首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modeling and simulation: tools for metabolic engineering.   总被引:7,自引:0,他引:7  
Mathematical modeling is one of the key methodologies of metabolic engineering. Based on a given metabolic model different computational tools for the simulation, data evaluation, systems analysis, prediction, design and optimization of metabolic systems have been developed. The currently used metabolic modeling approaches can be subdivided into structural models, stoichiometric models, carbon flux models, stationary and nonstationary mechanistic models and models with gene regulation. However, the power of a model strongly depends on its basic modeling assumptions, the simplifications made and the data sources used. Model validation turns out to be particularly difficult for metabolic systems. The different modeling approaches are critically reviewed with respect to their potential and benefits for the metabolic engineering cycle. Several tools that have emerged from the different modeling approaches including structural pathway synthesis, stoichiometric pathway analysis, metabolic flux analysis, metabolic control analysis, optimization of regulatory architectures and the evaluation of rapid sampling experiments are discussed.  相似文献   

2.
Bioinformatics tools have facilitated the reconstruction and analysis of cellular metabolism of various organisms based on information encoded in their genomes. Characterization of cellular metabolism is useful to understand the phenotypic capabilities of these organisms. It has been done quantitatively through the analysis of pathway operations. There are several in silico approaches for analyzing metabolic networks, including structural and stoichiometric analysis, metabolic flux analysis, metabolic control analysis, and several kinetic modeling based analyses. They can serve as a virtual laboratory to give insights into basic principles of cellular functions. This article summarizes the progress and advances in software and algorithm development for metabolic network analysis, along with their applications relevant to cellular physiology, and metabolic engineering with an emphasis on microbial strain optimization. Moreover, it provides a detailed comparative analysis of existing approaches under different categories.  相似文献   

3.
Increasing numbers of value added chemicals are being produced using microbial fermentation strategies. Computational modeling and simulation of microbial metabolism is rapidly becoming an enabling technology that is driving a new paradigm to accelerate the bioprocess development cycle. In particular, constraint-based modeling and the development of genome-scale models of industrial microbes are finding increasing utility across many phases of the bioprocess development workflow. Herein, we review and discuss the requirements and trends in the industrial application of this technology as we build toward integrated computational/experimental platforms for bioprocess engineering. Specifically we cover the following topics: (1) genome-scale models as genetically and biochemically consistent representations of metabolic networks; (2) the ability of these models to predict, assess, and interpret metabolic physiology and flux states of metabolism; (3) the model-guided integrative analysis of high throughput ‘omics’ data; (4) the reconciliation and analysis of on- and off-line fermentation data as well as flux tracing data; (5) model-aided strain design strategies and the integration of calculated biotransformation routes; and (6) control and optimization of the fermentation processes. Collectively, constraint-based modeling strategies are impacting the iterative characterization of metabolic flux states throughout the bioprocess development cycle, while also driving metabolic engineering strategies and fermentation optimization.  相似文献   

4.
The recent progress on metabolic systems engineering was reviewed based on our recent research results in terms of (1) metabolic signal flow diagram approach, (2) metabolic flux analysis (MFA) in particular with intracellular isotopomer distribution using NMR and/or GC-MS, (3) synthesis and optimization of metabolic flux distribution (MFD), (4) modification of MFD by gene manipulation and by controlling culture environment, (5) metabolic control analysis (MCA), (6) design of metabolic regulation structure, and (7) identification of unknown pathways with isotope tracing by NMR. The main characteristics of metabolic engineering is to treat metabolism as a network or entirety instead of individual reactions. The applications were made for poly-3-hydroxybutyrate (PHB) production usingRalstonia eutropha and recombinantEscherichia coli, lactate production by recombinantSaccharomyces cerevisiae, pyruvate production by vitamin auxotrophic yeastToluropsis glabrata, lysine production usingCorynebacterium glutamicum, and energetic analysis of photosynthesic microorganisms such as Cyanobateria. The characteristics of each approach were reviewed with their applications. The approach based on isotope labeling experiments gives reliable and quantitative results for metabolic flux analysis. It should be recognized that the next stage should be toward the investigation of metabolic flux analysis with gene and protein expressions to uncover the metabolic regulation in relation to genetic modification and/or the change in the culture condition.  相似文献   

5.
A metabolic model for Leptospirillum ferrooxidans was developed based on the genomic information of an analogous iron oxidizing bacteria and on the pathways of ferrous iron oxidation, nitrogen and CO2 assimilation based on experimental evidence for L. ferrooxidans found in the literature. From this metabolic reconstruction, a stoichiometric model was built, which includes 86 reactions describing the main catabolic and anabolic aspects of its metabolism. The model obtained has 2 degrees of freedom, so two external fluxes were estimated to achieve a determined and observable system. By using the external oxygen consumption rate and the generation flux biomass as input data, a metabolic flux map with a distribution of internal fluxes was obtained. The results obtained were verified with experimental data from the literature, achieving a very good prediction of the metabolic behavior of this bacterium at steady state. Biotechnol. Bioeng. 2010;107:696–706. © 2010 Wiley Periodicals, Inc.  相似文献   

