首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
脂质体作为一种药物基因载体已得到广泛应用,然而其仍然具有物理化学稳定性差、易发生团聚、难以多功能化等缺点.通过使用合成的双亲性高分子共轭亚油酸修饰聚赖氨酸(PC)代替小分子磷脂制备的高分子脂质体(PLs),不仅保留了脂质体的优势,并且克服了上述缺点;通过对高分子进行聚乙二醇(PEG)修饰,可使制备的高分子脂质体具有长循环性.结果表明,高分子脂质体粒径为纳米级,具有药物缓释性能、较低的细胞毒性及较高的细胞内吞效率.  相似文献   

2.
In this study, the effect of aging, in terms of hydrolytic decomposition of the bilayer forming (phospho)lipids, on the physical stability of aqueous liposome dispersion was investigated in partially hydrogenated egg phosphatidylcholine (PHEPC) and egg phosphatidylglycerol (EPG) containing liposomes with or without cholesterol. The physical stability of the liposome dispersions was assessed by measuring the leak-in rate of a non-bilayer interacting hydrophilic marker molecule, calcein and changes in the particle size and its distribution in time. Additionally, permeability of either partially hydrolysed phospholipids or exogenous lyso-phosphatidylcholine(LPC) containing bilayers was calculated. The experiments were performed at 40 degrees C. Liposome dispersions were aged artificially by storing at 60 degrees C. The size of the liposomes and polydispersity index of the dispersions, in general, did not change significantly. The leak-in rate of calcein in externally added LPC containing liposomes was increased relative to the incorporated LPC concentration. The higher the LPC content of the bilayers, the higher the leak-in rate of calcein into liposomes. The leak-in rate of calcein, however, decreased first in partially hydrolysed phospholipids containing liposomes up to around 10% of hydrolysis and, afterwards, it started to increase. The leak-in rate was always lower in partially hydrolysed phospholipids containing liposomes than externally added LPC containing ones. Furthermore, the permeability of cholesterol containing bilayers was also always lower than the bilayers without cholesterol. In conclusion, addition of LPC into liposomal bilayers increases the permeability of bilayer. However, bilayers containing the hydrolysis products of phospholipids, both lyso-phospholipids and free fatty acids, did not show any enhanced permeability up to around 15% hydrolysis. Bilayer permeability is enhanced above 15% hydrolysis.  相似文献   

3.
Efflux of contents from small unilamellar vesicles of various compositions, containing a highly quenched fluorescent compound (calcein, 175 mM) was determined as a function of temperature in the presence and absence of human serum. Efflux of calcein from the liposomes was monitored as an increase in fluorescence as calcein became dequenched upon release from the liposomes. The presence of serum significantly increased liposome leakage in all cases. Incorporation of increasing molar ratios of cholesterol into liposomes reduced leakage of calcein from liposomes incubated with buffer and with serum. Leakage was significantly faster from liposomes with an osmotic gradient across the membrane (higher inside) than from equiosmolar liposomes. The leakage of [14C]sucrose from egg lecithin liposomes at 37°C was also dramatically increased in the presence of serum.  相似文献   

4.
The effect of cholesterol in the liposome bilayer on the stability of incorporated retinol was studied. Retinol was incorporated into liposomes containing soybean phosphatidylcholine (PC) and cholesterol (CH) at various ratios, and the liposomes were prepared as multilamellar vesicles by the dehydration–rehydration method. Retinol readily incorporated into liposomes at a ratio of 0.01:1 (w/w) retinol:lipid, with over 94.52% being incorporated in all conditions studied. The incorporation efficiency of retinol increased slightly with increasing CH content in the liposome and with increasing pH of the hydration buffer. Average particle size increased as the CH content increased, and mean particle sizes at pH 5, 7, and 9 were 30.27, 89.53, and 41.42 µm, respectively. The time course of retinol degradation in aqueous solution in liposomes with various ratios of PC to CH was determined under a variety of pH conditions (pH 5, 7, and 9), and temperatures (4, 25, 37, and 50°C). The stability of incorporated retinol was enhanced by increasing the CH content. At pH 7.0 and 4°C, for example, 90.17% of the retinol in liposomes containing 50:50 (PC:CH) remained after 10 days of storage, whereas 51.46% remained at 100:0 (PC:CH). These results indicate that CH in liposomes greatly increases the incorporation efficiency of retinol and the stability of incorporated retinol.  相似文献   

