首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Most biopharmaceutical drugs, especially monoclonal antibodies (mAbs), bispecific antibodies (BsAbs) and Fc‐fusion proteins, are expressed using Chinese Hamster Ovary (CHO) cell lines. CHO cells typically yield high product titers and high product quality. Unfortunately, CHO cell lines also generate high molecular weight (HMW) aggregates of the desired product during cell culture along with CHO host cell protein (HCP) and CHO DNA. These immunogenic species, co‐purified during Protein A purification, must be removed in a multi‐step purification process. Our colleagues have reported the use of a novel polymer‐mediated flocculation step to simultaneously reduce HMW, HCP and DNA from stable CHO cell cultures prior to Protein A purification. The objective of this study was to evaluate this novel “smart polymer” (SmP) in a high throughput antibody discovery workflow using transiently transfected CHO cultures. SmP treatment of 19 different molecules from four distinct molecular categories (human mAbs, murine mAbs, BsAbs and Fabs) with 0.1% SmP and 25 mM stimulus resulted in minimal loss of monomeric protein. Treatment with SmP also demonstrated a variable, concentration‐dependent removal of HMW aggregates after Protein A purification. SmP treatment also effectively reduced HCP levels at each step of mAb purification with final HCP levels being several fold lower than the untreated control. Interestingly, SmP treatment was able to significantly reduce high concentrations of artificially spiked levels of endotoxin in the cultures. In summary, adding a simple flocculation step to our existing transient CHO process reduced the downstream purification burden to remove impurities and improved final product quality. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1393–1400, 2017  相似文献   

2.
Affinity precipitation using Z‐elastin‐like polypeptide‐functionalized E2 protein nanocages has been shown to be a promising alternative to Protein A chromatography for monoclonal antibody (mAb) purification. We have previously described a high‐yielding, affinity precipitation process capable of rapidly capturing mAbs from cell culture through spontaneous, multivalent crosslinking into large aggregates. To challenge the capabilities of this technology, nanocage affinity precipitation was investigated using four industrial mAbs (mAbs A–D) and one Fc fusion protein (Fc A) with diverse molecular properties. A molar binding ratio of 3:1 Z:mAb was sufficient to precipitate >95% mAb in solution for all molecules evaluated at ambient temperature without added salt. The effect of solution pH on aggregation kinetics was studied using a simplified two‐step model to investigate the protein interactions that occur during mAb–nanocage crosslinking and to determine the optimal solution pH for precipitation. After centrifugation, the pelleted mAb–nanocage complex remained insoluble and was capable of being washed at pH ≥ 5 and eluted with at pH < 4 with >90% mAb recovery for all molecules. The four mAbs and one Fc fusion were purified from cell culture using optimal process conditions, and >94% yield and >97% monomer content were obtained. mAb A–D purification resulted in a 99.9% reduction in host cell protein and >99.99% reduction in DNA from the cell culture fluids. Nanocage affinity precipitation was equivalent to or exceeded expected Protein A chromatography performance. This study highlights the benefits of nanoparticle crosslinking for enhanced affinity capture and presents a robust platform that can be applied to any target mAb or Fc‐containing proteins with minimal optimization of process parameters.  相似文献   

3.
Formation of high molecular weight (HMW) species is a common issue encountered during manufacture of protein therapeutics. With advanced purification techniques, efficient removal of protein aggregates is no longer a challenging task, but it is important to minimize protein aggregation level at the culture stage to reduce the downstream burden and improve overall process yield. In this regard, our recent effort on medium optimization has led us to unexpectedly discover that glucocorticoids can significantly reduce the formation of HMW species in IgG‐fusion protein produced by CHO cells. First, the effectiveness of dexamethasone can be seen at nanomolar concentrations, which allows this glucocorticoid analog to be a cost‐efficient chemical for reducing protein aggregation in cell cultures. Second, this reduction is mediated through glucocorticoid receptors (GR) as it is antagonized by GR antagonist RU486. Third, GR activation upregulates expression of glutathione reductase but not protein disulfide‐isomerase, which may help with providing a balanced redox condition in the cells. Last, the beneficial effect of dexamethasone is not limited to one cell line, and it can be repeated in a different cell line, indicating that glucocorticoids are also applicable to other DG44 cell lines for reducing protein aggregation. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

