首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The microenvironment plays a major role in conferring chemoresistance to cancer cells. In order to better inform clinical response to chemoresistance, preclinical models that recapitulate its hallmark features are needed to enable screening for resistance‐specific therapeutic targets. A novel platform for seeding cancer cells in 3D hydrogels is presented utilizing derivatives of chitosan and alginate that, critically, is amenable to high throughput screening: cell seeding in hydrogels, media changes, dosing of anticancer compounds, and cell viability assays are all automated using a standard and commercially available liquid handling robot. Culture in these hydrogels elicits resistance in ovarian, lung, and prostate cancer cells to treatment by doxorubicin and paclitaxel. In correlation, proteomics analysis of SKOV3 cells cultured in 3D reveals enrichment of proteins associated with extreme drug resistance including HMOX1 and ALDH2. Subsequently, therapeutic antibodies targeted to tumor‐associated antigens upregulated in 3D cultures are shown to have higher efficacy compared to 2D cultures. Collectively, this automated 3D cell culture platform provides a powerful tool with utility in identification of drugs that may overcome chemoresistance.  相似文献   

2.
Selection methods for high-producing mammalian cell lines   总被引:2,自引:0,他引:2  
The selection of high-producing mammalian cell lines represents a bottleneck in process development for the production of biopharmaceuticals. Traditional methods are time consuming (development times often exceed six months) and significantly limited by the number of clones that can be feasibly screened. The market for therapeutic proteins is set to double by 2010, so there is an increasing need to develop methods for the selection of mammalian cell lines stably expressing recombinant products at high levels in an efficient, cost-effective and high-throughput manner. Alternatives include higher throughput methods based on flow-cytometric screening and recently developed automated systems for the selection of high-producing cell lines.  相似文献   

3.
The antigen specificity of cytotoxic T cells, provided by T‐cell receptors (TCRs), plays a central role in human autoimmune diseases, infection, and cancer. As the TCR repertoire is unique in individual cytotoxic T cells, a strategy to analyze its gene rearrangement at the single‐cell level is required. In this study, we applied a high‐density microcavity array enabling target cell screening of several thousands of single cells for identification of functional TCR‐β gene repertoires specific to melanoma (gp100) and cytomegalovirus (CMV) antigens. T cells expressing TCRs with the ability to recognize fluorescent‐labeled antigen peptide tetramers were isolated by using a micromanipulator under microscopy. Regularly arranged cells on the microcavity array eased detection and isolation of target single cells from a polyclonal T‐cell population. The isolated single cells were then directly utilized for RT‐PCR. By sequencing the amplified PCR products, antigen‐specific TCR‐β repertoires for gp100 and human cytomegalovirus antigens were successfully identified at the single‐cell level. This simple, accurate, and cost‐effective technique for single‐cell analysis has further potential as a valuable and widely applicable tool for studies on gene screening and expression analyses of various kinds of cells. Biotechnol. Bioeng. 2010;106: 311–318. © 2010 Wiley Periodicals, Inc.  相似文献   

4.
We have previously demonstrated how to transform the conventional method of hybridoma production and screening into a fast, high-throughput technology. Nevertheless, there were still open questions related to automated procedures and immunization protocols that we address now by comparing the hybridoma production work-flow in automated and manually executed processes. In addition, since the animals' antibody responses to single or multiple antigen challenge affect monoclonal antibody throughput, different immunization and fusion strategies were tested. Specifically, the results obtained with multiplexing (multiple target antigens injected into a single animal) and single antigen immunization followed by splenocyte pooling immediately before fusion were compared with conventional methods. The results presented here demonstrate that the optimal protocol consists of automated somatic-cell fusion and hybridoma dilution followed by manual plating of hybridoma cells. Additionally, more specific and productive hybridoma clones were obtained with multiplexed immunization in a single animal with respect to the splenocyte pooling from single antigen immunized animals. However, in terms of overall antibody yield, the conventional method consisting of single immunization for each single animal assured ten times more specific hybridoma cell lines than the strategy based on the multiple antigen immunization followed by separate fusion step. In conclusion, the most productive approach for recovering a large number of suitable antibodies relies on single antigen immunization followed by automated fusion and dilution steps and manual plating.  相似文献   

