共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this research is to develop a model to describe oligosaccharide synthesis and simultaneously lactose hydrolysis. Model A (engineering approach) and model B (biochemical approach) were used to describe the data obtained in batch experiments with β‐galactosidase from Bacillus circulans at various initial lactose concentrations (from 0.19 to 0.59 mol·kg−1). A procedure was developed to fit the model parameters and to select the most suitable model. The procedure can also be used for other kinetically controlled reactions. Each experiment was considered as an independent estimation of the model parameters, and consequently, model parameters were fitted to each experiment separately. Estimation of the parameters per experiment preserved the time dependence of the measurements and yielded independent sets of parameters. The next step was to study by ordinary regression methods whether parameters were constant under the altering conditions examined. Throughout all experiments, the parameters of model B did not show a trend upon the initial lactose concentration when inhibition was included. Therefore model B, a galactosyl‐enzyme complex‐based model, was chosen to describe the oligosaccharide synthesis, and one parameter set was determined for various initial lactose concentrations. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 64: 558–567, 1999. 相似文献
2.
Improvement of covalent immobilization procedure of β‐galactosidase from Kluyveromyces lactis for galactooligosaccharides production: Modeling and kinetic study 下载免费PDF全文
Flor González‐Cataño Luz Tovar‐Castro Eduardo Castaño‐Tostado Carlos Regalado‐Gonzalez Blanca García‐Almendarez Anaberta Cardador‐Martínez Silvia Amaya‐Llano 《Biotechnology progress》2017,33(6):1568-1578
Galactooligosaccharides (GOS) are prebiotics produced from lactose through an enzymatic reaction. Employing an immobilized enzyme may result in cost reductions; however, the changes in its kinetics due to immobilization has not been studied. This study experimentally determined the optimal reaction conditions for the production of GOS from lactose by β‐galactosidase (EC 3.2.1.23) from Kluyveromyces lactis covalently immobilized to a polysiloxane‐polyvinyl alcohol (POS‐PVA) polymer activated with glutaraldehyde (GA), and to study the transgalactosylation kinetics. Yield immobilization was 99 ± 1.1% with 78.5 ± 2.4% enzyme activity recovery. An experimental design 24 with 1 center point and 2 replicates was used. Factors were lactose [L], enzyme concentration [E], pH and temperature (T). Response variables were glucose and galactose as monosaccharides [G1], residual lactose [Lac]r and GOS as disaccharides [G2] and trisaccharides [G3]. Best conditions were pH 7.1, 40 °C, 270 gL?1 initial lactose concentration and 6 U mL?1 enzyme concentration, obtaining 25.46 ± 0.01 gL?1 yield of trisaccharides. Although below the HPLC‐IR detection limit, tetrasaccharides were also identified after 115 min of reaction. The immobilization protocol was then optimized by diminishing total reactant volumes : support ratio, resulting in improved enzyme activity synthesizing 43.53 ± 0.02 gL?1 of trisaccharides and 13.79 ± 0.21 gL?1 of tetrasaccharides, and after four cycles remaining relative activity was 94%. A reaction mechanism was proposed through which a mathematical model was developed and rate constants were estimated, considering a pseudo steady‐state hypothesis for two concomitant reactions, and from this simplified analysis, the reaction yield could eventually be improved. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1568–1578, 2017 相似文献
3.
Ryo Uehara Riki Iwamoto Sayaka Aoki Takuya Yoshizawa Kazufumi Takano Hiroyoshi Matsumura Shun‐ichi Tanaka 《Protein science : a publication of the Protein Society》2020,29(9):2000-2008
A GH1 β‐glucosidase from the fungus Hamamotoa singularis (HsBglA) has high transgalactosylation activity and efficiently converts lactose to galactooligosaccharides. Consequently, HsBglA is among the most widely used enzymes for industrial galactooligosaccharide production. Here, we present the first crystal structures of HsBglA with and without 4′‐galactosyllactose, a tri‐galactooligosaccharide, at 3.0 and 2.1 Å resolutions, respectively. These structures reveal details of the structural elements that define the catalytic activity and substrate binding of HsBglA, and provide a possible interpretation for its high catalytic potency for transgalactosylation reaction. 相似文献
4.