5.
Liposomes are effectively used in the treatment of microbial infections. Higher cellular uptake has been reported when antibiotics are encapsulated in liposomes. In this study, enrofloxacin (ENF) was encapsulated in large unilamellar vesicles (LUVs) and the effects of formulation variables on the liposome characteristics were investigated. Liposomes were prepared using dry lipid film method. A number of variables such as molar ratios of phospholipid (DPPC; DL‐α‐phosphatidylcholine dipalmitoyl), cholesterol, ENF and amount of α‐tocopherol and the volumes of internal (chloroform) and external phases [phosphate buffered saline PBS (pH 7.4)] were studied. In vitro characterization of the liposomes including the encapsulation capacity, size and drug release properties were carried out. Using of this method, spherical LUV liposomes with high drug content could be produced. Particle size of liposomes changed between 3.12 and 4.95 µm. The molar ratios of DPPC, cholesterol and ENF affected the size of the liposome (p < 0.05). The drug encapsulation capacities were high and changed between 37.1% and 79.5%. The highest ENF encapsulation was obtained with the highest cholesterol content. An increase in the drug encapsulation capacity of the liposome was found with increasing molar ratios of DPPC, cholesterol and ENF (p < 0.05). Furthermore, the release of ENF from the liposomes decreased as the molar ratios of DPPC, cholesterol and ENF increased (p < 0.05). In conclusion, a convenient colloidal carrier for the controlled release of ENF can be prepared by changing the formulation parameters of LUVs.  相似文献   

6.
The aim of this work was to study the iron uptake of Caco-2 cells incubated with five different formulations of liposomes containing iron. The vesicles were also characterized before, during, and after in vitro digestion. Caco-2 cells were incubated with digested and nondigested liposomes, and soluble iron uptake was determined. Nondigested liposomes made with chitosan (CHI) or the cationic lipid, DC-Cholesterol (DC-CHOL), generated the highest iron uptake. However, these two formulations were highly unstable under in vitro digestion, resulting in nonmeasurable iron uptake. Digested conventional liposomes composed of soybean phosphatidylcholine (SPC), hydrogentated phosphatidylcholine (HSPC), or HSPC and cholesterol (CHOL) presented the highest iron-uptake values. These liposomal formulations protected iron from oxidation and improved iron uptake from intestinal cells, compared to an aqueous solution of ferrous sulphate.  相似文献   

7.
A peculiar characteristic of highly concentrated cytosolic recombinant human glyoxalase II (GII) solutions is to undergo partial precipitation. Previous work indicated that anionic phospholipids (PLs) exert a noncompetitive inhibition on the enzymatic activity of the soluble enzyme. In this study, FTIR spectroscopy was used to analyze the structural properties and the thermal stability of the soluble protein in the absence and in the presence of liposomes made of different phospholipids (PLs). The structural analysis was performed on the precipitate as well. The interaction of acidic PLs with GII lowered the thermal stability of the enzyme and inhibited protein intermolecular interactions (aggregation) brought about by thermal denaturation. Infrared data indicated that ionic and hydrophobic interactions occur between GII and acidic PLs causing small changes in the secondary structure of the enzyme. No interactions of the protein with egg phosphatidylcholine liposomes were detected. The results are consistent with the destabilization of the protein tertiary structure, and indicate that GII possesses hydrophobic part(s) that interact with the acyl chains of PLs. Data on precipitated GII did not show remarkable modification of secondary structure, suggesting that hydrophobic stretches of the enzyme may also be involved in the protein-protein association (precipitation) at high GII concentration. The alterations in the GII structure and the noncompetitive inhibition exerted by acidic PLs are strictly related.  相似文献   