5.
Peptide nucleic acids (PNAs) are DNA mimics with a neutral peptide backbone instead of the negatively charged sugar phosphates. PNAs exhibit several attractive features such as high chemical and thermal stability, resistance to enzymatic degradation, and stable binding to their RNA or DNA targets in a sequence‐specific manner. Therefore, they are widely used in molecular diagnosis of antisense‐targeted therapeutic drugs or probes and in pharmaceutical applications. However, the main hindrance to the effective use of PNAs is their poor uptake by cells as well as the difficult and laborious chemical synthesis. In order to achieve an efficient delivery of PNAs into cells, there are already many published reports of peptides being used for transport across the cell membrane. In this protocol, we describe the automated as well as cost‐effective semi‐automated synthesis of PNAs and PNA‐peptide constructs on an automated peptide synthesizer. The facile synthesis of PNAs will be helpful in generating PNA libraries usable, e.g. for high‐throughput screening in biomolecular studies. Efficient synthetic schemes, the automated procedure, the reduced consumption of costly reagents, and the high purity of the products are attractive features of the reported procedure. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
Effective clone selection is a crucial step toward developing a robust mammalian cell culture production platform. Currently, clone selection is done by culturing cells in well plates and picking the highest producers. Ideally, clone selection should be done in a stirred tank bioreactor as this would best replicate the eventual production environment. The actual number of clones selected for future evaluation in bioreactors at bench‐scale is limited by the scale‐up and operational costs involved. This study describes the application of miniaturized stirred high‐throughput bioreactors (35 mL working volume; HTBRs) with noninvasive optical sensors for clone screening and selection. We investigated a method for testing several subclones simultaneously in a stirred environment using our high throughput bioreactors (up to 12 clones per HTBR run) and compared it with a traditional well plate selection approach. Importantly, it was found that selecting clones solely based on results from stationary well plate cultures could result in the chance of missing higher producing clones. Our approach suggests that choosing a clone after analyzing its performance in a stirred bioreactor environment is an improved method for clone selection. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

7.
In the emerging field of proteomics, there is an urgent need for catcher molecules such as antibodies for detecting the proteome or parts of the proteome in a microarray format. A suitable source for providing a large diversity of binders is obtained by combinatorial libraries, such as phage display libraries of single chain antibody fragments (scFv) or Fab fragments. To find novel binders from the n-CoDeR libraries with a high throughput, we have automated the screening process with robotics. The automated system is configured to screen tens of thousands of clones per day to target antigens in various formats, including peptides and soluble proteins, as well as cell-bound targets; thus, it is well designed to meet demands from the proteomics area.  相似文献   

8.
蛋白质芯片技术应用于高通量单克隆抗体制备研究   总被引:1,自引:0,他引:1  
针对在传统的单克隆抗体制备过程中进行特异性筛选时大量的人力消耗,建立了一种联合应用蛋白质芯片进行单克隆抗体制备的方法。用8种重组蛋白分别免疫BALB/c小鼠,在传统的细胞融合的基础上,将8种抗原免疫的杂交瘤阳性细胞混合后进行克隆化、蛋白质芯片筛选,阳性细胞有限稀释克隆化制备相关抗体。实验结果:混合克隆化共得到单克隆细胞175孔,经蛋白质芯片筛选出阳性孔119孔,选择针对单一抗原阳性的细胞连续2轮克隆化,8种重组蛋白各获得单克隆抗体细胞株1株。与经典的单克隆抗体制备相比,蛋白质芯片筛选与混合克隆化技术联合应用于单克隆抗体制备,1个筛选周期获得了8种重组蛋白的单克隆抗体细胞株,提高了单克隆抗体的制备效率,节省了在筛选中的抗原用量,提供了一种经济、快速、简便的方法。  相似文献   