Novel grafted agar disks were prepared for the covalent immobilization of β‐D‐galactosidase (β‐gal). The agar disks were activated through reacting with ethylenediamine or different molecular weights of Polyethyleneimine (PEI), followed by glutaraldehyde (GA). The modification of the agar gel and the binding of the enzyme were verified by Fourier Transform Infrared (FTIR) and elemental analysis. Moreover, the agar's activation process was optimized, and the amount of immobilized enzyme increased 3.44 folds, from 38.1 to 131.2 U/g gel, during the course of the optimization process. The immobilization of β‐gal onto the activated agar disks caused its optimum temperature to increase from 45°C to 45–55°C. The optimum pH of the enzyme was also shifted towards the acidic side (3.6–4.6) after its immobilization. Additionally, the Michaelis‐Menten constant (Km) increased for the immobilized β‐gal as compared to its free counterpart whereas the maximum reaction rate (Vmax) decreased. The immobilized enzyme was also shown to retain 92.99% of its initial activity after being used for 15 consecutive times. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 675–684, 2015. 相似文献
5.
Fed‐batch synthesis of galacto‐oligosaccharides with Aspergillus oryzae β‐galactosidase using optimal control strategy 下载免费PDF全文
Fed‐batch synthesis of galacto‐oligosaccharides (GOS) from lactose with β‐galactosidase from Aspergillus oryzae was evaluated experimentally and reaction yield was maximized via optimal control technique. The optimal lactose and enzyme feed flow rate profiles were determined using a model for GOS synthesis previously reported by the authors. Experimentally it was found that fed‐batch synthesis allowed an increase on the maximum total GOS concentration from 115 (batch synthesis) to 218 g L?1 as consequence of the increase in total sugars concentration from 40 to 58% w/w. Such high concentration of total sugars was not attainable in batch operation because of the low solubility of lactose at the reaction temperature (40°C). Simulations predicted a GOS yield of 32.5 g g?1 in fed‐batch synthesis under optimal conditions, while experimentally the same yield as in batch synthesis was obtained (28 g g?1). Besides, an enrichment of total oligosaccharides in GOS with a high polymerization degree (GOS‐5 and GOS‐6) was observed in the fed‐batch synthesis. Experimental profiles for all sugars were similar to the ones predicted by simulation, which supports the use of this methodology for the optimization of GOS synthesis. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:59–67, 2014 相似文献
6.
Frederico Magalhães Tatiana Q. Aguiar Carla Oliveira Lucília Domingues 《Biotechnology progress》2014,30(2):261-268
Ashbya gossypii has been recently considered as a host for the expression of recombinant proteins. The production levels achieved thus far were similar to those obtained with Saccharomyces cerevisiae for the same proteins. Here, the β‐galactosidase from Aspergillus niger was successfully expressed and secreted by A. gossypii from 2‐µm plasmids carrying the native signal sequence at higher levels than those secreted by S. cerevisiae laboratorial strains. Four different constitutive promoters were used to regulate the expression of β‐galactosidase: A. gossypii AgTEF and AgGPD promoters, and S. cerevisiae ScADH1 and ScPGK1 promoters. The native AgTEF promoter drove the highest expression levels of recombinant β‐galactosidase in A. gossypii, leading to 2‐ and 8‐fold higher extracellular activity than the AgGPD promoter and the heterologous promoters, respectively. In similar production conditions, the levels of active β‐galactosidase secreted by A. gossypii were up to 37 times higher than those secreted by recombinant S. cerevisiae and ~2.5 times higher than those previously reported for the β‐galactosidase‐high producing S. cerevisiae NCYC869‐A3/pVK1.1. The substitution of glucose by glycerol in the production medium led to a 1.5‐fold increase in the secretion of active β‐galactosidase by A. gossypii. Recombinant β‐galactosidase secreted by A. gossypii was extensively glycosylated, as are the native A. niger β‐galactosidase and recombinant β‐galactosidase produced by yeast. These results highlight the potential of A. gossypii as a recombinant protein producer and open new perspectives to further optimize recombinant protein secretion in this fungus. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:261–268, 2014 相似文献
7.