8.
This study reported the synthesis of Vicenin‐2 gold nanoparticles (VN‐AuNPs) and evaluated their effect on the glucose utilization efficiency of 3T3‐L1 adipocytes. The VN‐AuNPs were characterized by microscopic, DLS and spectral analysis. The bio‐reducing efficiency of Vicenin‐2 (VN) was computed and confirmed by HPLC analysis. The stability of VN‐AuNPs in various physiological media was explored. The cytotoxicity and glucose uptake assays were performed in 3T3‐L1 adipocytes. The docking of VN with PTP1B and AMPK was also performed. The color change and UV absorption at 537 nm preliminarily confirmed the VN reduced gold nanoparticles. The VN‐AuNPs appeared as spherical particles (57 nm) and face centered cubic crystals under TEM and XRD analysis, respectively. Its zeta potential was found to be ?6.53 mV. The FT‐IR spectra of VN and its AuNPs confirmed its stability. The computed reducing potential of VN was similar to the extent of VN utilized during the synthesis of VN‐AuNPs. The VN‐AuNPs showed a remarkable stability in different physiological media. At 100 µM concentration, VN‐AuNPs displayed 78.21% cell viability. A concentration dependent increase in glucose uptake was noted in 3T3‐L1 adipocytes when incubated with VN‐AuNPs. The docking data revealed a strong interaction of VN with the binding pockets of PTP1B and AMPK. This demonstrates that the fabricated VN‐AuNPs might enhance the intracellular VN availability mediated cellular glucose utilization and this would serve as a novel nanodrug for the management of diabetes. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1096–1106, 2015  相似文献   

9.
Connexin‐43 (Cx43) containing giant liposomes (GL) were prepared by a baculovirus expression–liposome fusion method. Recombinant budded viruses expressing Cx43 were prepared and then fused with GLs containing DOPG/DOPC at pH 4.5. Connexon formation on the GL membrane was observed by transmission electron microscope. Hydrophilic fluorescent dye transfers were observed through a Cx43‐mediated pathway not only between Sf9 (Spodoptera frugiperda) cells with Cx43 but also from giant Cx43 liposomes to Cx43‐expressing U2OS cells (human osteosarcoma cell). The functional connexin‐containing liposome is expected to be useful for cellular cytosolic delivery systems. The original orientation and function of Cx43 was maintained after integration into the liposomes. The liposome fusion method will create new opportunities as a tool for analysis of channel membrane proteins. Biotechnol. Bioeng. 2010;107: 836–843. © 2010 Wiley Periodicals, Inc.  相似文献   

10.
The effect of cholesterol content of small unilamellar (SUV) and reverse phase (REV) liposomes on blood clearance and tissue distribution has been studied. [14C]Inulin has been used as an aqueous marker of liposomes to represent the uptake of intact liposomes in tissues. The blood clearance of the intravenously-injected SUV and REV liposomes depends on the cholesterol content of liposomes. The cholesterol-free (0 mol%) liposomes are cleared more readily from the circulation than the cholesterol-poor liposomes (20 mol%) and the cholesterol-poor are cleared more rapidly than the cholesterol-rich (46.6 mol%) liposomes. This clearance pattern of liposomes from the circulation is not attributed to the change of size of liposomes due to the increase in cholesterol content of liposomes. However, poor stability of cholesterol-free or cholesterol-poor liposomes in the circulation is partly responsible, but the predominant factor responsible for the observed blood clearance pattern is the inhibitory effect of cholesterol on the uptake of liposomes by reticuloendothelial-rich tissues liver and spleen. Uptake of liposomes by these organs is decreased with increasing cholesterol content of vesicles. It is suggested that to produce liposome preparations with a long circulating half life in vivo it is necessary to inhibit their uptake by liver and spleen.  相似文献   