4.
The sialic acid of glycoproteins secreted by recombinant Chinese hamster ovary (rCHO) cells can be impaired by sialidase under culture conditions which promote the extracellular accumulation of this enzyme. To investigate the effect of Bcl‐xL overexpression on the sialylation of glycoproteins produced in rCHO cell culture, two rCHO cell lines producing the same Fc‐fusion protein, which were derived from DUKX‐B11 and DG44, respectively, were engineered to have regulated Bcl‐xL overexpression using the Tet‐off system. For both cell lines, Bcl‐xL overexpression improved cell viability and extended culture longevity in batch cultures. As a result, a maximum Fc‐fusion protein titer increased by Bcl‐xL overexpression though the extent of titer enhancement differed between the two cell lines. With Bcl‐xL overexpression, the sialylation of Fc‐fusion protein, which was assessed by isoelectric focusing gel and sialic acid content analyses, decreased more slowly toward the end of batch cultures. This was because Bcl‐xL overexpression delayed the extracellular accumulation of sialidase activity by reducing cell lysis during batch cultures. Taken together, Bcl‐xL overexpression in rCHO cell culture increased Fc‐fusion protein production and also reduced the impairment of sialylation of Fc‐fusion protein by maintaining high viability during batch cultures. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1133–1136, 2015  相似文献   

5.
This article presents the use of caprylic acid (CA) to precipitate impurities from the protein A capture column elution pool for the purification of monoclonal antibodies (mAbs) with the objective of developing a two chromatography step antibody purification process. A CA‐induced impurity precipitation in the protein A column elution pool was evaluated as an alternative method to polishing chromatography techniques for use in the purification of mAbs. Parameters including pH, CA concentrations, mixing time, mAb concentrations, buffer systems, and incubation temperatures were evaluated on their impacts on the impurity removal, high‐molecular weight (HMW) formation and precipitation step yield. Both pH and CA concentration, but not mAb concentrations and buffer systems, are key parameters that can affect host–cell proteins (HCPs) clearance, HMW species, and yield. CA precipitation removes HCPs and some HMW species to the acceptable levels under the optimal conditions. The CA precipitation process is robust at 15–25°C. For all five mAbs tested in this study, the optimal CA concentration range is 0.5–1.0%, while the pH range is from 5.0 to 6.0. A purification process using two chromatography steps (protein A capture column and ion exchange polishing column) in combination with CA‐based impurity precipitation step can be used as a robust downstream process for mAb molecules with a broad range of isoelectric points. Residual CA can be effectively removed by the subsequent polishing cation exchange chromatography. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1515–1525, 2015  相似文献   

6.
Recombinant human deoxyribonuclease I (DNase I) is an important clinical agent that is inhaled into the airways where it degrades DNA to lower molecular weight fragments, thus reducing the viscoelasticity of sputum and improving the lung function of cystic fibrosis patients. To investigate DNases with potentially improved properties, we constructed a molecular fusion of human DNase I with the hinge and Fc region of human IgG1 heavy chain, creating a DNase I-Fc fusion protein. Infection of Sf9 insect cells with recombinant baculovirus resulted in the expression and secretion of the DNase I-Fc fusion protein. The fusion protein was purified from the culture medium using protein A affinity chromatography followed by desalting by gel filtration and was characterized by amino-terminal sequence, amino acid composition, and a variety of enzyme-linked immunosorbent assays (ELISA) and activity assays. The purified fusion contains DNase I, as determined by a DNase I ELISA and an actin-binding ELISA, and an intact antibody Fc region, which was quantified by an Fc ELISA, in a 2:1 stoichiometric ratio, respectively. The dimeric DNase I-Fc fusion was functionally active in enzymatic DNA digestion assays, albeit about 10-fold less than monomeric DNase I. Cleavage of the DNase I-Fc fusion by papain resulted in a specific activity comparable to the monomeric enzyme. Salt was inhibitory for wild type monomeric DNase I but actually enhanced the activity of the dimeric DNase I-Fc fusion. The DNase I-Fc fusion protein was also less Ca2+-dependent than DNase I itself. These results are consistent with a higher affinity of the dimeric fusion protein to DNA than monomeric DNase I. The engineered DNase I-Fc fusion protein described herein has properties that may have clinical benefits.  相似文献   