6.
Computational simulation of large‐scale biochemical networks can be used to analyze and predict the metabolic behavior of an organism, such as a developing seed. Based on the biochemical literature, pathways databases and decision rules defining reaction directionality we reconstructed bna572, a stoichiometric metabolic network model representing Brassica napus seed storage metabolism. In the highly compartmentalized network about 25% of the 572 reactions are transport reactions interconnecting nine subcellular compartments and the environment. According to known physiological capabilities of developing B. napus embryos, four nutritional conditions were defined to simulate heterotrophy or photoheterotrophy, each in combination with the availability of inorganic nitrogen (ammonia, nitrate) or amino acids as nitrogen sources. Based on mathematical linear optimization the optimal solution space was comprehensively explored by flux variability analysis, thereby identifying for each reaction the range of flux values allowable under optimality. The range and variability of flux values was then categorized into flux variability types. Across the four nutritional conditions, approximately 13% of the reactions have variable flux values and 10–11% are substitutable (can be inactive), both indicating metabolic redundancy given, for example, by isoenzymes, subcellular compartmentalization or the presence of alternative pathways. About one‐third of the reactions are never used and are associated with pathways that are suboptimal for storage synthesis. Fifty‐seven reactions change flux variability type among the different nutritional conditions, indicating their function in metabolic adjustments. This predictive modeling framework allows analysis and quantitative exploration of storage metabolism of a developing B. napus oilseed.  相似文献   

7.
A stoichiometric model of Acidithiobacillus ferrooxidans based on the sequenced genome from strain ATCC 23270 is derived and parameterized using genome/pathway databases. The model describes the main aspects of catabolism and anabolism. By the construction and utilization of the mathematical determination of the network, metabolic flux analysis is performed for such a bacterium for the first time and results are successfully verified by comparison to literature values. This first metabolic model of A. ferrooxidans is able to simulate the main aspects of metabolism and will be useful for further investigation and improvement of bioleaching procedures. Biotechnol. Bioeng. 2009;102: 1448–1459. © 2008 Wiley Periodicals, Inc.  相似文献   

8.
Metabolic flux analysis and metabolic engineering of microorganisms   总被引:2,自引:0,他引:2  
Recent advances in metabolic flux analysis including genome-scale constraints-based flux analysis and its applications in metabolic engineering are reviewed. Various computational aspects of constraints-based flux analysis including genome-scale stoichiometric models, additional constraints used for the improved accuracy, and several algorithms for identifying the target genes to be manipulated are described. Also, some of the successful applications of metabolic flux analysis in metabolic engineering are reviewed. Finally, we discuss the limitations that need to be overcome to make the results of genome-scale flux analysis more realistically represent the real cell metabolism.  相似文献   

9.
Rational engineering of metabolism is important for bio-production using microorganisms. Metabolic design based on in silico simulations and experimental validation of the metabolic state in the engineered strain helps in accomplishing systematic metabolic engineering. Flux balance analysis (FBA) is a method for the prediction of metabolic phenotype, and many applications have been developed using FBA to design metabolic networks. Elementary mode analysis (EMA) and ensemble modeling techniques are also useful tools for in silico strain design. The metabolome and flux distribution of the metabolic pathways enable us to evaluate the metabolic state and provide useful clues to improve target productivity. Here, we reviewed several computational applications for metabolic engineering by using genome-scale metabolic models of microorganisms. We also discussed the recent progress made in the field of metabolomics and 13C-metabolic flux analysis techniques, and reviewed these applications pertaining to bio-production development. Because these in silico or experimental approaches have their respective advantages and disadvantages, the combined usage of these methods is complementary and effective for metabolic engineering.  相似文献   

10.
11.
The field of metabolic engineering is primarily concerned with improving the biological production of value-added chemicals, fuels and pharmaceuticals through the design, construction and optimization of metabolic pathways, redirection of intracellular fluxes, and refinement of cellular properties relevant for industrial bioprocess implementation. Metabolic network models and metabolic fluxes are central concepts in metabolic engineering, as was emphasized in the first paper published in this journal, “Metabolic fluxes and metabolic engineering” (Metabolic Engineering, 1: 1–11, 1999). In the past two decades, a wide range of computational, analytical and experimental approaches have been developed to interrogate the capabilities of biological systems through analysis of metabolic network models using techniques such as flux balance analysis (FBA), and quantify metabolic fluxes using constrained-based modeling approaches such as metabolic flux analysis (MFA) and more advanced experimental techniques based on the use of stable-isotope tracers, i.e. 13C-metabolic flux analysis (13C-MFA). In this review, we describe the basic principles of metabolic flux analysis, discuss current best practices in flux quantification, highlight potential pitfalls and alternative approaches in the application of these tools, and give a broad overview of pragmatic applications of flux analysis in metabolic engineering practice.  相似文献   

