls. Seventy-seven percent of these CpGs were located in the HOXA and HOXB clusters, with the most profound difference for 3 CpGs within the HOXB7 gene body. A validation case-control study including 83 MMC patients and 30 unrelated healthy controls confirmed a significant association between MMC and HOXB7 hypomethylation (-14.4%; 95% CI: 11.9–16.9%; P-value < 0.0001) independent of the MTHFR 667C>T genotype. Significant HOXB7 hypomethylation was also present in 12 unaffected siblings, each related to a MMC patient, suggestive of an epigenetic change induced by the mother. The inclusion of a neural tube formation model using zebrafish showed that Hoxb7a overexpression but not depletion resulted in deformed body axes with dysmorphic neural tube formation. Our results implicate HOXB7 hypomethylation as risk factor for NTDs and highlight the importance for future genome-wide DNA methylation analyses without preselecting candidate pathways.  相似文献   

16.
BACKGROUND: Both environmental and genetic factors are involved in the etiology of NTDs. Inadequate folate intake and obesity are important environmental risk factors. Several folate‐related genetic variants have been identified as risk factors; however, little is known about how genetic variants relate to the increased risk seen in obese women. Uncoupling Protein 2 (UCP2) is an attractive candidate to screen for NTD risk because of its possible role in obesity as well as energy metabolism, type‐2 diabetes, and the regulation of reactive oxygen species. Interestingly, a previous study found that a common UCP2 compound homozygous genotype was associated with a threefold increase in NTD risk. METHODS: We evaluated three polymorphisms, ‐866G>A, A55V, and the 3′UTR 45 bp insertion/deletion, as risk factors for NTDs in Irish NTD cases (n = 169), their mothers (n = 163), their fathers (n = 167), and normal control subjects (n = 332). RESULTS: Allele and genotype frequencies were not significantly different when comparing NTD mothers, NTD fathers, or affected children to controls. Additionally, the previously reported risk genotype (combined homozygosity of 55VV and 3′UTR 45 bp deletion/deletion) was not present at a higher frequency in any NTD group when compared to controls. CONCLUSIONS: In our Irish study population, UCP2 polymorphisms did not influence NTD risk. Moreover, the prevalence of this allele in other populations was similar to the Irish prevalence but far lower than reported in the previous NTD study, suggesting that this previous finding of an association with NTDs might have been due to an unrepresentative study sample. Birth Defects Research (Part A), 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Methylenetetrahydrofolate reductase (MTHFR) plays a central role in the metabolism of folate, which provides a methyl donor for DNA methylation and deoxynucleoside synthesis. We performed a case–control study to explore the relationship between two common MTHFR polymorphisms (C677T and A1298C), their combination and interaction with environmental exposures, on gastric adenocarcinoma susceptibility and progression in an Italian population. One hundred and two cases and 254 hospital controls, matched by age and gender, were enrolled. Individuals carrying the MTHFR 677T allele showed an increased risk of gastric cancer (odds ratio (OR) 1.62, 95% confidence interval (CI) 0.98–2.67), particularly among ever smokers (OR 2.10, 95% CI 1.07–5.33) and, among 677 TT individuals, those with a low intake of fruit and vegetables (OR 2.18, 95% CI 1.05–4.54). The strongest effect, however, was noted for the MTHFR 677 TT genotype among the diffuse gastric cancer histotype (OR 2.92, 95% CI 1.12–7.60). No association was detected for the effect of MTHFR A1298C polymorphism. Survival analysis did not show any association between each polymorphism on the overall survival, although when the analysis was restricted to the first year of follow-up after the surgical intervention an improved survival was noted among MTHFR 677 CC subjects compared with the T allele carriers (p value for log-rank test 0.02). In conclusion, MTHFR 677 (any T genotype) appears to modulate an individual's susceptibility to gastric cancer, particularly when combined with cigarette smoking and among those with a low intake of fruit and vegetables. Our results also suggest that an aberrant DNA methylation pattern, through impaired folate metabolism, might play a key role in gastric carcinogenesis. A possible survival effect of the MTHFR C677T genotype in gastric cancer patients deserves further investigations with larger sample sizes.  相似文献   