7.
Platelet aggregation activity due to platelet-activating factor (PAF) was detected at high molecular weight (HMW) and low molecular weight fractions after gel-filtration chromatography of cell lysate of endothelial cells. [3H]PAF added to the cell lysate was similarly distributed after chromatography. The radioactivity associated with HMW fraction was not reduced by digesting the lysate with trypsin, suggesting that PAF was not making complexes with proteins but was included in lipid vesicles in cell lysate. Further evidence showed that an unknown specific factor(s) was needed to form these PAF-containing lipid vesicles. Radioactivity was not found in HMW fraction when [3H]PAF was mixed with cell lysate of vascular smooth muscle cells. When monomeric PAF was added to endothelial cell lysate, the specific activity of aggregation decreased to the level exerted by endogenous PAF-containing lipid vesicles due to incorporation into lipid vesicles. PAF in the form of lipid vesicles was more stable in plasma than monomeric form.  相似文献   

8.
B‐cell maturation antigen (BCMA) fused at the C‐terminus to the Fc portion of human IgG1 (BCMA‐Fc) blocks B‐cell activating factor (BAFF) and proliferation‐inducing ligand (APRIL)‐mediated B‐cell activation, leading to immune disorders. The fusion protein has been cloned and produced by several engineering cell lines. To reduce cost and enhance production, we attempted to express recombinant human BCMA‐Fc (rhBCMA‐Fc) in Pichia pastoris under the control of the AOX1 methanol‐inducible promoter. To produce the target protein with uniform molecular weight and reduced immunogenicity, we mutated two predicted N‐linked glycosylation sites. The secretory yield was improved by codon optimization of the target gene sequence. After fed‐batch fermentation under optimized conditions, the highest yield (207 mg/L) of rhBCMA‐Fc was obtained with high productivity (3.45 mg/L/h). The purified functional rhBCMA‐Fc possessed high‐binding affinity to APRIL and dose‐dependent inhibition of APRIL‐induced proliferative activity in vitro through three‐step purification. Thus, this yeast‐derived expression method could be a low‐cost and effective alternative to the production of rhBCMA‐Fc in mammalian cell lines.  相似文献   

9.
This study introduces a novel analytical approach for studying aggregation and phase separation of monoclonal antibodies (mAbs). The approach is based on using analytical scale cation‐exchange chromatography (CEX) for measuring the loss of soluble monomer in the case of individual and mixed protein solutions. Native CEX outperforms traditional size‐exclusion chromatography in separating complex protein mixtures, offering an easy way to assess mAb aggregation propensity. Different IgG1 and IgG2 molecules were tested individually and in mixtures consisting of up to four protein molecules. Antibody aggregation was induced by four different stress factors: high temperature, low pH, addition of fatty acids, and rigorous agitation. The extent of aggregation was determined from the amount of monomeric protein remaining in solution after stress. Consequently, it was possible to address the role of specific mAb regions in antibody aggregation by co‐incubating Fab and Fc fragments with their respective full‐length molecules. Our results revealed that the relative contribution of Fab and Fc regions in mAb aggregation is strongly dependent on pH and the stress factor applied. In addition, the CEX‐based approach was used to study reversible protein precipitation due to phase separation, which demonstrated its use for a broader range of protein–protein association phenomena. In all cases, the role of Fab and Fc was clearly dissected, providing important information for engineering more stable mAb‐based therapeutics.  相似文献   