Carlos Vera Cecilia Guerrero Andrés Illanes Raúl Conejeros 《Biotechnology and bioengineering》2011,108(10):2270-2279
A pseudo steady‐state model for the kinetically controlled synthesis of galacto‐oligosaccharides (GOS) with Aspergillus oryzae β‐galactosidase is presented. The model accounts for the dynamics of lactose consumption and production of galactose, glucose, di, tri, tetra, and penta‐oligosaccharides during the synthesis, being able to describe the total GOS content in the reaction medium at the experimental conditions evaluated. Experimental results show that the formation of GOS containing only galactose residues is significant at high conversions of substrate, which was taken into account in the model. The formation of enzyme transition complexes was considered and reasonable assumptions were made to reduce the number of parameters to be determined. The model developed has 8 parameters; 2 of them were experimentally determined and the other 6 were estimated by fitting to the experimental data using multiresponse regression. Temperature effect on kinetic and affinity constants was determined in the range from 40 to 55°C, and the data were fitted to Arrhenius type equation. Parameters of the proposed model are independent from the enzyme load in the reaction medium and, differently from previously reported models, they have a clear biochemical meaning. The magnitude of the kinetic and affinity constants of the enzyme suggests that the liberation of galactose from the galactosyl–enzyme complex is a very slow reaction and such complex is driven into GOS formation. It also suggests that the affinity for sugars of the galactosyl–enzyme complex is higher than that of the free enzyme. Biotechnol. Bioeng. 2011;108: 2270–2279. © 2011 Wiley Periodicals, Inc. 相似文献
8.
Characterizing the release of bioactive N‐glycans from dairy products by a novel endo‐β‐N‐acetylglucosaminidase 下载免费PDF全文
Sercan Karav Juliana Maria Leite Nobrega De Moura Bell Annabelle Le Parc Yan Liu David A. Mills David E. Block Daniela Barile 《Biotechnology progress》2015,31(5):1331-1339
Endo‐β‐N‐acetylglucosaminidase isolated from B. infantis ATCC 15697 (EndoBI‐1) is a novel enzyme that cleaves N‐N′‐diacetyl chitobiose moieties found in the N‐glycan core of high mannose, hybrid, and complex N‐glycans. These conjugated N‐glycans are recently shown as a new prebiotic source that stimulates the growth of a key infant gut microbe, Bifidobacterium longum subsp. Infantis. The effects of pH (4.45–8.45), temperature (27.5–77.5°C), reaction time (15–475 min), and enzyme/protein ratio (1:3,000–1:333) were evaluated on the release of N‐glycans from bovine colostrum whey by EndoBI‐1. A central composite design was used, including a two‐level factorial design (24) with four center points and eight axial points. In general, low pH values, longer reaction times, higher enzyme/protein ratio, and temperatures around 52°C resulted in the highest yield. The results demonstrated that bovine colostrum whey, considered to be a by/waste product, can be used as a glycan source with a yield of 20 mg N‐glycan/g total protein under optimal conditions for the ranges investigated. Importantly, these processing conditions are suitable to be incorporated into routine dairy processing activities, opening the door for an entirely new class of products (released bioactive glycans and glycan‐free milk). The new enzyme's activity was also compared with a commercially available enzyme, showing that EndoBI‐1 is more active on native proteins than PNGase F and can be efficiently used during pasteurization, streamlining its integration into existing processing strategies. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1331–1339, 2015 相似文献
9.