11.
Thermosensitive liposomes are attractive vehicles for the delivery and release of drugs to tumors. To improvethe targeting efficacy for breast cancer treatment, an 8.3-kDa HER2-specific Affibody molecule (ZHER2:342-Cys) was conjugated to the surface of liposomes. The effects of this modification on physical characteristics and stability of the resulting nanoparticles denoted as “Affisomes” were investigated. Thermosensitive small unilamellar vesicle (SUV) liposomes of (80–100 nm) a diameter consisting of dipalmitoyl phosphatidylcholine (DPPC, Tm 41°C) as the matrix lipid and a maleimide-conjugated pegylated phospholipid (DSPE-MaL-PEG2000) were prepared by probe sonication. Fluorescent probes were incorporated into liposomes for biophysical and/or biochemical analysis and/or triggered-release assays. Affibody was conjugated to these liposomes via its C-terminal cysteine by incubation in the presence of a reducing agent (e.g., tributylphosphine) for 16–20 hours under an argon atmosphere. Lipid-conjugated affibody molecule was visible as an 11.3-kDa band on a 4–12% Bis/Tris gel under reducing conditions. Affibody conjugation yields were?~70% at a protein-lipid ratio of 20 μg/mg, with an average number of 200 affibody molecules per Affisome. Affibody conjugation to thermosensitive liposomes did not have any significant effect on the hydrodynamic size distribution of the liposomes. Thermosensitivity of Affisomes was determined by monitoring the release of entrapped calcein (a water-soluble fluorescent probe, λex/em 490/515 nm) as a function of temperature. Calcein was released from Affisomes (thermosensitive liposomes with affibody-Targeted SUV) as well as nontargeted SUV (thermosensitive liposomes without affibody) in a temperature-dependent manner, with optimal leakage (90–100%) at 41°C. In contrast, liposomes prepared from Egg phosphatidyl choline (Egg PC, Tm?~0°C) under similar conditions released only 5–10% calcein at 41°C. Affisomes, when stored at room temperature, retained?>?90% entrapped calcein up to 7 days. Moreover, incubation of liposomes in phosphate-buffered saline, supplemented with 10% heat-inactivated serum (fetal bovine serum) did not result in a destabilization of liposomes. Therefore, Affisomes present promising, novel drug-delivery candidates for breast cancer targeting.  相似文献   

12.
Reconstituted discoidal high‐density lipoproteins (rHDL) resemble nascent HDL, which are formed at the early reverse cholesterol transport steps, and constitute the initial cholesterol (Chol) acceptors from cell membranes. We have used different sized rHDL containing or not Chol, to test their abilities to promote cholesterol and phospholipid efflux from two different cell lines: Raw 264.7 macrophages and CHOK1 cells. All rHDL and lipid‐free apolipoprotein A‐I (apoA‐I) were found to be bound to CHO and RAW cells. In RAW cells, a positive correlation between cellular binding and Chol removal was found for 78 and 96 Å rHDL. Chol‐free rHDL were more effective than Chol‐containing ones in binding to RAW cells and promoting Chol removal. These results were more evident in the 96 Å rHDL. On the other hand, rHDL binding to CHO cells was relatively independent of disc size and Chol content. In spite of the fact that apoA‐I and rHDL promoted Chol efflux from both cellular lines, only in CHOK1 cells this result was also associated to decrease Chol esterification. Among choline‐containing phospholipids, only phosphatidylcholine (PC) (but not sphingomyelin) was detected to be effuxed from both cellular lines. With the only exception of Chol‐free 96 Å discs, the other rHDL as well as apoA‐I promoted PC efflux from RAW cells. Chol‐containing rHDL were more active than Chol‐free ones of comparable size to promote PC efflux from RAW macrophages. Regarding CHO cells, only apoA‐I and Chol‐free 78 Å rHDL were active enough to remove PC. J. Cell. Biochem. 113: 1208–1216, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

13.
The release of the internal content of negatively charged phosphatidylcholine/phosphatidylserine vesicles under the influence of high density lipoprotein was studied. Under standard conditions (the same composition outside and inside the compartment) the leakage of negative liposomes increased significantly. However, a high internal concentration of calcein provoked a sealing effect, exhibited both in sucrose and in calcein release. This sealing effect is not related to the size of vesicles, the fluidity of the membrane, the distribution of phosphatidylserine molecules, or the membrane potential. Our data indicate that surface potential influences this effect, probably in addition to a lateral pressure effect such as with cholesterol. The surface potential, as measured by the water-lipid partition coefficient of fatty acids, is strongly affected by internal ionic strength when liposomes contain calcein as well as other polyanions (6-carboxyfluorescein, sodium citrate).  相似文献   