10.
This contribution describes strategies to purify monoclonal antibodies from Chinese hamster ovary (CHO) cell culture supernatant using newly designed multimodal membranes (MMMs). The MMMs were used for the capture step purification of human IgG1 following a size‐exclusion desalting column to remove chaotropic salts that interfere with IgG binding. The MMM column attained higher dynamic binding capacity than a Protein A resin column at an equivalent residence time of 1 min. The two‐step MMM chromatography process achieved high selectivity for capturing hIgG1 from the CHO cell culture supernatant, though the desalting step resulted in product dilution. Product purity and host cell protein (HCP) level in the elution pool were analyzed and compared to results from a commercial Protein A column. The product purity was >98% and HCP levels were <20 ppm for both purification methods. In addition, hIgG1 could be eluted from the MMM chromatography column at neutral pH, which is important for limiting the formation of aggregates; although slow elution dilutes the product. Overall, this paper shows that MMMs are highly effective for capture step purification of proteins and should be considered when Protein A cannot be used, e.g., for pH sensitive mAbs or proteins lacking an Fc binding domain. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:658–665, 2017  相似文献   

11.
The cellulose-binding domain (CBD) of a Cellulomonas fimi exo-glucanase was translationally fused with β-glucuronidase (GusA) from Escherichia coli and β-glycosidase (BglA) from Thermus caldophilus, respectively. Two fusion proteins (GusA-CBD and BglA-CBD) were expressed as insoluble aggregates in cells and isolated by centrifugation of the cell lysates. Interestingly, activity assays revealed that > 90% of the catalytic activity of both proteins was localized in the insoluble fractions. For example, the GusA-CBD particles exhibited 21 units per mg protein, which corresponded to 19% specific activity of the highly purified soluble GusA. The specific activity increased further up to 42 units per mg protein when treated with either sonication or chaotropic L-arginine. These results demonstrate that fusion with CBD family II may activate catalytic protein particles in E. coli cells, and that internal proteins of the particles are also active. Finally, the protein particles were tested in repeated batch operations after being cross-linked with chemicals, indicating that they have potential as a new preparation for immobilized biocatalysts.  相似文献   

12.
The incubation of camel lens cortex homogenate with 100 microM ferrous ions and 5.5 mM glucose under sterile conditions caused rapid protein aggregation, but little or no reaction was seen with either 100 microM ferrous ions or 5.5 mM glucose alone. The formation of glycosylated high molecular weight (HMW) protein aggregates was confirmed by light scattering studies, a decreased level of free -SH groups, incorporation of [14C]-glucose and elution of HMW protein aggregate just after the void volume of a Sephacryl S-1000 column. The bonding involved in the formation of these aggregates was found to be mainly disulfide in nature. Isoelectric focusing (IEF) in the presence and absence of reducing conditions indicated that gamma-crystallins may be involved in the formation of HMW protein aggregates. The modifications observed were found to mimic those seen in cataractous lenses.  相似文献   

13.
Human IgG is a bivalent molecule that has two identical Fab domains connected by a dimeric Fc domain. For therapeutic purposes, however, the bivalency of IgG and Fc fusion proteins could cause undesired properties. We therefore engineered the conversion of the natural dimeric Fc domain to a highly soluble monomer by introducing two Asn-linked glycans onto the hydrophobic CH3-CH3 dimer interface. The monomeric Fc (monoFc) maintained the binding affinity for neonatal Fc receptor (FcRn) in a pH-dependent manner. We solved the crystal structure of monoFc, which explains how the carbohydrates can stabilize the protein surface and provides the rationale for molecular recognition between monoFc and FcRn. The monoFc prolonged the in vivo half-life of an antibody Fab domain, and a tandem repeat of the monoFc further prolonged the half-life. This monoFc modality can be used to improve the pharmacokinetics of monomeric therapeutic proteins with an option to modulate the degree of half-life extension.  相似文献   

14.
The effects of melatonin and noradrenaline (NA) on bi‐directional melanosome transport were analysed in primary cultures of melanophores from the Atlantic cod. Both agents mediated rapid melanosome aggregation, and by using receptor antagonists, melatonin was found to bind to a melatonin receptor whereas NA binds to an α2‐adrenoceptor. It has previously been stated that melatonin‐mediated melanosome aggregation in Xenopus is coupled with tyrosine phosphorylation of a so far unidentified high molecular weight protein and we show that although acting through different receptors and through somewhat different downstream signalling events, tyrosine phosphorylation is of the utmost importance for melanosome aggregation mediated by both NA and melatonin in cod melanophores. Together with cyclic adenosine 3‐phosphate‐fluctuations, tyrosine phosphorylation functions as a switch signal for melanosome aggregation and dispersion in these cells.  相似文献   