18.
CpG‐related single nucleotide polymorphisms (CGS) have the potential to perturb DNA methylation; however, their effects on Alzheimer disease (AD) risk have not been evaluated systematically. We conducted a genome‐wide association study using a sliding‐window approach to measure the combined effects of CGSes on AD risk in a discovery sample of 24 European ancestry cohorts (12,181 cases, 12,601 controls) from the Alzheimer's Disease Genetics Consortium (ADGC) and replication sample of seven European ancestry cohorts (7,554 cases, 27,382 controls) from the International Genomics of Alzheimer's Project (IGAP). The potential functional relevance of significant associations was evaluated by analysis of methylation and expression levels in brain tissue of the Religious Orders Study and the Rush Memory and Aging Project (ROSMAP), and in whole blood of Framingham Heart Study participants (FHS). Genome‐wide significant (p < 5 × 10?8) associations were identified with 171 1.0 kb‐length windows spanning 932 kb in the APOE region (top p < 2.2 × 10?308), five windows at BIN1 (top p = 1.3 × 10?13), two windows at MS4A6A (top p = 2.7 × 10?10), two windows near MS4A4A (top p = 6.4 × 10?10), and one window at PICALM (p = 6.3 × 10‐9). The total number of CGS‐derived CpG dinucleotides in the window near MS4A4A was associated with AD risk (p = 2.67 × 10?10), brain DNA methylation (p = 2.15 × 10?10), and gene expression in brain (p = 0.03) and blood (p = 2.53 × 10?4). Pathway analysis of the genes responsive to changes in the methylation quantitative trait locus signal at MS4A4A (cg14750746) showed an enrichment of methyltransferase functions. We confirm the importance of CGS in AD and the potential for creating a functional CpG dosage‐derived genetic score to predict AD risk.  相似文献   

19.
INTRODUCTION: Neural tube defects (NTDs) are congenital anomalies caused by a combination of genetic and environmental influences. A defect below the head region resulting in protuberance of meninges and nervous tissue is termed myelomeningocele (MM). MM, the most common NTD compatible with survival, occurs in approximately 1 in 1000 births worldwide. Maternal preconceptional and periconceptional folate supplementation reduces the risk of NTDs by up to 70%. A key enzyme in folate metabolism is 5, 10‐methylene‐tetrahydrofolate reductase (MTHFR). OBJECTIVES: Sequence the 12 exons of the MTHFR gene among 96 subjects with MM to identify variants potentially contributing to the disease trait. METHODS: Exons were amplified by polymerase chain reaction, and the products were sequenced with the Sanger method to reveal sequence variants compared to MTHFR reference sequences. Association of variants was examined by Fisher's test. RESULTS: A novel variant c.171+3G>T was identified in intron 1 in one affected subject. The variant was not found in the subject's unaffected mother's DNA, and the unaffected father's DNA was unavailable. We found significant differences in allele frequencies for seven SNPs in MM subjects compared with ethnically matched reference populations reported in the single nucleotide polymorphism database. CONCLUSION: We identified a novel variant c.171+3G>T in the MTHFR gene that potentially affects splicing in an affected subject. In addition, we observed five SNPs (rs13306561, rs2274976, rs2066462, rs12121543, and rs1476413) in the MTHFR gene not previously shown to associate with MM. The current study provides additional evidence that multiple variations in the MTHFR gene are associated with MM. Birth Defects Research (Part A) 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Interleukin‐27 (IL‐27) gene polymorphisms are linked to infectious disease susceptibility and IL‐27 plasma level is associated with HIV infection. Therefore, we aimed to investigate the association between IL‐27 polymorphisms and susceptibility to HIV infection and disease progression. A total of 300 patients with HIV infection (48 long‐term nonprogressors and 252 typical progressors) and 300 healthy controls were genotyped for three IL‐27 polymorphisms, rs17855750, rs181206, rs40837 which were performed by using multiple single nucleotide primer extension technique. Significant association was found between IL‐27 rs40837 polymorphisms with susceptibility to HIV infection (AG vs AA: adjusted OR = 1.60, 95% CI, 1.11‐2.30, = 0.012; AG+GG vs AA: adjusted OR = 1.44, 95% CI, 1.02‐2.03, P = 0.038) and disease progression (LTNP: AG vs AA: adjusted OR = 2.33, 95% CI, 1.13‐4.80, P = 0.021; TP: AG vs AA: adjusted OR = 1.50, 95% CI, 1.04‐2.24, P = 0.030). Serum IL‐27 levels were significantly lower in cases compared to controls (< 0.001). There were lower serum IL‐27 levels in TPs than in LTNPs (< 0.001). We further found that LTNPs with rs40837 AG or GG genotype had lower serum IL‐27 levels than with AA genotype (< 0.05). The CD4+T counts in cases were significantly lower than controls (< 0.001). In contrast, individuals with rs40837 AG genotype had lower CD4+T counts than with AA genotype in cases (< 0.05). In addition, CD4+T counts in TPs were significantly lower than LTNPs (< 0.001). IL‐27 rs40837 polymorphism might influence the susceptibility to HIV infection and disease progression probably by regulating the level of serum IL‐27 or the quantity of CD4+T.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号