9.
针对在传统的单克隆抗体制备过程中进行特异性筛选时大量的人力消耗,建立了一种联合应用蛋白质芯片进行单克隆抗体制备的方法。用8种重组蛋白分别免疫BALB/c小鼠,在传统的细胞融合的基础上,将8种抗原免疫的杂交瘤阳性细胞混合后进行克隆化、蛋白质芯片筛选,阳性细胞有限稀释克隆化制备相关抗体。实验结果:混合克隆化共得到单克隆细胞175孔,经蛋白质芯片筛选出阳性孔119孔,选择针对单一抗原阳性的细胞连续2轮克隆化,8种重组蛋白各获得单克隆抗体细胞株1株。与经典的单克隆抗体制备相比,蛋白质芯片筛选与混合克隆化技术联合应用于单克隆抗体制备,1个筛选周期获得了8种重组蛋白的单克隆抗体细胞株,提高了单克隆抗体的制备效率,节省了在筛选中的抗原用量,提供了一种经济、快速、简便的方法。  相似文献   

10.
Cell viability assays represent an important technology in modern cell biology, drug discovery and biotechnology, where currently there is a high demand for simple, sensitive and cost-effective screening methods. We have developed a new methodology and associated tools for cell-based screening assays, which are based on the measurement of the rates of oxygen uptake in cells by luminescence quenching. Sealable microchamber devices matching the footprint of a standard 96-well plate were developed and used in conjunction with long-decay phosphorescent oxygen probes. These devices permit cell non-invasive, real-time monitoring of cellular respiration and a rapid, one-step, kinetic assessment of multiple samples for cell viability, drug/effector action. These assays can be carried out on conventional fluorescence plate readers, they are suitable for different types of cells, including adherent and slow-respiring cells, require small sample volumes and cell numbers, and are amenable for high throughput screening. Monitoring of as little as 300 mammalian cells in 3 microl volume has been demonstrated.  相似文献   

11.
Techniques for selective cloning of murine hybridoma cells by flow cytometric cell sorting and use of automated laser nephelometry to determine the resultant clones' immunoglobulin secretion levels are described. Using a commercially available attachment to a fluorescence-activated cell sorter, individual hybridoma cells were successfully distributed into microtiter wells in an automated manner based on their forward angle light scatter properties and their reaction to fluorescein-conjugated anti-mouse-IgG. The techniques were used to estimate successfully the frequency of immunoglobulin-secreting cells in established cultures. In addition, heterogeneity of cell surface immunoglobulin expression was observed and utilized as a criterion for flow sorting of new hybridoma variants. In these studies, clones derived from high (anti-IgG) intensity sorting regions yielded cultures with enhanced immunoglobulin secretion levels, as determined by automated laser nephelometry. Furthermore, the surface immunoglobulin phenotype of the derived clones was conserved in subsequent progeny. Finally, it was established that inclusion of propidium iodide in the hybridoma cell sorting mixtures improved cloning efficiency by facilitating enhanced discrimination and elimination of nonviable cells. Our results indicate that flow cytometric-assisted single cell deposition provides positive attributes of several traditional hybridoma cloning techniques and, in addition, furnishes a tool for steering the cloning process toward selection of enhanced immunoglobulin producing cultures.  相似文献   

12.
Layer‐by‐layer cell printing is useful in mimicking layered tissue structures inside the human body and has great potential for being a promising tool in the field of tissue engineering, regenerative medicine, and drug discovery. However, imaging human cells cultured in multiple hydrogel layers in 3D‐printed tissue constructs is challenging as the cells are not in a single focal plane. Although confocal microscopy could be a potential solution for this issue, it compromises the throughput which is a key factor in rapidly screening drug efficacy and toxicity in pharmaceutical industries. With epifluorescence microscopy, the throughput can be maintained at a cost of blurred cell images from printed tissue constructs. To rapidly acquire in‐focus cell images from bioprinted tissues using an epifluorescence microscope, we created two layers of Hep3B human hepatoma cells by printing green and red fluorescently labeled Hep3B cells encapsulated in two alginate layers in a microwell chip. In‐focus fluorescent cell images were obtained in high throughput using an automated epifluorescence microscopy coupled with image analysis algorithms, including three deconvolution methods in combination with three kernel estimation methods, generating a total of nine deconvolution paths. As a result, a combination of Inter‐Level Intra‐Level Deconvolution (ILILD) algorithm and Richardson‐Lucy (RL) kernel estimation proved to be highly useful in bringing out‐of‐focus cell images into focus, thus rapidly yielding more sensitive and accurate fluorescence reading from the cells in different layers. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:445–454, 2018  相似文献   