Karl F. Schilke Kelly L. Wilson Timothy Cantrell Giancarlo Corti David N. McIlroy Christine Kelly 《Biotechnology progress》2010,26(6):1597-1605
The use of silicon dioxide (SiO2) nanosprings as supports for immobilized enzymes in a continuous microreactor is described. A nanospring mat (2.2 cm2 × 60 μm thick) was functionalized with γ‐aminopropyltriethoxysilane, then treated with N‐succinimidyl‐3‐(2‐pyridyldithio)‐propionate (SPDP) and dithiothreitol (DTT) to produce surface thiol (? SH) groups. SPDP‐modified β‐galactosidase from Aspergillus oryzae was immobilized on the thiolated nanosprings by reversible disulfide linkages. The enzyme‐coated nanospring mat was placed into a 175‐μm high microchannel, with the mat partially occluding the channel. The kinetics and steady‐state conversion of hydrolysis of o‐nitrophenyl β‐D ‐galactosylpyranoside at various substrate flow rates and concentrations were measured. Substantial flow was observed through the nanosprings, for which the Darcy permeability κ ≈ 3 × 10?6 cm2. A simple, one‐parameter numerical model coupling Navier‐Stokes and Darcy flow with a pseudo‐first‐order reaction was used to fit the experimental data. Simulated reactor performance was sensitive to changes in κ and the height of the nanospring mat. Permeabilities lower than 10?8 cm2 practically eliminated convective flow through the nanosprings, and substantially decreased conversion. Increasing the height of the mat increased conversion in simulations, but requires more enzymes and could cause sealing issues if grown above channel walls. Preliminary results indicate that in situ regeneration by reduction with DTT and incubation with SPDP‐modified β‐galactosidase is possible. Nanosprings provide high solvent‐accessible surface area with good permeability and mechanical stability, can be patterned into existing microdevices, and are amenable to immobilization of biomolecules. Nanosprings offer a novel and useful support for enzymatic microreactors, biosensors, and lab‐on‐chip devices. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010 相似文献
10.
Paola Gamba Michela Guglielmotto Gabriella Testa Debora Monteleone Chiara Zerbinati Simona Gargiulo Fiorella Biasi Luigi Iuliano Giorgio Giaccone Alessandro Mauro Giuseppe Poli Elena Tamagno Gabriella Leonarduzzi 《Aging cell》2014,13(3):561-572
An abnormal accumulation of cholesterol oxidation products in the brain of patients with Alzheimer's disease (AD) would further link an impaired cholesterol metabolism in the pathogenesis of the disease. The first evidence stemming from the content of oxysterols in autopsy samples from AD and normal brains points to an increase in both 27‐hydroxycholesterol (27‐OH) and 24‐hydroxycholesterol (24‐OH) in the frontal cortex of AD brains, with a trend that appears related to the disease severity. The challenge of differentiated SK‐N‐BE human neuroblastoma cells with patho‐physiologically relevant amounts of 27‐OH and 24‐OH showed that both oxysterols induce a net synthesis of Aβ1‐42 by up‐regulating expression levels of amyloid precursor protein and β‐secretase, as well as the β‐secretase activity. Interestingly, cell pretreatment with N‐acetyl‐cysteine (NAC) fully prevented the enhancement of β‐amyloidogenesis induced by the two oxysterols. The reported findings link an impaired cholesterol oxidative metabolism to an excessive β‐amyloidogenesis and point to NAC as an efficient inhibitor of oxysterols‐induced Aβ toxic peptide accumulation in the brain. 相似文献
11.
Douglas H. Juers Beatrice Rob Megan L. Dugdale Nastaron Rahimzadeh Clarence Giang Michelle Lee Brian W. Matthews Reuben E. Huber 《Protein science : a publication of the Protein Society》2009,18(6):1281-1292
The active site of ß‐galactosidase (E. coli) contains a Mg2+ ion ligated by Glu‐416, His‐418 and Glu‐461 plus three water molecules. A Na+ ion binds nearby. To better understand the role of the active site Mg2+ and its ligands, His‐418 was substituted with Asn, Glu and Phe. The Asn‐418 and Glu‐418 variants could be crystallized and the structures were shown to be very similar to native enzyme. The Glu‐418 variant showed increased mobility of some residues in the active site, which explains why the substitutions at the Mg2+ site also reduce Na+ binding affinity. The Phe variant had reduced stability, bound Mg2+ weakly and could not be crystallized. All three variants have low catalytic activity due to large decreases in the degalactosylation rate. Large decreases in substrate binding affinity were also observed but transition state analogs bound as well or better than to native. The results indicate that His‐418, together with the Mg2+, modulate the central role of Glu‐461 in binding and as a general acid/base catalyst in the overall catalytic mechanism. Glucose binding as an acceptor was also dramatically decreased, indicating that His‐418 is very important for the formation of allolactose (the natural inducer of the lac operon). 相似文献
12.