15.
High molecular weight (HMW) kininogen was purified from fresh human plasma by two successive column chromatographies on DEAE-Sephadex A-50 and Zn-chelate Sepharose 4B. The purified HMW kininogen appeared to be a single band on sodium dodecyl sulfate (SDS)-polyacrylamide disc gel electrophoresis in both the presence and absence of beta-mercaptoethanol. However, it gave two bands on nonreduced SDS-polyacrylamide slab gel electrophoresis, a major band of dimeric form (Mr 200 000, ca. 95%) and a minor band of monomeric form (Mr 105 000, ca. 5%). Under reduced conditions, the dimeric form was converted stoichiometrically to a monomeric form (Mr 110 000), and the monomeric form observed under nonreduced conditions (Mr 105 000) was converted to a heavy chain (Mr 60 000) and a light chain (Mr 50 000). The formation of a dimer of HMW kininogen was also confirmed by an immunoblotting experiment. This unique property of intact HMW kininogen to form a dimer was further utilized in studies on the kininogens and their derivatives as thiol proteinase inhibitors. The purified HMW kininogen strongly inhibited the caseinolytic activities of calpain I, calpain II, and papain but not those of trypsin, chymotrypsin, and thermolysin, indicating that it was a group-specific inhibitor for thiol proteinases. When HMW kininogen was reduced with 0.14 or 1.4 M beta-mercaptoethanol, its inhibitory activity was partially or mostly inactivated, but on subsequent air oxidation its activity was almost completely recovered. In addition, kinin-free and fragment 1,2 free HMW kininogen showed higher inhibitory activity than the intact HMW kininogen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The heat shock protein Hsp104 has been reported to possess the ability to modulate protein aggregation and toxicity and to “catalyze” the disaggregation and recovery of protein aggregates, including amyloid fibrils, in yeast, Escherichia coli, mammalian cell cultures, and animal models of Huntington's disease and Parkinson's disease. To provide mechanistic insight into the molecular mechanisms by which Hsp104 modulates aggregation and fibrillogenesis, the effect of Hsp104 on the fibrillogenesis of amyloid beta (Aβ) was investigated by characterizing its ability to interfere with oligomerization and fibrillogenesis of different species along the amyloid-formation pathway of Aβ. To probe the disaggregation activity of Hsp104, its ability to dissociate preformed protofibrillar and fibrillar aggregates of Aβ was assessed in the presence and in the absence of ATP. Our results show that Hsp104 inhibits the fibrillization of monomeric and protofibrillar forms of Aβ in a concentration-dependent but ATP-independent manner. Inhibition of Aβ fibrillization by Hsp104 is observable up to Hsp104/Aβ stoichiometric ratios of 1:1000, suggesting a preferential interaction of Hsp104 with aggregation intermediates (e.g., oligomers, protofibrils, small fibrils) on the pathway of Aβ amyloid formation. This hypothesis is consistent with our observations that Hsp104 (i) interacts with Aβ protofibrils, (ii) inhibits conversion of protofibrils into amyloid fibrils, (iii) arrests fibril elongation and reassembly, and (iv) abolishes the capacity of protofibrils and sonicated fibrils to seed the fibrillization of monomeric Aβ. Together, these findings suggest that the strong inhibition of Aβ fibrillization by Hsp104 is mediated by its ability to act at different stages and target multiple intermediates on the pathway to amyloid formation.  相似文献   

