首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Radiation mapping of nine genes (H3F3B, HLR1, MYL4,STAT5B, THRA1, TOP2A, MCP1, NF1, and MPO) to porcine chromosome 12 was carried out. Also, subchromosomal location of the NF1 gene along with the two loci containing the DNA sequences homologous to the DNA of the two human BAC clones was determined. The NF1 position was ascertained via microdissection of chromosome 12 with subsequent PCR amplification of the gene fragment with specific primers. BAC clones were mapped using FISH. Comparative analysis of the gene order in porcine chromosome 12 and in the homologous human chromosome 17 was performed. It was demonstrated that the gene orders in these chromosomes differed relative to the position of the MPO gene.  相似文献   

2.
3.
We report a young child with a large congenital cervical plexiform neurofibroma and multiple café-au-lait spots in a generalized distribution who has mosaicism for complete deletion of the NF1 gene. The deletion was demonstrated with intragenic cosmid probes as well as YACs spanning a 700-kb contig including NF1, by two-color FISH with an NF1 and a control probe. Using different intragenic probes, deletion was found in 77–84% of cultured peripheral blood lymphocytes but not in cultured skin fibroblasts. Neither parent has signs of neurofibromatosis type 1 (NF1) or a gene deletion. This is the first report of mosaicism for complete deletion of the NF1 gene. The child did not have typical NF1 or display segmental features of NF1. Received: 6 June 1996 / Revised: 2 October 1996  相似文献   

4.
Neurofibromatosis type 1 (NF1) is one of the most common human genetic disorders and is associated with significant morbidity and mortality. The gene responsible for this disorder, NF1, encodes neurofibromin, which can function to down-regulate ras activity. Mutations that inactivate NF1 result in elevated levels of ras signaling and increased cell proliferation in some tissues. NF1 functions as a tumor suppressor gene; patients inherit one mutated copy and are believed to acquire a “second hit” in tissues that go on to form benign or malignant tumors.1,2 NF1 is expressed widely, yet certain tissues are more susceptible to growth dysregulation in NF1 patients. Cardiovascular defects also contribute to NF1, though the cause remains unclear. In a recent study, we used tissue-specific gene inactivation in mice to study the role of neurofibromin in heart development. A further understanding of neurofibromin function will help to elucidate the pathophysiology of NF1 and will also lead to a better understanding of cell cycle regulation and ras pathways in specific cell types. Finally, we comment on how similar genetic strategies can be used in mice to study the role of additional signaling pathways involved in heart development.  相似文献   

5.
Deletions in 17q11.2 affecting the NF1 gene and surrounding regions occur in 5% of patients with NF1. The two major types of NF1 deletions encompass 1.4-Mb and 1.2-Mb, respectively, and have breakpoints in the NF1 low-copy repeats or in the JJAZ gene and its pseudogene. Deletions larger than 1.4-Mb are rare, and only seven cases have been reported so far. Here, we describe a 26-year-old NF1 patient with an atypical NF1 deletion of 2-Mb. In contrast to the 1.4-Mb deletions, which preferentially occur by interchromosomal recombination during maternal meiosis, the deletion described here occurred intrachromosomally on the paternal chromosome. The centromeric deletion breakpoint lies in an L1-element located 1.3-Mb proximal to the NF1 gene. The telomeric deletion boundary is located in a single copy segment between an AT-rich segment and an AluSx-element in intron 15 of the JJAZ1 gene. Structural analysis implies that non-B DNA conformations at the breakpoints destabilized the duplex DNA and caused double-strand breaks. Although the breakpoints of this 2-Mb deletion are not recurrent, it is conspicuous that one breakpoint is located in the JJAZ1 gene. Paralogous recombination between the JJAZ1 gene and its pseudogene causes the recurrent 1.2 Mb deletions. The genomic architecture of the NF1 gene region, influenced by paralogous sequences such as the JJAZ1 gene and its pseudogene, seems also to stimulate the occurrence of non-recurrent deletions mediated by non-homologous end joining. Patient 442 described here suffers from a very high burden of subdermal neurofibromas. Magnetic resonance imaging of the whole body revealed numerous internal tumors, mainly plexiform neurofibromas and spinal tumors. This demonstrates the value of whole-body MRI scanning in determining the total tumor load, which is an important aspect in genotype/phenotype correlations with regard to large NF1 deletions.  相似文献   

