首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对功能核酸概念的分析需要建立在对功能核酸研究的基础上,从内涵和外延两个方面来进行探析。从内涵来看,它是对具有特殊结构、执行特定生物功能的核酸分子的统称;从外延来看,它包括适体、核酸核酶、核糖开关、发光核酸、修饰核酸、功能核酸裁剪、核酸自组装、功能核酸纳米材料、核酸纳米酶、核酸药物、核酸补充剂以及DNA存储技术等。目前功能核酸已成功地应用于生物传感、生物成像、生物医学等诸多领域。对功能核酸这一概念进行了探讨,并尝试对其范畴、特点进行归纳总结,以期梳理和完善功能核酸的基本概念,促进该领域的进一步发展。  相似文献   

2.
肽核酸是人工合成的寡核苷酸类似物,以N-(2-氨乙基)甘氨酸结构单元替代DNA分子中的戊糖-磷酸结构。与天然核酸相比,肽核酸可以更高效地与DNA或RNA特异性杂交,在分子生物学和基因药物领域具有良好的应用前景。但是,肽核酸骨架呈电中性,难以高效穿过细胞膜,这成为工程应用的最大障碍。为了改善肽核酸的细胞转运性能,对肽核酸进行化学修饰是近年来的研究热点。结合近十年来文献报道和本实验室的工作,对肽核酸的骨架修饰和配合物结合修饰两类增强细胞转运的修饰方法进行综述,并对修饰性肽核酸细胞转运研究中存在的问题以及未来的研究趋势及其应用提出了见解。  相似文献   

3.
Nucleic acid can catalyze the conversion of α‐helical cellular prion protein to β‐sheet rich Proteinase K resistant prion protein oligomers and amyloid polymers in vitro and in solution. Because unfolding of a protein molecule from its ordered α‐helical structure is considered to be a necessary step for the structural conversion to its β‐sheet rich isoform, we have studied the unfolding of the α‐helical globular 121–231 fragment of mouse recombinant prion protein in the presence of different nucleic acids at neutral and acid pH. Nucleic acids, either single or double stranded, do not have any significant effect on the secondary structure of the protein fragment at neutral pH; however the protein secondary structure is modified by the nucleic acids at pH 5. Nucleic acids do not show any significant effect on the temperature induced unfolding of the globular prion protein domain at neutral pH which, however, undergoes a gross conformational change at pH 5 as evidenced from the lowering of the midpoint of thermal denaturation temperatures, Tm, of the protein. The extent of Tm decrease shows a dependence on the nature of nucleic acid. The interaction of nucleic acid with the nonpolar groups exposed from the protein interior at pH 5 probably contributes substantially to the unfolding process of the protein.  相似文献   

4.
5.
Abstract

We report synthesis and high-affinity hybridization of fully modified home-thymine 2′-deoxy and 2′-deoxy-2′-fluoro xylo nucleic acids.  相似文献   

6.
The MAGIChip (MicroArrays of Gel-Immobilized Compounds on a chip) consists of an array of hydrophilic gel pads fixed on a hydrophobic glass surface. These pads of several picoliters to several nanoliters in volume contain gel-immobilized nucleic acids, proteins, and other compounds, as well as live cells. They are used to conduct chemical and enzymatic reactions with the immobilized compounds or samples bound to them. In the latter case, nucleic acid fragments can be hybridized, modified, and fractionated within the gel pads. The main procedures required to analyze nucleic acid sequences (PCR, detachment of primers and PCR-amplified products from a substrate, hybridization, ligation, and others) can be also performed within the microchip pads. A flexible, multipurpose, and inexpensive system has been developed to register the processes on a microchip. The system provides unique possibilities for research and biomedical applications, allowing one to register both equilibrium states and the course of reaction in real time. The system is applied to analyze both kinetic and thermodynamic characteristics of molecular interaction in the duplexes formed between nucleic acids and the probes immobilized within the microchip gel pads. Owing to the effect of stacking interaction of nucleic acids, the use of short oligonucleotides extends the possibilities of microchips for analysis of nucleic acid sequences, allowing one to employ the MALDI-TOF mass spectrometry to analyze the hybridization data. The specialized MAGIChips has been successfully applied to reveal single-nucleotide polymorphism of many biologically significant genes, to identify bacteria and viruses, to detect toxins and characterize the genes of pathogenic bacteria responsible for drug resistance, and to study translocations in the human genome. On the basis of the MAGIChip, protein microchips have been created, containing immobilized antibodies, antigens, enzymes, and many other substances, as well as microchips with gel-immobilized live cells.  相似文献   