12.
High-throughput data generation and genome-scale stoichiometric models have greatly facilitated the comprehensive study of metabolic networks. The computation of all feasible metabolic routes with these models, given stoichiometric, thermodynamic, and steady-state constraints, provides important insights into the metabolic capacities of a cell. How the feasible metabolic routes emerge from the interplay between flux constraints, optimality objectives, and the entire metabolic network of a cell is, however, only partially understood. We show how optimal metabolic routes, resulting from flux balance analysis computations, arise out of elementary flux modes, constraints, and optimization objectives. We illustrate our findings with a genome-scale stoichiometric model of Escherichia coli metabolism. In the case of one flux constraint, all feasible optimal flux routes can be derived from elementary flux modes alone. We found up to 120 million of such optimal elementary flux modes. We introduce a new computational method to compute the corner points of the optimal solution space fast and efficiently. Optimal flux routes no longer depend exclusively on elementary flux modes when we impose additional constraints; new optimal metabolic routes arise out of combinations of elementary flux modes. The solution space of feasible metabolic routes shrinks enormously when additional objectives---e.g. those related to pathway expression costs or pathway length---are introduced. In many cases, only a single metabolic route remains that is both feasible and optimal. This paper contributes to reaching a complete topological understanding of the metabolic capacity of organisms in terms of metabolic flux routes, one that is most natural to biochemists and biotechnologists studying and engineering metabolism.  相似文献   

13.
Constraint-based modeling methods, such as Flux Balance Analysis (FBA), have been extensively used to decipher complex, information rich -omics datasets to elicit system-wide behavioral patterns of cellular metabolism. FBA has been successfully used to gain insight in a wide range of applications, such as range of substrate utilization, product yields and to design metabolic engineering strategies to improve bioprocess performance. A well-known challenge associated with large genome-scale metabolic networks is that they result in underdetermined problem formulations. Consequently, rather than unique solutions, FBA and related methods examine ranges of reaction flux values that are consistent with the studied physiological conditions. The wider the reported flux ranges, the higher the uncertainty in the determination of basic reaction properties, limiting interpretability of and confidence in the results. Herein, we propose a new, computationally efficient approach that refines flux range predictions by constraining reaction fluxes on the basis of the elemental balance of carbon. We compared carbon constraint FBA (ccFBA) against experimentally-measured intracellular fluxes using the latest CHO GEM (iCHO1766) and were able to substantially improve the accuracy of predicted flux values compared with FBA. ccFBA can be used as a stand-alone method but is also compatible with and complimentary to other constraint-based approaches.  相似文献   

14.
赵欣  杨雪  毛志涛  马红武 《生物工程学报》2019,35(10):1914-1924
基因组尺度代谢网络模型已经成功地应用于指导代谢工程改造,但由于传统通量平衡分析法仅考虑化学计量学和反应方向约束,模拟得到的是理论最优结果,对一些现象如代谢溢流、底物层级利用等无法准确描述。近年来人们通过在代谢网络模型中引入新的蛋白量、热力学等约束发展了新的约束优化计算方法,可以更准确真实地模拟细胞在不同条件下的代谢行为。文中主要对近年来提出的多种酶约束模型进行评述,对酶约束引入的基本思路、酶约束的数学方程表示及优化目标设定、引入酶约束后对代谢通量计算结果的影响及酶约束模型在代谢工程菌种改造中的应用等进行了全面深入的介绍,并提出了已有各种方法存在的主要问题,展望了相关方法的未来发展方向。通过引入新的约束,代谢网络模型能够更精确模拟和预测细胞在环境和基因扰动下的代谢行为,为代谢工程菌种改造提供更准确可靠的指导。  相似文献   