6.
7.
Common bacterial blight (CBB) is caused by four genetic lineages belonging to two species of Xanthomonas, namely Xanthomonas citri pv. fuscans (includes fuscans, NF2 and NF3 lineages) and X. phaseoli pv. phaseoli (lineage NF1). A collection of 117 strains of Xanthomonas isolated from common bean plants grown in several producing regions of Brazil, between 2007 and 2016 was established. For species and lineage identification, the following tests were performed: multiplex PCR with a set of four specific primer pairs, pathogenicity tests on susceptible cultivar BRS Artico and phylogenetic analysis based on housekeeping gene sequences. The presence of the two species were confirmed among the 117 strains, being 62 non-fuscans strains (NF1, NF2 and NF3) and 55 fuscans strains of X. citri pv. fuscans. To select a set of representative strains for the virulence assay, a PCR-based analysis of effector diversity was performed with 42 strains belonging to the two species. PCR with primers for xopL, avrBsT, xopE2 and xopE1 genes were positive for all strains, while for the other six effectors there was variation. Six distinct effector profiles were detected, and one strain representing each type was inoculated in 15 common bean cultivars with varying levels of resistance to CBB. The fuscans strains showed uniformity in their effector profiles and were the most virulent. The phylogenetic analyses of our strain collection revealed that all genetic variants of CBB pathogens (NF1, NF2, NF3 and fuscans) are present in Brazil, with significant variability in virulence to common bean cultivars.  相似文献   

8.
Mucosal malignant melanoma (MMM) is a rare and aggressive tumor. Despite effective local therapies, tumor recurrence and metastasis remain frequent. The genetics of MMM remain incompletely understood. This study is aimed to identify actionable genetic alterations by next-generation sequencing. Fifteen MMM samples were analyzed by next-generation and Sanger sequencing. Gene copy number alterations were analyzed by MLPA. Mutation status was correlated with pERK, pAKT, and Ki-67 expression and follow-up data. Inactivating mutations and intragenic deletions in neurofibromatosis type-1 (NF1) were identified in 3 and 2 cases, respectively, (in total 5/15, 33%) and activating mutations in NRAS and KRAS (3/15, 20%) cases. Other mutated genes included CDKN2A, APC, ATM, MITF, FGFR1, and FGFR2. BRAF and KIT mutations were not observed. Cases with NF1 alterations tended to have worse overall survival. The mutational status was not associated with pERK, pAKT, or Ki-67 immunostaining. MMM carries frequent gene mutations activating the MAPK pathway, similar to cutaneous melanoma. In contrast, NF1 is the most frequently affected gene. Intragenic NF1 deletions have not been described before and may go undetected by sequencing studies. This finding is clinically relevant as NF1-mutated melanomas have worse survival and could benefit from therapy with immune checkpoint and MEK inhibitors.  相似文献   

9.
Auxin is as an efficient initiator and regulator of cell fate during somatic embryogenesis (SE), but the molecular mechanisms and regulating networks of this process are not well understood. In this report, we analysed SE process induced by Leafy cotyledon1‐like 1 (GhL1L1), a NF‐YB subfamily gene specifically expressed in embryonic tissues in cotton. We also identified the target gene of GhL1L1, and its role in auxin distribution and cell fate specification during embryonic development was analysed. Overexpression of GhL1L1 accelerated embryonic cell formation, associated with an increased concentration of IAA in embryogenic calluses (ECs) and in the shoot apical meristem, corresponding to altered expression of the auxin transport gene GhPIN1. By contrast, GhL1L1‐deficient explants showed retarded embryonic cell formation, and the concentration of IAA was decreased in GhL1L1‐deficient ECs. Disruption of auxin distribution accelerated the specification of embryonic cell fate together with regulation of GhPIN1. Furthermore, we showed that PHOSPHATASE 2AA2 (GhPP2AA2) was activated by GhL1L1 through targeting the G‐box of its promoter, hence regulating the activity of GhPIN1 protein. Our results indicate that GhL1L1 functions as a key regulator in auxin distribution to regulate cell fate specification in cotton and contribute to the understanding of the complex process of SE in plant species.  相似文献   

10.
11.
12.
Neurofibromatosis type 1 (NF1) is a frequent hereditary disorder. The disease is characterized by a very high mutation rate (up to 1/10000 gametes per generation). NF1-related loci in the human genome have been implicated in the high mutation rate by hypothesizing that these carry disease-causing mutations, which can be transferred to the functional NF1 gene on chromosome arm 17q by interchromosomal gene conversion. To test this hypothesis, we want to identify and characterize the NF1-related loci in the human genome. In this study, we have localized an NF1-related locus in the most centromeric region of the long arm of chromosome 22. We demonstrate that this locus contains sequences homologous to cDNAs that include the GAP-related domain of the functional NF1 gene. However, the GAP-related domain itself is not represented in this locus. In addition, cosmids specific to this locus reveal, by in situ hybridization, NF1-related loci in the pericentromeric region of chromosome arm 14q and in chromosomal band 2q21. These cosmids will enable us to determine whether identified disease-causing mutations are present at the chromosome 22-associated NF1-related locus. Received: 18 December 1995 / Revised: 5 February 1996  相似文献   