14.
Curcumin (CUR), a plant-derived compound, exhibits versatile antitumor effects. However, its poor hydrophilic property limits its application. To circumvent these drawbacks, we encapsulated CUR in liposomes modified with folic acid for better solubility and enhanced tumor targeting. This novel formulation was prepared by a film-dispersion method and characterized by size, zeta potential, drug-loading efficiency, and physical-condition stability. In vitro, cellular uptake efficiency, cytotoxicity, and apoptosis analysis by flow cytometry were performed to evaluate tumor targeting and killing ability. Results showed that the folate-receptor (FR)-targeted liposomal CUR (F-CUR-L) performed with improved solubility, sufficient stability, and enhanced antitumor activity. Mean diameter, zeta potential, and drug-loading efficiency were 182?nm, ?26 mV, and 68%, respectively, and this formulation exhibited stability in storage at 4°C for 1 month. In vitro, FR-positive cells endocytosed more F-CUR-L than nontargeted liposomal CUR (CUR-L); thus, the former induced more cellular proliferation inhibition and higher apoptosis than the latter, and the enhanced targeting could be hindered by 1?mM of free folic acid. Further, KB cells were more sensitive to F-CUR-L, compared to Hela cells. Finally, the two kinds of tumor cells treated with F-CUR-L also showed dose- and time-dependent apoptosis.  相似文献   

15.
In this study we successfully entrapped 5-aminolevulinic acid (ALA) in liposome, although it exists as a zwitter ion. A molar ratio of 2:1:2.5 phosphatidyle-thanolamine (PE)/cholesterol/sodium stearate represented the best condition to achieve high entrapment efficiency (29.37 ± 1.21%), and the average vehicle size was 133.6 ± 2.8 nm. After 32 days of storage, the vehicle sizes of formulations with PE series were still approximately less than 200 nm. The safety of liposomes was tested and ensured both with regard to cellular cytotoxicity and erythrocyte hemolysis. Safety studies showed that liposome formulations did not affect cell viability except when both potassium stearate and sodium oleate were added. Moreover, PE and PE/cholesterol did not damage human erythrocytes in this study. The range of the hemolytic effect caused by liposomes was 5 to 37% and the effect was dependent on the amount of sodium stearate added to the formulation. According to the release rates and skin penetration of ALA liposomes in vitro, PE/cholesterol/sodium stearate liposomes might increase skin penetration, and it was shown that penetration across the stratum–corneum (sc) layer was the rate-limiting process. Images from confocal laser scanning microscopy (CLSM) confirmed the great potency of liposomes for delivering ALA into skin.  相似文献   

16.
To synthesize a lipid‐cationic polymer (LCP) containing brassidic acid side chain and to investigate its transfection efficiency and characteristics as a siRNA gene vector. The LCP was chemically synthesized and its nucleic acid binding capacity was determined by gel electrophoresis. HeLa‐EGFP and TH1080‐EGFP cell lines were transfected with siRNA against enhanced green fluorescent protein (EGFP) gene using a LCP to investigate the transfection efficiency. An MTT assay was performed to evaluate the cellular toxicity of the LCP vector. Its degradability and stability under acidic conditions were also investigated. The LCP vector possessed high DNA binding capacity. More than 73% of the cellular fluorescence was inhibited by the LCP‐mediated transfection of siRNA against EGFP gene, indicating that vector had high transfection efficiency. Cellular viability was about 95% at the optimum transfection efficiency of LCP, suggesting that the cellular toxicity of LCP was very low. The LCP was also observed to be degradable; moreover, it could be easily stored at normal temperature. A gene vector used for the transfection of siRNA was successfully fabricated from synthesized LCP. Its numerous excellent properties entitle values for further scientific research. J. Cell. Biochem. 111: 881–888, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
For therapeutic applications of small interfering RNA (siRNA), serum stability, enhanced cellular uptake, and facile endosome escape are key issues for designing carriers. In this study, green fluorescent protein (GFP) siRNA was conjugated to a six‐arm polyethylene glycol (PEG) derivative via a reducible disulfide linkage (6PEG‐siRNA). The 6PEG‐siRNA conjugate was also functionalized with a cell penetrating peptide, Hph1 to enhance its cellular uptake property (6PEG‐siRNA‐Hph1). The 6PEG‐siRNA‐Hph1 conjugate was electrostatically complexed with cationic self‐crosslinked fusogenic KALA peptide (cl‐KALA) to form multifunctional polyelectrolyte complex micelles for gene silencing. The resultant siRNA complex formulation with multiple PEG chains showed superior physical stability and resistance to enzymatic degradation. The 6PEG‐siRNA‐Hph1/cl‐KALA complexes exhibited enhanced GFP gene silencing efficiency for MDA‐MB‐435 cells in the serum containing condition. The current reducible and multifunctional polyelectrolyte complex micelles are expected to have high potential for efficient delivery of therapeutic siRNA. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