7.
Single- and double-stranded oligodeoxynucleotides (ODNs) incorporating both 2-aminopurine (2AP) and an indole-fused cytosine analog (PPI) were prepared and studied for their fluorescence properties. PPI and 2AP can be excited simultaneously by irradiation at 300 nm, with emission observed at 500 nm for PPI and 370 nm for 2AP. We demonstrated the utility of these properties in the dual fluorescence labeling of ODNs giving well-separated emission peaks. In addition, both of the fluorescence signals of a doubly modified ODN changed independently, reflecting the local duplex formation at the regions containing 2AP or PPI. Potential applications of this strategy for the dual fluorescence labeling of oligonucleotides with 2AP and PPI include monitoring local structure alterations of functional nucleic acids and the multiplex detection of biologically important nucleic acids.  相似文献   

8.
The thermodynamics and kinetics of DNA hybridization, i.e. the process of self-assembly of one, two or more complementary nucleic acid strands, has been studied for many years. The appearance of the nearest-neighbor model led to several theoretical and experimental papers on DNA thermodynamics that provide reasonably accurate thermodynamic information on nucleic acid duplexes and allow estimation of the melting temperature. Because there are no thermodynamic models specifically developed to predict the hybridization temperature of a probe used in a fluorescence in situ hybridization (FISH) procedure, the melting temperature is used as a reference, together with corrections for certain compounds that are used during FISH. However, the quantitative relation between melting and experimental FISH temperatures is poorly described. In this review, various models used to predict the melting temperature for rRNA targets, for DNA oligonucleotides and for nucleic acid mimics (chemically modified oligonucleotides), will be addressed in detail, together with a critical assessment of how this information should be used in FISH.  相似文献   

9.
We used FTIR spectroscopy to comparatively study the hydration of films prepared from nucleic acids (DNA and double-stranded RNA) and lipids (phosphatidylcholines and phosphatidylethanolamines chosen as the most abundant ones) at room temperature by varying the ambient relative humidity in terms of solvent-induced structural changes. The nucleic acids and phospholipids both display examples of polymorphism on the one hand and structural conservatism on the other; even closely related representatives behave differently in this respect. DNA undergoes a hydration-driven A-B conformational transition, but RNA maintains an A-like structure independently of the water activity. Similarly, a main transition between the solid and liquid-crystalline phases can be induced lyotropically in certain phosphatidylcholines, while their phosphatidylethanolamine counterparts do not exhibit chain melting under the same conditions. A principal difference concerning the structural changes that occur in the studied biomolecules is given by the relevant water-substrate stoichiometries. These are rather high in DNA and often low in phospholipids, suggesting different mechanisms of action of the hydration water that appears to induce structural changes on global- and local-mode levels, respectively.  相似文献   

10.
A combination of high salt and low ethanol concentration allowed the fractionation of nucleic acids extracted from viroid-infected leaves. By adding 0.4-0.5 vol of ethanol to 1 vol of a solution in 2 M LiCl of nucleic acids (containing mainly DNA, 4S, 5S, 7S, and viroid RNAs), 85% of the DNA and 75% of the 4S RNA remained in solution, from where they could be recovered by increasing the ethanol concentration, whereas almost all 5S, 7S, and viroid RNAs precipitated. When this process was repeated three times a 95% elimination of the initial DNA and 4S RNA was achieved. The method can be of special interest in viroid purification considering that DNA and 4S RNA are the most abundant contaminants in the starting solution of nucleic acids. It is suggested that the highly ordered secondary structure of viroid RNA may be responsible for its particular behavior in the ethanol fractionation of nucleic acids.  相似文献   

11.
The procedure based on binding of nucleic acids with glass surface in presence of chaotropic salts was adapted for efficient isolation of 100–10000 b.p. DNA fragments and 50–10,000 b. RNA fragments. The method provide 90% and 85% efficacy of isolation of 100 b.p. DNA and 100 b. RNA fragments respectively. High molecular weight nucleic acids are isolated with 98% efficacy. Isolated nucleic acids are free from contaminations, influencing nucleic acids modifying enzymes and fluorochromes. The method is rapid, simple and cost‐effective.  相似文献   