17.
The combination of immunoaffinity and size-exclusion chromatography (SEC) is a powerful tool to analyze multiprotein particle assembly. This approach was used to investigate the source of aggregation of recombinant hepatitis B surface antigen (HBsAg) detected in purified material. As HBsAg aggregation does not originate in the stresses, such as the concentration of HBsAg solutions, temperature and chaotropic agents, it is less probable that the HBsAg aggregate is produced during the process. To test whether aggregation takes place in vivo, crude yeast extract containing the expressed HBsAg was fractioned on a Sephacryl S-400 column just after cell disruption, and each fraction immunopurified individually. As a result, the HBsAg aggregate was isolated from a fraction corresponding to the elution of large particle aggregates only, not native HBsAg particles. It was biologically active, which demonstrates aggregate formation by specific assembly of partially or wholly folded HBsAg intermediates.  相似文献   

18.
《MABS-AUSTIN》2013,5(5):1201-1210
The IgG1 Fc is a dimeric protein that mediates important antibody effector functions by interacting with Fcγ receptors (FcγRs) and the neonatal Fc receptor (FcRn). Here, we report the discovery of a monomeric IgG1 Fc (mFc) that bound to FcγRI with very high affinity, but not to FcγRIIIa, in contrast to wild-type (dimeric) Fc. The binding of mFc to FcRn was the same as that of dimeric Fc. To test whether the high-affinity binding to FcγRI can be used for targeting of toxins, a fusion protein of mFc with a 38 kDa Pseudomonas exotoxin A fragment (PE38), was generated. This fusion protein killed FcγRI-positive macrophage-like U937 cells but not FcγRI-negative cells, and mFc or PE38 alone had no killing activity. The lack of binding to FcγRIIIa resulted in the absence of Fc-mediated cytotoxicity of a scFv-mFc fusion protein targeting mesothelin. The pharmacokinetics of mFc in mice was very similar to that of dimeric Fc. The mFc's unique FcγRs binding pattern and related functionality, combined with its small size, monovalency and the preservation of FcRn binding which results in relatively long half-life in vivo, suggests that mFc has great potential as a component of therapeutics targeting inflammation mediated by activated macrophages overexpressing FcγRI and related diseases, including cancer.  相似文献   

19.
Low pH viral inactivation is typically performed in the eluate pool following the protein A capture step during the manufacturing of monoclonal antibodies and Fc‐fusion proteins. However, exposure to low pH has the potential to alter protein quality. To avoid these difficulties, novel wash buffers capable of inactivating viruses while antibodies or Fc‐fusion proteins were bound to protein A or mixed mode resins were developed. By equilibrating the column in high salt buffer (2 M ammonium sulfate or 3 M sodium chloride) after loading, the hydrophobic interactions between antibodies and protein A ligands were increased enough to prevent elution at pH 3. The ammonium sulfate was also found to cause binding of an antibody to a mixed mode cation exchange and a mixed mode anion exchange resin at pH values that caused elution in conventional cation and anion exchange resins (pH 3.5 for Capto Adhere and pH 8.0 for Capto MMC), indicating that retention was due to enhanced hydrophobic interactions. The potential of the 2 M ammonium sulfate pH 3 buffer, a 1 M arginine buffer, and a buffer containing the detergent LDAO to inactivate XMuLV virus when used as protein A wash buffers with a 1 hour contact time were studied. The high salt and detergent containing wash buffers provided about five logs of removal, determined using PCR, and complete combined removal and inactivation (> 6 logs), determined by measuring infectivity. The novel protein A washes could provide more rapid, automated viral inactivation steps with lower pool conductivities. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:406–413, 2015  相似文献   

20.
The in vitro aggregation of the model GST–GFP fusion protein was induced by several effectors, including those mimicking variations occurring under cell stress conditions. In particular, we examined the effects of thermal treatments, redox state and pH variations, salt addition, and freezing and thawing cycles. The resulting aggregates displayed different morphologies as seen by electron microscopy, and different secondary and tertiary structures, as indicated by Fourier transform infrared spectroscopy and fluorescence. Therefore, proteins can be forced to undergo multiple aggregation pathways that lead to assemblies with different molecular structures and, possibly, specific physiological and pathological roles.In conclusion, great caution should be taken in inferring conclusions on protein aggregation and disaggregation in vivo from results obtained using aggregates produced under non-physiological perturbations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号