13.
Photoreceptor morphogenesis requires specific and coordinated localization of junctional markers at different stages of development. Here, we provide evidence that Drosophila Klp64D, a homolog of Kif3A motor subunit of the heterotrimeric Kinesin II complex, is essential for viability of developing photoreceptors and localization of junctional proteins. Genetic analysis of mutant clones shows that absence of Klp64D protein in early larval eye disc does not affect initial differentiation, but results in abnormal nuclear position in differentiating photoreceptors. These cells eventually die in the pupal stage, indicating klp64D's role in cell viability. The function of Klp64D protein is cell type specific because the p35 cell death inhibitor can rescue cell death in cone cells but not photoreceptors. In contrast to early induction of mutant clones, late induction during third instar larval stage just prior to pupation allows survival of single‐ or few‐celled clones of klp64D mutant cells. Analysis of these lately induced clones shows that Klp64D function is essential for Bazooka (Par‐3 homolog) and Armadillo localization to the adherens junction (AJ) in pupal photoreceptors. These findings suggest that Kinesin II complex plays a cell type‐specific function in the localization of AJ and cell polarity proteins in the developing retina, thereby contributing to photoreceptor morphogenesis. genesis 48:522–530, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Aims: To develop a fast, convenient, inexpensive and efficient Escherichia coli transformation method for changing hosts of plasmids, which can also facilitate the selection of positive clones after DNA ligation and transformation. Methods and Results: A single fresh colony from plasmid‐containing donor strain is picked up and suspended in 75% ethanol. Cells are pelleted and resuspended in CaCl2 solution and lysed by repetitive freeze–thaw cycles to obtain plasmid‐containing cell lysate. The E. coli recipient cells are scraped from the lawn of LB plate and directly suspended in the plasmid‐containing cell lysate for transformation. Additionally, a process based on colony‐to‐lawn transformation and protein expression was designed and conveniently used to screen positive clones after DNA ligation and transformation. Conclusions: With this method, a single colony from plasmid‐containing donor strain can be directly used to transform recipient cells scraped from lawn of LB plate. Additionally, in combination with this method, screening of positive clones after DNA ligation and transformation can be convenient and time‐saving. Significance and Impact of the Study: Compared with current methods, this procedure saves the steps of plasmid extraction and competent cell preparation. Therefore, the method should be highly valuable especially for high‐throughput changing hosts of plasmids during mutant library creation.  相似文献   

15.
Cell separation is broadly useful for applications in clinical diagnostics, biological research, and potentially regenerative medicine. Recent attention has been paid to label‐free size‐based techniques that may avoid the costs or clogging issues associated with centrifugation and mechanical filtration. We present for the first time a massively parallel microfluidic device that passively separates pathogenic bacteria cells from diluted blood with macroscale performance. The device was designed to process large sample volumes in a high‐throughput, continuous manner using 40 single microchannels placed in a radial array with one inlet and two rings of outlets. Each single channel consists of a short focusing, gradual expansion and collection region and uses unique differential transit times due to size‐dependent inertial lift forces as a method of cell separation. The gradual channel expansion region is shown to manipulate cell equilibrium positions close to the microchannel walls, critical for higher efficiency collection. We demonstrate >80% removal of pathogenic bacteria from blood after two passes of the single channel system. The massively parallel device can process 240 mL/h with a throughput of 400 million cells/min. We expect that this parallelizable, robust, and label‐free approach would be useful for filtration of blood as well as for other cell separation and concentration applications from large volume samples. Biotechnol. Bioeng. 2010;107: 302–311. © 2010 Wiley Periodicals, Inc.  相似文献   