12.
In view of a better understanding of chiral selection of oligonucleotides, we have studied the hybridization of D- and L-CNA (cyclohexane nucleic acids) and D- and L-DNA, with chiral D-beta-homo-DNA and achiral PNA (peptide nucleic acids). PNA hybridizes as well with D-DNA, L-DNA as with D-beta-homo-DNA. The structure of the PNA x D-beta-homo-DNA complex is different from the PNA x DNA duplexes. D-CNA prefers D-DNA as hybridization partner, while L-CNA prefers D-beta-homo-DNA as hybridization partner. The conformation of the enantiomeric oligonucleotides D-CNA and L-CNA in the supramolecular complex with D-DNA and D-beta-homo-DNA, respectively, is different. These data may contribute to the confirmation of a hypothesis of the existence of achiral informative polymers as RNA predecessor, and to the understanding of homochirality of nucleic acids.  相似文献   

13.
A novel and stable fluorimetric method was established for the determination of nucleic acids. The proposed method is based on the reduction by nucleic acids of Ce(IV) to fluorescent Ce(III). The fluorescence intensity can be greatly increased by sodium triphosphate. The enhanced fluorescence intensity is proportional to the concentration of nucleic acids in the range 4.2 x 10(-8)-4.2 x 10(-6) g/mL for fish sperm DNA and 5.0 x 10(-8)-6.5 x 10(-6) g/mL for yeast RNA, and the detection limits (S/N = 3) are 13.5 ng/mL and 45 ng/mL, respectively. The reaction mechanism of the hydrolytic scission of nucleic acids by Ce(IV) is discussed.  相似文献   

14.
It is estimated that over two thirds of all new crystal structures of proteins are determined via the protein selenium derivatization (selenomethionine (Se‐Met) strategy). This selenium derivatization strategy via MAD (multi‐wavelength anomalous dispersion) phasing has revolutionized protein X‐ray crystallography. Through our pioneer research, similarly, Se has also been successfully incorporated into nucleic acids to facilitate the X‐ray crystal‐structure and function studies of nucleic acids. Currently, Se has been stably introduced into nucleic acids by replacing nucleotide O‐atom at the positions 2′, 4′, 5′, and in nucleobases and non‐bridging phosphates. The Se derivatization of nucleic acids can be achieved through solid‐phase chemical synthesis and enzymatic methods, and the Se‐derivatized nucleic acids (SeNA) can be easily purified by HPLC, FPLC, and gel electrophoresis to obtain high purity. It has also been demonstrated that the Se derivatization of nucleic acids facilitates the phase determination via MAD phasing without significant perturbation. A growing number of structures of DNAs, RNAs, and protein–nucleic acid complexes have been determined by the Se derivatization and MAD phasing. Furthermore, it was observed that the Se derivatization can facilitate crystallization, especially when it is introduced to the 2′‐position. In addition, this novel derivatization strategy has many advantages over the conventional halogen derivatization, such as more choices of the modification sites via the atom‐specific substitution of the nucleotide O‐atom, better stability under X‐ray radiation, and structure isomorphism. Therefore, our Se‐derivatization strategy has great potentials to provide rational solutions for both phase determination and high‐quality crystal growth in nucleic‐acid crystallography. Moreover, the Se derivatization generates the nucleic acids with many new properties and creates a new paradigm of nucleic acids. This review summarizes the recent developments of the atomic site‐specific Se derivatization of nucleic acids for structure determination and function study. Several applications of this Se‐derivatization strategy in nucleic acid and protein research are also described in this review.  相似文献   