18.
A novel method is described for the preparation of sterile submicron unilamellar liposomes. The method is based on the lyophilization of double emulsions containing disaccharides as lyoprotectants in both the inner and outer aqueous phase. Using various phospholipids or mixtures of lipids as emulsifiers, the double emulsions can be prepared by a two-step emulsification, including hydrophilic agents in the inner aqueous phase or lipophilic agents in the oil phase. Then, the double emulsions are lyophilized after sterilization by passing them through a 0.22-μm pore filter. Rehydration of the lyophilized products results in liposomes with a relatively high encapsulation efficiency (for calcein, 87%; 5-fluorouracil, 19%; flurbiprofen, 93%) and a size below 200 nm measured by the dynamic light scattering technique (DLS) and the atomic force microscopy (AFM). The liposomes were found to be unilamellar from freeze-fracture electron micrographs and X-ray diffraction patterns. In addition, the liposomes can be reconstituted just before use by rehydration of the lyophilized products which are relatively stable. Thus, this reproducible and simple technique can be used to prepare sterilized, submicron unilamellar liposomes with a relatively high encapsulation efficiency, and excellent stability during long-term storage.  相似文献   

19.
Liposomes are effectively used in the treatment of microbial infections. Higher cellular uptake has been reported when antibiotics are encapsulated in liposomes. In this study, enrofloxacin (ENF) was encapsulated in large unilamellar vesicles (LUVs) and the effects of formulation variables on the liposome characteristics were investigated. Liposomes were prepared using dry lipid film method. A number of variables such as molar ratios of phospholipid (DPPC; DL-alpha-phosphatidylcholine dipalmitoyl), cholesterol, ENF and amount of alpha-tocopherol and the volumes of internal (chloroform) and external phases [phosphate buffered saline PBS (pH 7.4)] were studied. In vitro characterization of the liposomes including the encapsulation capacity, size and drug release properties were carried out. Using of this method, spherical LUV liposomes with high drug content could be produced. Particle size of liposomes changed between 3.12 and 4.95 microm. The molar ratios of DPPC, cholesterol and ENF affected the size of the liposome (p < 0.05). The drug encapsulation capacities were high and changed between 37.1% and 79.5%. The highest ENF encapsulation was obtained with the highest cholesterol content. An increase in the drug encapsulation capacity of the liposome was found with increasing molar ratios of DPPC, cholesterol and ENF (p < 0.05). Furthermore, the release of ENF from the liposomes decreased as the molar ratios of DPPC, cholesterol and ENF increased (p < 0.05). In conclusion, a convenient colloidal carrier for the controlled release of ENF can be prepared by changing the formulation parameters of LUVs.  相似文献   

20.
We prepared thermosensitive poly( N-(2-hydroxypropyl)methacrylamide mono/dilactate) (pHPMA mono/dilactate) polymer and studied temperature-triggered contents release from polymer-coated liposomes. HPMA mono/dilactate polymer was synthesized with a cholesterol anchor suitable for incorporation in the liposomal bilayers and with a cloud point (CP) temperature of the polymer slightly above normal body temperature (42 degrees C). Dynamic light scattering (DLS) measurements showed that whereas the size of noncoated liposomes remained stable upon raising the temperature from 25 to 46 degrees C, polymer-coated liposomes aggregated around 43 degrees C. Also, noncoated liposomes loaded with calcein showed hardly any leakage of the fluorescent marker when heated to 46 degrees C. However, polymer-coated liposomes showed a high degree of temperature-triggered calcein release above the CP of the polymer. Likely, liposome aggregation and bilayer destabilization are triggered because of the precipitation of the thermosensitive polymer above its CP onto the liposomal bilayers, followed by permeabilization of the liposomal membrane. This study demonstrates that liposomes surface-modified with HPMA mono/dilactate copolymer are attractive systems for achieving temperature-triggered contents release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号