16.
Many quantitative cell biology questions require fast yet reliable automated image segmentation to identify and link cells from frame‐to‐frame, and characterize the cell morphology and fluorescence. We present SuperSegger, an automated MATLAB‐based image processing package well‐suited to quantitative analysis of high‐throughput live‐cell fluorescence microscopy of bacterial cells. SuperSegger incorporates machine‐learning algorithms to optimize cellular boundaries and automated error resolution to reliably link cells from frame‐to‐frame. Unlike existing packages, it can reliably segment microcolonies with many cells, facilitating the analysis of cell‐cycle dynamics in bacteria as well as cell‐contact mediated phenomena. This package has a range of built‐in capabilities for characterizing bacterial cells, including the identification of cell division events, mother, daughter and neighbouring cells, and computing statistics on cellular fluorescence, the location and intensity of fluorescent foci. SuperSegger provides a variety of postprocessing data visualization tools for single cell and population level analysis, such as histograms, kymographs, frame mosaics, movies and consensus images. Finally, we demonstrate the power of the package by analyzing lag phase growth with single cell resolution.  相似文献   

17.
Here we report a new method for isolating antigen-specific antibody-secreting cells (ASCs) using a microwell array chip, which offers a rapid, efficient and high-throughput (up to 234,000 individual cells) system for the detection and retrieval of cells that secrete antibodies of interest on a single-cell basis. We arrayed a large population of lymphoid cells containing ASCs from human peripheral blood on microwell array chips and detected spots with secreted antibodies. This protocol can be completed in less than 7 h, including 3 h of cell culture. The method presented here not only has high sensitivity and specificity comparable with enzyme-linked immunospot (ELISPOT) but it also overcomes the limitations of ELISPOT in recovering ASCs that can be used to produce antigen-specific human monoclonal antibodies. This method can also be used to detect cells secreting molecules other than antibodies, such as cytokines, and it provides a tool for cell analysis and clinical diagnosis.  相似文献   

18.
Summary A screening technique was developed for the identification of clones of hepatoma cells that secrete albumin. The technique employs the overlay of a 1% agarose solution containing antiserum to albumin onto clones of hepatoma cells. A distinct immunoprecipitation complex is formed in the immuno-overlay that corresponds directly to the position of each secreting clone. Clones deficient in albumin secretion do not form an immunoprecipitate. Thus comparison of the immuno-overlay and the cell colonies results in identification of variant clones as well as those capable of secretion. Biochemical characterization of the region of agarose overlay from secreting and nonsecreting clones demonstrates the specificity of the method and its potential for selection of colonies that are secreting other hepatic or cellular proteins. This study was supported by Grant GM 22372 from the Public Health Service. G. J. D. is a recipient of an Established Investigatorship from the American Heart Association.  相似文献   

19.
Monoclonal antibodies that recognize specific antigens of interest are used as therapeutic agents and as tools for biomedical research. Discovering a single monoclonal antibody requires retrieval of an individual hybridoma from polyclonal mixtures of cells producing antibodies with a variety of specificities. The time required to isolate hybridomas by a limiting serial-dilution, however, has restricted the diversity and breadth of available antibodies. Here we present a soft lithographic method based on intaglio printing to generate microarrays comprising the secreted products of single cells. These engraved arrays enable a rapid (<12 h) and high-throughput (>100,000 individual cells) system for identification, recovery and clonal expansion of cells producing antigen-specific antibodies. This method can be adapted, in principle, to detect any secreted product in a multiplexed manner.  相似文献   

20.
Selection of single cells capable of producing target proteins at high rates is crucial for the development of protein manufacturing processes. Here, we present the rapid selection of single cells producing immunoglobulin antibodies at high specific rates by microwell array and microengraving. Chinese hamster ovary (CHO) cells secreting chimeric antibodies were deposited in a microwell array in a manner such that each microwell contained a single cell. Secreted antibodies in the microwells were transferred onto a glass slide by microengraving, followed by interrogation using fluorescence-based immunoassay. Single cells displaying high signal intensities were selected, retrieved, and clonally expanded to assess their specific antibody production rates. Three successive rounds of the process resulted in the selection of single cells showing significantly increased antibody production rates. The present approach can be applied to the selection of single cells for producing other therapeutic proteins in a high-throughput manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号