15.
This research rationally analyzes metabolic pathways of Pichia pastoris to study the metabolic flux responses of this yeast under methanol metabolism. A metabolic model of P. pastoris was constructed and analyzed by elementary mode analysis (EMA). EMA was used to comprehensively identify the cell's metabolic flux profiles and its underlying regulation mechanisms for the production of recombinant proteins from methanol. Change in phenotypes and flux profiles during methanol adaptation with varying feed mixture of glycerol and methanol was examined. EMA identified increasing and decreasing fluxes during the glycerol–methanol metabolic shift, which well agreed with experimental observations supporting the validity of the metabolic network model. Analysis of all the identified pathways also led to the determination of the metabolic capacities as well as the optimum metabolic pathways for recombinant protein synthesis during methanol induction. The network sensitivity analysis revealed that the production of proteins can be improved by manipulating the flux ratios at the pyruvate branch point. In addition, EMA suggested that protein synthesis is optimum under hypoxic culture conditions. The metabolic modeling and analysis presented in this study could potentially form a valuable knowledge base for future research on rational design and optimization of P. pastoris by determining target genes, pathways, and culture conditions for enhanced recombinant protein synthesis. The metabolic pathway analysis is also of considerable value for production of therapeutic proteins by P. pastoris in biopharmaceutical applications. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:28–37, 2014  相似文献   

16.
Design and selection of efficient metabolic pathways is critical for the success of metabolic engineering endeavors. Convenient pathways should not only produce the target metabolite in high yields but also are required to be thermodynamically feasible under production conditions, and to prefer efficient enzymes. To support the design and selection of such pathways, different computational approaches have been proposed for exploring the feasible pathway space under many of the above constraints. In this review, an overview of recent constraint‐based optimization frameworks for metabolic pathway prediction, as well as relevant pathway engineering case studies that highlight the importance of rational metabolic designs is presented. Despite the availability and suitability of in silico design tools for metabolic pathway engineering, scarce—although increasing—application of computational outcomes is found. Finally, challenges and limitations hindering the broad adoption and successful application of these tools in metabolic engineering projects are discussed.  相似文献   

17.
鸟苷产生菌的代谢途径分析   总被引:1,自引:0,他引:1  
代谢工程要解决的主要问题就是改变某些途径中的碳架物质流量或改变碳架物质流在不同途径中的流量分布,其目标就是修饰初级代谢,将碳架物质流导入目的产物的载流途径以获得产物的最大转化率。利用途径分析方法对枯草芽孢杆菌生产鸟苷的途径进行了分析,建立了3种基础模型,鸟苷理论摩尔产率分别是0.625、0.75和0.667,确定了枯草芽孢杆菌生产鸟苷的最佳途径的通量分布。  相似文献   

18.
Mathematical modeling is an essential tool for the comprehensive understanding of cell metabolism and its interactions with the environmental and process conditions. Recent developments in the construction and analysis of stoichiometric models made it possible to define limits on steady-state metabolic behavior using flux balance analysis. However, detailed information on enzyme kinetics and enzyme regulation is needed to formulate kinetic models that can accurately capture the dynamic metabolic responses. The use of mechanistic enzyme kinetics is a difficult task due to uncertainty in the kinetic properties of enzymes. Therefore, the majority of recent works considered only mass action kinetics for reactions in metabolic networks. Herein, we applied the optimization and risk analysis of complex living entities (ORACLE) framework and constructed a large-scale mechanistic kinetic model of optimally grown Escherichia coli. We investigated the complex interplay between stoichiometry, thermodynamics, and kinetics in determining the flexibility and capabilities of metabolism. Our results indicate that enzyme saturation is a necessary consideration in modeling metabolic networks and it extends the feasible ranges of metabolic fluxes and metabolite concentrations. Our results further suggest that enzymes in metabolic networks have evolved to function at different saturation states to ensure greater flexibility and robustness of cellular metabolism.  相似文献   

19.
Metabolic networks supply the energy and building blocks for cell growth and maintenance. Cells continuously rewire their metabolic networks in response to changes in environmental conditions to sustain fitness. Studies of the systemic properties of metabolic networks give insight into metabolic plasticity and robustness, and the ability of organisms to cope with different environments. Constraint-based stoichiometric modeling of metabolic networks has become an indispensable tool for such studies. Herein, we review the basic theoretical underpinnings of constraint-based stoichiometric modeling of metabolic networks. Basic concepts, such as stoichiometry, chemical moiety conservation, flux modes, flux balance analysis, and flux solution spaces, are explained with simple, illustrative examples. We emphasize the mathematical definitions and their network topological interpretations.  相似文献   

20.
A metabolic flux based methodology was developed for modeling the metabolism of a Chinese hamster ovary cell line. The elimination of insignificant fluxes resulted in a simplified metabolic network which was the basis for modeling the significant metabolites. Employing kinetic rate expressions for growing and non-growing subpopulations, a logistic model was developed for cell growth and dynamic models were formulated to describe culture composition and monoclonal antibody (MAb) secretion. The model was validated for a range of nutrient concentrations. Good agreement was obtained between model predictions and experimental data. The ultimate goal of this study is to establish a comprehensive dynamic model which may be used for model-based optimization of the cell culture for MAb production in both batch and fed-batch systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号