15.
16.
Monovalent ([Na+] > 10 mM) and divalent ([Ca2+], [Mg2+] > 1.0 mM) cations induced the precipitationof nucleic acid molecules. In the presence of clay minerals (montmorillonite and kaolinite), there was adsorption instead of precipitation. The cation concentration needed for adsorption depended on both the valence of the cations and the chemical nature of the nucleic acid molecules. Double-stranded nucleic acids needed higher cation concentrations than single-stranded ones to be adsorbed to the same extent on clay. Divalent cations were more efficient than monovalent ones in mediating adsorption. Adsorption to the clay occurred only when both nucleic acids and cations were present. However, once the complexes were formed, the cations could not be removed from the system by washing, indicating that they are directly involved in the association between nucleic acids and mineral surfaces.These observations indicate that cations take part directly in the formation of nucleic acid-clay complexes, acting as a `bridge' between the negative charges on the mineral surface and those of the phosphate groups of the genetic polymer. The relatively low cation concentrations needed for adsorption and the ubiquitous presence of clay minerals in the environment suggest that the adsorption of nucleic acids on mineral surfaces could have taken place in prebiotic habitats. This may have played an important role in the formation and preservation of nucleic acids and/or their precursor polymers.  相似文献   

17.
Lactate dehydrogenase (LDH) was purified from beef heart homogenate by affinity precipitation. The protein purification was integrated with nucleic acid removal and was done by precipitation of nucleic acids by addition of poly(ethylene imine) PEI onto which a ligand, Cibacron blue, had been coupled. The yield of LDH after elution from the precipitate was 63%, the purification factor 6.9 and the nucleic acid content was reduced by 98%. The capacity of the affinity polymer Cibacron blue-PEI is dependent on the nucleic acid concentration in the homogenate. The beef heart homogenate had an unfavourable ratio of nucleic acids to LDH. Precipitation with recirculated Cibacron blue-PEI, already complexed with some nucleic acids, improved the yield of the enzyme to 74%. The loss of Cibacron blue-PEI, when recirculated, was less than 1% after each cycle. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
With the further improvement of food safety requirements, the development of fast, highly sensitive, and portable methods for the determination of foodborne hazardous substances has become a new trend in the food industry. In recent years, biosensors and platforms based on functional nucleic acids, along with a range of signal amplification devices and methods, have been established to enable rapid and sensitive determination of specific substances in samples, opening up a new avenue of analysis and detection. In this paper, functional nucleic acid types including aptamers, deoxyribozymes, and G-quadruplexes which are commonly used in the detection of food source pollutants are introduced. Signal amplification elements include quantum dots, noble metal nanoparticles, magnetic nanoparticles, DNA walkers, and DNA logic gates. Signal amplification technologies including nucleic acid isothermal amplification, hybridization chain reaction, catalytic hairpin assembly, biological barcodes, and microfluidic system are combined with functional nucleic acids sensors and applied to the detection of many foodborne hazardous substances, such as foodborne pathogens, mycotoxins, residual antibiotics, residual pesticides, industrial pollutants, heavy metals, and allergens. Finally, the potential opportunities and broad prospects of functional nucleic acids biosensors in the field of food analysis are discussed.  相似文献   

19.
Agarwal T  Kumar S  Maiti S 《Biochimie》2011,93(10):1694-1700
G-quadruplexes are common structural motifs in aptamers. UNA or unlocked nucleic acid is the latest nucleic acid modification. We have attempted to evaluate the impact of UNA modification on the structure and stability of G-quadruplex oligonucleotides for application in aptamer design. We show using CD spectroscopy that UNA modifications can cause structural transitions in some cases although they retain the inherent G- quadruplex signature. From UV melting studies we showed a position dependent effect of UNA modifications such that quadruplexes with UNA modified loops are further stabilized whereas UNA modifications in stem of the G-quadruplex significantly destabilize the structure. The impact of UNA modification on different nucleobases is also investigated. From the analysis of UV melting results, thermodynamic profile was computed and it was concluded that all the sequences are stable at 37 °C. Finally, a greater serum stability of the modified oligonucleotides in comparison with unmodified ones is also demonstrated. Overall, the position dependent effect of single UNA substitutions was observed and analysed.  相似文献   

20.
It has been known for decades that it is possible to detect small amounts of extracellular nucleic acids in plasma and serum of healthy and diseased human beings. The unequivocal proof that part of these circulating nucleic acids (CNAs) is of tumor origin, initiated a surge of studies which confirmed and extended the original observations. In the past few years many experiments showed that tumor-associated alterations can be detected at the DNA and RNA level. At the DNA level the detection of point mutations, microsatellite alterations, chromosomal alterations, i.e. inversion and deletion, and hypermethylation of promoter sequences were demonstrated. At the RNA level the overexpression of tumor-associated genes was shown. These observations laid the foundation for the development of assays for an early detection of cancer as well as for other clinical means.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号