13.
Kinetic characterization of galacto‐oligosaccharide (GOS) synthesis by three commercially important β‐galactosidases 下载免费PDF全文
Anja Warmerdam Filippos K. Zisopoulos Remko M. Boom Anja E. M. Janssen 《Biotechnology progress》2014,30(1):38-47
Many β‐galactosidases show large differences in galacto‐oligosaccharide (GOS) production and lactose hydrolysis. In this study, a kinetic model is developed in which the effect of lactose, glucose, galactose, and oligosaccharides on the oNPG converting activity of various β‐galactosidases is quantified. The use of oNPG as a competing substrate to lactose yields more information than can be obtained by examining only the conversion of lactose itself. The reaction rate with lactose or oligosaccharides as substrate relative to that with water as acceptor is much higher for the β‐galactosidase of Bacillus circulans than the β‐galactosidases of Aspergillus oryzae and Kluyveromyces lactis. In addition, the β‐galactosidase of B.circulans has a high reaction rate with galactose as acceptor, in contrast to those of A. oryzae and K. lactis. The latter two are strongly inhibited by galactose. These differences explain why β‐galactosidase of B. circulans gives higher yields in GOS production than other β‐galactosidases. Many of the reaction rate constants for the β‐galactosidase isoforms of B. circulans increase with increasing molecular weight of the isoform. This indicates that the largest isoform β‐gal‐A is most active in GOS production. However, its hydrolysis rate is also much higher than that of the other isoforms, which results in a faster hydrolysis of oligosaccharides as well. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:38–47, 2014 相似文献
14.
Yusuke Takahara Nobuyuki Miyachi Mikiro Nawa Masaaki Matsuoka 《Cell biology international》2019,43(7):835-843
Calmodulin‐like skin protein (CLSP) is a secreted peptide that is produced by skin keratinocytes and some related epithelial cells. It has previously been shown that CLSP is recruited via the bloodstream into the central nervous system where it likely exerts a neuroprotective effect against toxicity related to Alzheimer's disease (AD) by binding to the heterotrimeric humanin receptor and activating intracellular survival signaling. However, it remains to be elucidated whether secreted CLSP shows a protective effect in the skin tissues. In the current study, using primary keratinocytes treated with hydrogen peroxide (H2O2) or exposed to ultraviolet (UV) irradiation as senescence models of keratinocytes, we addressed whether CLSP affects senescence in skin keratinocytes. We found that CLSP expression was upregulated by H2O2 or UV in keratinocytes. Furthermore, co‐incubation with recombinant CLSP reduced the increase in senescence‐associated β‐galactosidase‐positivity in keratinocytes that were induced by H2O2 or UV. These results suggest that CLSP may function as a senescence‐suppressing factor in keratinocytes. 相似文献
15.
BIOCHEMICAL CHARACTERIZATION OF A NOVEL β‐N‐ACETYLHEXOSAMINIDASE FROM THE INSECT OSTRINIA FURNACALIS
Yamin Huo Lei Chen Mingbo Qu Qi Chen Qing Yang 《Archives of insect biochemistry and physiology》2013,83(3):115-126
The β‐N‐acetylhexosaminidase FDL specifically removes the β‐1,2‐GlcNAc residue conjugated to the α‐1,3‐mannose residue of the core structure of insect N‐glycans, playing significant physiological roles in post‐translational modification in the Golgi apparatus. Little is known about its enzymatic properties. We obtained the OfFDL gene from the insect Ostrinia furnacalis by RT‐PCR. The full length cDNA of FDL is 2241 bp carrying an opening reading frame of 1923 bp encoding 640 amino acids. The recombinant protein OfFDL in a soluble and active form was obtained with high purity through a two‐step purification strategy. The recombinant OfFDL exclusively hydrolyzes the terminal β‐1,2‐GlcNAc residue from the α‐1,3 branch instead of the α‐1,6 branch of the substrate GnGn‐PA. Several kinetic parameters including kcat/Km values toward four artificial substrates and Ki values of three representative hexosaminidase inhibitors were obtained. 相似文献
16.