13.
It is well-established that the activation of the inhibitor of NFκB (IκBα) kinase (IKK) complex is required for autophagy induction by multiple stimuli. Here, we show that in autophagy-competent mouse embryonic fibroblasts (MEFs), distinct autophagic triggers, including starvation, mTOR inhibition with rapamycin and p53 inhibition with cyclic pifithrin α lead to the activation of IKK, followed by the phosphorylation-dependent degradation of IκBα and nuclear translocation of NFκB. Remarkably, the NFκB signaling pathway was blocked in MEFs lacking either the essential autophagy genes Atg5 or Atg7. In addition, we found that tumor necrosis factor α (TNFα)-induced NFκB nuclear translocation is abolished in both Atg5- and Atg7-deficient MEFs. Similarly, the depletion of essential autophagy modulators, including ATG5, ATG7, Beclin 1 and VPS34, by RNA interference inhibited TNFα-driven NFκB activation in two human cancer cell lines. In conclusion, it appears that, at least in some instances, autophagy is required for NFκB activation, highlighting an intimate crosstalk between these two stress response signaling pathways.  相似文献   

14.
15.
The fungal phytopathogen Ustilago maydis alternates between budding and filamentous growth during its life cycle. This dimorphic transition, which is influenced by environmental factors and mating, is regulated in part by cAMP-dependent protein kinase (PKA). We have recently identified a related protein kinase, encoded by the ukc1 gene, that also plays a role in determining cell shape. The ukc1 gene is homologous to several other protein kinase-encoding genes including the cot-1 gene of Neurospora crassa, the TB3 gene of Colletotrichum trifolii, the orb6 gene of Schizosaccharomyces pombe, the warts tumor suppressor gene of Drosophila melanogaster and the myotonic dystrophy kinase gene in humans. Disruption of the ukc1 gene in U. maydis resulted in cells that were highly distorted in their morphology, incapable of generating aerial filaments during mating in culture and defective in their ability to cause disease on corn seedlings. In addition, the cells of ukc1 mutants became highly pigmented and resembled the chlamydospore-like cells that have been described for U. maydis. Overall, these results demonstrate an important role for the ukc1-encoded protein kinase in the morphogenesis, pathogenesis and pigmentation of U. maydis. Received: 6 May 1998 / Accepted: 19 November 1998  相似文献   

16.
17.
Schwannomas are tumors arising mainly at cranial and spinal nerves. Bilateral vestibular schwannoma is the hallmark of neurofibromatosis type 2 (NF2). The NF2 gene has been cloned and comprehensive analysis of its mutations in schwannomas shows that up to 60% of tumors carry inactivating mutations. Thus, the genetic mechanism behind the development of more than 40% of schwannomas without NF2 mutations is unknown. We have therefore studied tumor tissue from 50 human schwannomas by allelotyping and have found chromosome 22 deletions in over 80% of the cases. We detected 14 cases (27%) that revealed partial deletions of one copy of chromosome 22, i.e., terminal and/or interstitial deletions. We sequenced the NF2 gene in seven of these tumors and detected only one case with mutations. The deletion mapping of chromosome 22 in tumors with partial deletions indicates that several regions, in addition to the NF2 locus, harbor genes involved in schwannoma tumorigenesis. Our findings suggest that heterogeneity in the mechanisms leading to the development of schwannomas probably exists. These findings are in agreement with the recent analysis of schwannomas from familial and sporadic cases of schwannomatosis and point to a possible role of an additional gene, which, in cooperation with the NF2 tumor suppressor, causes schwannomas. Received: 12 November 1998 / Accepted: 1 March 1999  相似文献   

18.
19.
20.
Neurofibromatosis type-1 (NF1), resulting from NF1 gene loss of function, is characterized by an increased risk of developing benign and malignant peripheral nerve sheath tumors (MPNSTs). Whereas the cellular heterogeneity of NF1-associated tumors has been well studied, the molecular heterogeneity of MPNSTs is still poorly understood. Mutational heterogeneity within these malignant tumors greatly complicates the study of the underlying mechanisms of tumorigenesis. We have explored this molecular heterogeneity by performing loss of heterozygosity (LOH) analysis of the NF1, TP53, RB1, PTEN, and CDKN2A genes on sections of 10 MPNSTs derived from 10 unrelated NF1 patients. LOH data for the TP53 gene was found to correlate with the results of p53 immunohistochemical analysis in the same tumor sections. Further, approximately 70% of MPNSTs were found to display intra-tumoral molecular heterogeneity as evidenced by differences in the level of LOH between different sections of the same tumor samples. This study constitutes the first systematic analysis of molecular heterogeneity within MPNSTs derived from NF1 patients. Appreciation of the existence of molecular heterogeneity in NF1-associated tumors is important not only for optimizing somatic mutation detection, but also for understanding the mechanisms of NF1 tumorigenesis, a prerequisite for the development of specifically targeted cancer therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号