Modification of Immobead 150 support for protein immobilization: Effects on the properties of immobilized Aspergillus oryzae β‐galactosidase 下载免费PDF全文
Adriano Gennari Francielle H. Mobayed Ruan da Silva Rafael Rafael C. Rodrigues Raul A. Sperotto Giandra Volpato Claucia F. Volken de Souza 《Biotechnology progress》2018,34(4):934-943
We studied the modification of Immobead 150 support by either introducing aldehyde groups using glutaraldehyde (Immobead‐Glu) or carboxyl groups through acid solution (Immobead‐Ac) for enzyme immobilization by covalent attachment or ion exchange, respectively. These two types of immobilization were compared with the use of epoxy groups that are now provided on a commercial support. We used Aspergillus oryzae β‐galactosidase (Gal) as a model protein, immobilizing it on unmodified (epoxy groups, Immobead‐Epx) and modified supports. Immobilization yield and efficiency were tested as a function of protein loading (10–500 mg g?1 support). Gal was efficiently immobilized on the Immobeads with an immobilization efficiency higher than 75% for almost all supports and protein loads. Immobilization yields significantly decreased when protein loadings were higher than 100 mg g?1 support. Gal immobilized on Immobead‐Glu and Immobead‐Ac retained approximately 60% of its initial activity after 90 days of storage at 4°C. The three immobilized Gal derivatives presented higher half‐lifes than the soluble enzyme, where the half‐lifes were twice higher than the free Gal at 73°C. All the preparations were moderately operationally stable when tested in lactose solution, whey permeate, cheese whey, and skim milk, and retained approximately 50% of their initial activity after 20 cycles of hydrolyzing lactose solution. The modification of the support with glutaraldehyde provided the most stable derivative during cycling in cheese whey hydrolysis. Our results suggest that the Immobead 150 is a promising support for Gal immobilization. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:934–943, 2018 相似文献
17.
μ2‐Dependent endocytosis of N‐cadherin is regulated by β‐catenin to facilitate neurite outgrowth 下载免费PDF全文
Circuit formation in the brain requires neurite outgrowth throughout development to establish synaptic contacts with target cells. Active endocytosis of several adhesion molecules facilitates the dynamic exchange of these molecules at the surface and promotes neurite outgrowth in developing neurons. The endocytosis of N‐cadherin, a calcium‐dependent adhesion molecule, has been implicated in the regulation of neurite outgrowth, but the mechanism remains unclear. Here, we identified that a fraction of N‐cadherin internalizes through clathrin‐mediated endocytosis (CME). Two tyrosine‐based motifs in the cytoplasmic domain of N‐cadherin recognized by the μ2 subunit of the AP‐2 adaptor complex are responsible for CME of N‐cadherin. Moreover, β‐catenin, a core component of the N‐cadherin adhesion complex, inhibits N‐cadherin endocytosis by masking the 2 tyrosine‐based motifs. Removal of β‐catenin facilitates μ2 binding to N‐cadherin, thereby increasing clathrin‐mediated N‐cadherin endocytosis and neurite outgrowth without affecting the steady‐state level of surface N‐cadherin. These results identify and characterize the mechanism controlling N‐cadherin endocytosis through β‐catenin‐regulated μ2 binding to modulate neurite outgrowth. 相似文献
18.
Bárbara Lara‐Chacón Mario Bermúdez de León Daniel Leocadio Pablo Gómez Lizeth Fuentes‐Mera Ivette Martínez‐Vieyra Arturo Ortega David A. Jans Bulmaro Cisneros 《Journal of cellular biochemistry》2010,110(3):706-717
β‐dystroglycan (β‐DG) is a widely expressed transmembrane protein that plays important roles in connecting the extracellular matrix to the cytoskeleton, and thereby contributing to plasma membrane integrity and signal transduction. We previously observed nuclear localization of β‐DG in cultured cell lines, implying the existence of a nuclear targeting mechanism that directs it to the nucleus instead of the plasma membrane. In this study, we delineate the nuclear import pathway of β‐DG, characterizing a functional nuclear localization signal (NLS) in the β‐DG cytoplasmic domain, within amino acids 776–782. The NLS either alone or in the context of the whole β‐DG protein was able to target the heterologous GFP protein to the nucleus, with site‐directed mutagenesis indicating that amino acids R779 and K780 are critical for NLS functionality. The nuclear transport molecules Importin (Imp)α and Impβ bound with high affinity to the NLS of β‐DG and were found to be essential for NLS‐dependent nuclear import in an in vitro reconstituted nuclear transport assay; cotransfection experiments confirmed the dependence on Ran for nuclear accumulation. Intriguingly, experiments suggested that tyrosine phosphorylation of β‐DG may result in cytoplasmic retention, with Y892 playing a key role. β‐DG thus follows a conventional Impα/β‐dependent nuclear import pathway, with important implications for its potential function in the nucleus. J. Cell. Biochem. 110: 706–717, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
19.
β‐Amino acids containing α,β‐hybrid peptides show great potential as peptidomimetics. In this paper, we describe the synthesis and affinity to μ‐opioid and δ‐opioid receptors of α,β‐hybrids, analogs of the tetrapeptide Tyr‐ d ‐Ala‐Phe‐Phe‐NH2 (TAPP). Each amino acid was replaced with an l ‐ or d ‐β3‐h‐amino acid. All α,β‐hybrids of TAPP analogs were synthesized in solution and tested for affinity to μ‐opioid and δ‐opioid receptors. The analog Tyr‐β3h‐ d ‐Ala‐Phe‐PheNH2 was found to be as active as the native tetrapeptide. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
20.
Yulia Koryakina Stacie M. Jones Lawrence E. Cornett Kathryn Seely Lisa Brents Paul L. Prather Alexander Kofman Richard C. Kurten 《Cell biology international》2012,36(12):1171-1183
The β2‐AR (β2‐adrenergic receptor) is an important target for respiratory and CVD (cardiovascular disease) medications. Clinical studies suggest that N‐terminal polymorphisms of β2‐AR may act as disease modifiers. We hypothesized that polymorphisms at amino acids 16 and 27 result in differential trafficking and down‐regulation of β2‐AR variants following β‐agonist exposure. The functional consequences of the four possible combinations of these polymorphisms in the human β2‐AR (designated β2‐AR‐RE, β2‐AR‐GE, β2‐AR‐RQ and β2‐AR‐GQ) were studied using site‐directed mutagenesis and recombinant expression in HEK‐293 cells (human embryonic kidney cells). Ligand‐binding assays demonstrated that after 24 h exposure to 1 μM isoprenaline, isoforms with Arg16 (β2‐AR‐RE and β2‐AR‐RQ) underwent increased down‐regulation compared with isoforms with Gly16 (β2‐AR‐GE and β2‐AR‐GQ). Consistent with these differences in down‐regulation between isoforms, prolonged isoprenaline treatment resulted in diminished cAMP response to subsequent isoprenaline challenge in β2‐AR‐RE relative to β2‐AR‐GE. Confocal microscopy revealed that the receptor isoforms had similar co‐localization with the early endosomal marker EEA1 following isoprenaline treatment, suggesting that they had similar patterns of internalization. None of the isoforms exhibited significant co‐localization with the recycling endosome marker Rab11 in response to isoprenaline treatment. Furthermore, we found that prolonged isoprenaline treatment led to a higher degree of co‐localization of β2‐AR‐RE with the lysosomal marker LAMP1 (lysosome‐associated membrane protein 1) compared with that of β2‐AR‐GE. Taken together, these results indicate that a mechanism responsible for differential responses of these receptor isoforms to the β‐agonist involves differences in the efficiency with which agonist‐activated receptors are trafficked to the lysosomes for degradation, or differences in degradation in the lysosomes. 相似文献